JPS60243554A - Detection of surface characteristics - Google Patents

Detection of surface characteristics

Info

Publication number
JPS60243554A
JPS60243554A JP9975984A JP9975984A JPS60243554A JP S60243554 A JPS60243554 A JP S60243554A JP 9975984 A JP9975984 A JP 9975984A JP 9975984 A JP9975984 A JP 9975984A JP S60243554 A JPS60243554 A JP S60243554A
Authority
JP
Japan
Prior art keywords
fibers
electrode
electrolytic solution
potential
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9975984A
Other languages
Japanese (ja)
Other versions
JPH0469334B2 (en
Inventor
Hajime Asai
浅井 肇
Fujio Nakao
中尾 富士夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9975984A priority Critical patent/JPS60243554A/en
Priority to GB08512458A priority patent/GB2161273B/en
Publication of JPS60243554A publication Critical patent/JPS60243554A/en
Priority to US06/899,797 priority patent/US4735693A/en
Publication of JPH0469334B2 publication Critical patent/JPH0469334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PURPOSE:To enable measurement of carbon fibers, etc. for their surface characteristics on the manufacturing line, by detecting a current value with selection of carbon fiber and graphite fiber which have undergone surface oxydation processes as an electrode on one side and changing a electric potential in an electrolytic solution and within the specified voltage. CONSTITUTION:Electrolytic solution, for instance, aqueous solution of phosphoric acid is admitted in an electrolytic solution cell 4. Then, a surface oxidation treated carbon fiber or a tow of a plurality of the fibers are allowed to touch a dielectric roller 2 and conveyed continuously to the electrolytic solution and taken up by non-dielectric roller 3. Further, a counter electrode 5, for instance, platinum electrode and the reference electrode, for instance, Ag/AgCl electrode are installed. Then, a scanning potential is applied without exceeding the electrolytic potential of the electrolytic solution and current-potential curve is detected with a polarographic meter 7. Then, from change of current values oxidation conditions of carbon and graphite fibers are detected. As the oxidation condition of the fibers can be detected continuously, an excellent composite can be obtained from these fibers.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は炭素繊維の表面特性の新規な検知方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel method for detecting surface properties of carbon fibers.

〔従来技術〕[Prior art]

コンポジットの強度特性およびその耐久性は補強繊維と
樹脂の結合強度に左右されており、そのために炭素繊維
では表面処理を施すことが必要となり、例えば気相酸化
方法、液相酸化剤処理、電解酸化処理等酸化による表面
処理が一般的に行われており、特公昭55−20033
号公報他に種々の提案が行われている。
The strength properties of the composite and its durability depend on the bonding strength between the reinforcing fibers and the resin, and for this reason carbon fibers require surface treatments such as vapor phase oxidation, liquid phase oxidant treatment, electrolytic oxidation. Surface treatment by oxidation, such as treatment, is generally carried out, and
In addition to the above publication, various proposals have been made.

これら表面処理の程度によって炭素繊維の表面特性が化
学的、物理的に大きく変化し、コンポジット特性が太き
(影響を受けるが、コンポジット特性に対する最適表面
処理を明らかにするには、表面状態を充分に把握してお
かなければならない。表面処理の方法や条件をかえて得
られる炭素繊維の表面解析を行った例としてはガス吸着
による比表面積の測定や滴定分析あるいはESCA等に
よる官能基の分析等多(あるものの、これらの研究はあ
くまでも研究段階での解析研究にすぎず、これらの手法
を工業的に品質管理に用いるのは実際上不可能である。
Depending on the degree of these surface treatments, the surface properties of carbon fibers change significantly chemically and physically, and the composite properties are affected (although the surface condition is sufficient to clarify the optimal surface treatment for the composite properties). Examples of surface analysis of carbon fiber obtained by changing surface treatment methods and conditions include measurement of specific surface area by gas adsorption, titration analysis, and analysis of functional groups by ESCA, etc. Although there are many methods, these studies are merely analytical studies at the research stage, and it is practically impossible to use these methods for industrial quality control.

〔発明の目的〕[Purpose of the invention]

本発明者らはコンポジット特性とよく対応づけられる炭
素繊維の表面特性を適確に連続的にとらえることのでき
る実用的な検知手法を開発せんと検討を重ねた結果、本
発明を完成するに至った。
The inventors of the present invention have completed the present invention as a result of repeated studies to develop a practical detection method that can accurately and continuously capture the surface characteristics of carbon fibers that are well correlated with composite characteristics. Ta.

本発明の第1、の目的は炭素繊維の表面分析を工場の製
品検査に適応させることにあり、第2の目的は製造ライ
/に直結させることにより表面処理の工程管理を行うこ
とにある。
The first object of the present invention is to apply surface analysis of carbon fibers to product inspection in factories, and the second object is to perform surface treatment process control by directly linking it to manufacturing lines.

〔発明の構成〕[Structure of the invention]

すなわち本発明の要旨とするとごろは、炭素繊維もしく
は黒鉛繊維を電解質溶液中に走行せしめ、該液中におい
て、炭素繊維もしくは黒鉛繊維を一万の極となし液中に
設けた対極との間で、電解電圧以下の電圧範囲内で電位
を変化させ生じる電流値変化を連続的に検知することを
特徴とした炭素繊維もしくは黒鉛繊維の表面特性の検出
法である。
That is, the gist of the present invention is to run carbon fibers or graphite fibers in an electrolyte solution, and in the solution, between 10,000 carbon fibers or graphite fibers as electrodes and counter electrodes provided in the solution. , is a method for detecting the surface characteristics of carbon fibers or graphite fibers, which is characterized by continuously detecting changes in current value caused by changing the potential within a voltage range below the electrolytic voltage.

炭素繊維を電極に応用する試みは多(なされており、電
位走査法を炭素繊維電極の化学修飾や眉間化合物の解析
に適用した例がい(つか知られている。
Many attempts have been made to apply carbon fiber to electrodes, and there are some known examples of applying the potential scanning method to chemical modification of carbon fiber electrodes and analysis of glabellar compounds.

ところが電位走査法から得られる特性値がコンポジット
の強度特性と関連づけて検討された例は未だかつてな(
、我々が鋭意検討した結果始めて明らかにされた事実で
ある。電位走査法で得られた特性値が炭素繊維の表面特
性とどう関係づけられているのか詳細は不明であるが、
恐ら(炭素繊維の表面の酸化還元反応にあずかる官能基
濃度と物理的表面積とに対応した特性であろうと思われ
る。その詳細は別にして、実施例でも明らかな様に、電
位走査法で得られる特性値はコンポジットの強度特性と
よく対応しており界面結合力の大きさを表わす一つの指
標と考えられ、特性値を制御することによりコンポジッ
トの強度特性を最もよ(発現させることができる。
However, there has never been an example in which the characteristic values obtained from the potential scanning method have been studied in relation to the strength characteristics of the composite (
This is a fact that was revealed for the first time as a result of our intensive investigation. Although the details of how the characteristic values obtained by the potential scanning method are related to the surface characteristics of carbon fibers are unknown,
This is probably a characteristic that corresponds to the concentration of functional groups that participate in redox reactions on the surface of carbon fibers and the physical surface area.Separating from the details, as is clear from the examples, the potential scanning method The obtained characteristic values correspond well to the strength characteristics of the composite and are considered to be an index expressing the magnitude of the interfacial bonding force, and the strength characteristics of the composite can be maximized by controlling the characteristic values. .

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明を実施するのに好適な測定装置は、例えば第1〜
3図に示す様なものであるが、作動極として炭素繊維を
用いて測定できる様な装置であればよい。
Measuring devices suitable for carrying out the present invention include, for example, the first to
Although it is shown in Figure 3, any device that can perform measurements using carbon fiber as a working electrode may be used.

試料である炭素繊維は、電極表面積が一定となる様に電
解液中を通せば良く、1本又は複数本のトウを同時に通
しても良い。連続糸を通す場合、電解槽外で導電性ロー
ラーに接触させ炭素繊維に電位を与えるが、その場合の
導電性ローラーは1個でも良いし、電解槽の両側に2個
以上用いても良い。又、第1図、第2図の様に非導電性
ローラーで炭素繊維を電解液に浸漬して試料長を規制し
ても良いし、第3図の様に電解液のオーバーフローを利
用して炭素繊維を浸漬し、試料長を規制する方法も可能
である。
The carbon fiber sample may be passed through the electrolytic solution so that the electrode surface area is constant, or one or more tows may be passed through the electrolyte solution at the same time. When threading a continuous yarn, the carbon fibers are brought into contact with a conductive roller outside the electrolytic cell to apply a potential to the carbon fibers. In this case, the number of conductive rollers may be one, or two or more may be used on both sides of the electrolytic cell. Alternatively, the length of the sample may be controlled by immersing the carbon fiber in the electrolyte using a non-conductive roller as shown in Figures 1 and 2, or by utilizing the overflow of the electrolyte as shown in Figure 3. A method of regulating the sample length by immersing carbon fibers is also possible.

対極としては、測定に誤差を生じさせない程度の大きさ
の電極面積と材質を持ったものであれば良く、例えば白
金電極等が利用できる。
The counter electrode may be any electrode having a large electrode area and material that does not cause errors in measurement, such as a platinum electrode.

又、標準電極としては、飽和カロメル電極、kg/Ag
C1電極等が利用できる。
In addition, as a standard electrode, a saturated calomel electrode, kg/Ag
C1 electrode etc. can be used.

本発明において用いる電解質溶液としては、基本的には
通電できるものであれば何でもよ(、好ましいものとし
て塩化カリウム、硝酸ナトリウム、水酸化カリウム、水
酸化ナトリウム等が溢げられるが、濃硫酸のように炭素
繊維と層間化合物するようなものであってはならない。
The electrolyte solution used in the present invention can basically be anything as long as it can conduct electricity (preferred examples include potassium chloride, sodium nitrate, potassium hydroxide, sodium hydroxide, etc., but concentrated sulfuric acid, etc.) can be used as the electrolyte solution. There must be no intercalation compound with the carbon fiber.

電解質濃度は1〜20%の範囲が望ましい。The electrolyte concentration is preferably in the range of 1 to 20%.

電位走査の検知装置としては一般的な電気化学検知装置
が用いられ、例えばサイクリック・ポルタム・メトリー
や微分ポーラログラフイー或は交流ポーラログラフイー
等があるが、いずれの装置を用いてもさしつかえない。
As a potential scanning detection device, a general electrochemical detection device is used, such as cyclic portummetry, differential polarography, or alternating current polarography, and any of these devices may be used.

例えばサイクリック・ポルタム・メトリーで検知する場
合はファンクション・ゼネレーターと記録計が接続され
たボテ/ショ°スタットに作動電極としての炭素繊維と
標準電極としてのAgZAgCl電極と対極としての白
金電極を接続することにより可能である。
For example, when detecting with cyclic portummetry, connect a carbon fiber as a working electrode, an AgZAgCl electrode as a standard electrode, and a platinum electrode as a counter electrode to a bote/shotostat connected to a function generator and a recorder. This is possible.

本発明でいう炭素繊維はアクリル系のものに限定されず
、いわゆるピッチ系?よびセルロース系の炭素繊維も含
み、又黒鉛繊維であってもさしつかえない。
The carbon fibers referred to in the present invention are not limited to acrylic fibers, but are also so-called pitch-based fibers? It also includes cellulose-based carbon fibers and graphite fibers.

炭素繊維の試料形態としては、トウ、シート、クロス、
ペーハー等電極として形態を保てるものであればいかな
るものでも可能であり、又試料にサイジング剤等の樹脂
が付着していてもさしつかえないが、この場合は有効表
面積が減少するのでその補正をする必要がある。
Carbon fiber sample forms include tow, sheet, cloth,
Any material can be used as long as it can maintain its shape as an electrode, such as a pH electrode, and it is okay even if resin such as a sizing agent is attached to the sample, but in this case, the effective surface area will decrease, so it is necessary to compensate for this. There is.

本発明を実施するために使用する炭素繊維もしくは黒鉛
繊維は、予め乾式あるいは湿式法による表面酸化処理が
施されていることが好ましいが、必ずしもこれらの処理
は行われていな(てもよ(、例えば24 t/m’程度
の弾性率を有するものであるならば未処理のままでコ/
ポジット特性を把握するという点から本発明を適用する
ことが充分可能である。
It is preferable that the carbon fibers or graphite fibers used to carry out the present invention have been previously subjected to surface oxidation treatment using a dry or wet method, but these treatments may not necessarily be performed. For example, if it has an elastic modulus of about 24 t/m', it can be coated as it is untreated.
It is fully possible to apply the present invention from the viewpoint of understanding positive characteristics.

〔実施例〕〔Example〕

以下具体的に実施例によって本発明を説明する。 The present invention will be specifically explained below with reference to Examples.

実施例1 パイロフィルT−1(三菱レイヨン社展商m)12.0
00フイラメントのノンサイズド炭素線維トウ1を作動
電極として、第3図に示した装置4を用い、浸漬試料長
が30cIrLになる様に電解液8に浸漬し、対極5に
白金電極を、標準電極6にAg/AgCl電極を用いて
神木製作所のポルタム・メトリー・アナライザーP−1
100で電位走査を行なった。電解液には5%す/酸水
溶液を用い、窒素をバブリ/グさせ、溶残酸素の影響を
除き、試料の炭素繊維は0.1 m/minの速度で走
行させた。
Example 1 Pyrophil T-1 (Mitsubishi Rayon Co., Ltd.) 12.0
A non-sized carbon fiber tow 1 of 00 filament is used as a working electrode and immersed in an electrolytic solution 8 so that the immersion sample length is 30 cIrL using the apparatus 4 shown in FIG. using the Kamiki Seisakusho Portummetry Analyzer P-1 using Ag/AgCl electrodes.
Potential scanning was performed at 100. A 5% sour/acid aqueous solution was used as the electrolytic solution, nitrogen was bubbled through it, the influence of residual oxygen was removed, and the sample carbon fiber was run at a speed of 0.1 m/min.

電位の走査範囲は、電解液の電解電位を越えない様[−
0,2Vから+0.8Vの範囲を標準条件とし、走査速
度は20 mV/ sec を標準速度として実施した
The potential scanning range is set so as not to exceed the electrolytic potential of the electrolytic solution [-
The standard conditions were a range from 0.2 V to +0.8 V, and the standard scanning speed was 20 mV/sec.

X−Yレコーダーにより電流−電位曲線を描き、Ag/
AgC1電極に対し+0.4Vの電位を基準電位として
電流値lを読み取り、次式に従ってipBを算出した。
Draw a current-potential curve with an X-Y recorder, and
The current value l was read using a potential of +0.4 V with respect to the AgC1 electrode as a reference potential, and ipB was calculated according to the following formula.

iph = ’ (j’A)/試料全表面積(crfL
”)式中、試料全表面積は試料重量、フィラメント数、
目付2よび密度から計算してめた値を用いた。
iph = '(j'A)/total sample surface area (crfL
”) In the formula, the total surface area of the sample is the weight of the sample, the number of filaments,
The value calculated from the basis weight 2 and density was used.

コ/ポジット特性は、パイロフィル#32゜レジ/(三
菱レイヨ/社製商標)をマトリックスとして一方向プリ
プレグを作成し、130℃X3hrで平板に成型した後
、lO關X15m真×2龍の試験片を切り出し、繊維軸
にそってショート・ビーム法による層間剪断応力(IL
SS)を評価した〇 本試料に関して得られたipa%よびコノポジットのI
LSSを第1表に示した。
Co/posit characteristics were determined by creating a unidirectional prepreg using Pyrofil #32°Resi/ (trademark manufactured by Mitsubishi Rayo Co., Ltd.) as a matrix, molding it into a flat plate at 130°C for 3 hours, and then preparing a test piece of lO size x 15m true x 2 dragons. The interlaminar shear stress (IL) was measured by the short beam method along the fiber axis.
Ipa% and conoposite I obtained for this sample evaluated SS)
LSS is shown in Table 1.

第 1 表 実施例2 アクリル系プレカーサーを焼成して得られた弾性率28
 t/i+m2の炭素繊維を−Hボビンに巻き取った後
、5係硝酸ナトリウム水溶液中で20秒電解酸化を行い
、電流密度を変化させて表面酸化レベルを変化させた。
Table 1 Example 2 Elastic modulus obtained by firing acrylic precursor 28
After winding the carbon fiber of t/i+m2 onto a -H bobbin, electrolytic oxidation was performed for 20 seconds in a 5-functional sodium nitrate aqueous solution, and the surface oxidation level was varied by changing the current density.

電解処理した炭素繊維を引き続き電位走査処理槽を通し
た後、水洗、乾燥を行なってサイジング剤処理してボビ
ンに巻き取った。
The electrolytically treated carbon fibers were subsequently passed through a potential scanning treatment tank, washed with water, dried, treated with a sizing agent, and wound onto a bobbin.

第2表に表面酸化レベルを変えた時のtp&とコノポジ
ットのILSSを示した。なS炭素繊維は12,000
フイラメ/トトウで、目付は0.785//m、密度は
1.7751/cnL3であった0 第 2 表 〔発明の効果〕 本発明の検出法を適用するごとにより、性能の一定した
高性能炭素繊維を連続的に製造することが可能となる。
Table 2 shows the ILSS of the tp& and conoposite when the surface oxidation level was changed. S carbon fiber is 12,000
The fabric weight was 0.785//m and the density was 1.7751/cnL3. It becomes possible to continuously produce carbon fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は、本発明を実施するのに好適な装置の例を
示すものである。 1 炭素繊維 2 導電性ローラー 3 非導電性ローラー 4 電解質溶液槽 5 対極 6 標準電極 7 ポーラログラフイックアナライザーもしくはポテン
シオスタット等への接続端子8 電解質溶液 痺2 閃 痺 3 図 手続補正書(0発) 昭和59年8月22日 1、事件の表示 特願昭59−99759号 3、補正をする者 事件との関係 出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長 河 崎 晃 夫 4、代 理 人 東京都中央区京橋二丁目3番19号 5、補正命令の日付 目 宛 5頁5行1微分J→「微分パルス」
1-3 illustrate examples of apparatus suitable for carrying out the present invention. 1 Carbon fiber 2 Conductive roller 3 Non-conductive roller 4 Electrolyte solution bath 5 Counter electrode 6 Standard electrode 7 Connection terminal for polarographic analyzer or potentiostat, etc. 8 Electrolyte solution paralysis 2 Flash paralysis 3 Illustration procedure amendment (0 shots) August 22, 1980 1, Indication of Case Special Application No. 59-99759 3, Person making the amendment Relationship with the case Applicant Director, Mitsubishi Rayon Co., Ltd., 3-19 Kyobashi 2-chome, Chuo-ku, Tokyo (603) President: Akio Kawasaki 4, Representative: 2-3-19 Kyobashi, Chuo-ku, Tokyo Address: Date of correction order: 5 pages, 5 lines, 1 differential J → “Differential pulse”

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維もしくは黒鉛繊維を電解質溶液中に走行せしめ
、該液中において、炭素繊維もしくは黒鉛繊維を一万の
極となし液中に設けた対極との間で、電解電圧以下の電
圧範囲内で電位を変化させ生じる電流値変化を連続的に
検知することを特徴とした炭素繊維もしくは黒鉛繊維の
表面特性の検出法。
Carbon fibers or graphite fibers are made to run through an electrolyte solution, and in the solution, a potential within a voltage range below the electrolytic voltage is generated between 10,000 electrodes of carbon fibers or graphite fibers and a counter electrode provided in the solution. A method for detecting the surface characteristics of carbon fibers or graphite fibers, which is characterized by continuously detecting changes in current value caused by changing the current value.
JP9975984A 1984-05-18 1984-05-18 Detection of surface characteristics Granted JPS60243554A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9975984A JPS60243554A (en) 1984-05-18 1984-05-18 Detection of surface characteristics
GB08512458A GB2161273B (en) 1984-05-18 1985-05-16 Testing carbon fibre
US06/899,797 US4735693A (en) 1984-05-18 1986-08-26 Process for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9975984A JPS60243554A (en) 1984-05-18 1984-05-18 Detection of surface characteristics

Publications (2)

Publication Number Publication Date
JPS60243554A true JPS60243554A (en) 1985-12-03
JPH0469334B2 JPH0469334B2 (en) 1992-11-05

Family

ID=14255905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9975984A Granted JPS60243554A (en) 1984-05-18 1984-05-18 Detection of surface characteristics

Country Status (1)

Country Link
JP (1) JPS60243554A (en)

Also Published As

Publication number Publication date
JPH0469334B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
Zinoubi et al. Determination of trace heavy metal ions by anodic stripping voltammetry using nanofibrillated cellulose modified electrode
Edmonds Electroanalytical applications of carbon fibre electrodes
Gao et al. Electrochemical behaviour of dopamine and ascorbic acid at overoxidized polypyrrole (dodecyl sulphate) film-coated electrodes
Barbier et al. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon‐epoxy composites
JPH0353245B2 (en)
Šauperl et al. Cotton cellulose 1, 2, 3, 4 buthanetetracarboxylic acid (BTCA) crosslinking monitored by some physical—Chemical methods
Sapountzi et al. Combining electrospinning and vapor-phase polymerization for the production of polyacrylonitrile/polypyrrole core-shell nanofibers and glucose biosensor application
Gao et al. Voltammetric determination of dopamine in the presence of ascorbic acid at over-oxidized polypyrrole–indigo carmine film-coated electrodes
Wang et al. Ion-exchange voltammetry at poly (ester-sulfonic acid) film coated electrodes for trace analysis
Su et al. Thiol–ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd 2+ and Pb 2+
Fitzer et al. Anodic oxidation of high modulus carbon fibres in sulphuric acid
Baranski Alternating current voltammetry with carbon fiber microelectrodes
Chinnathambi et al. Hydrothermally reduced graphene oxide as a sensing material for electrically transduced pH sensors
US4735693A (en) Process for producing carbon fiber
Zhang Covalent modification of glassy carbon electrode with cysteine for the determination of dopamine in the presence of ascorbic acid
Han et al. Effect of oxygen-containing groups on electrochemical and marine electric field response properties of carbon fiber electrode
JPS60243554A (en) Detection of surface characteristics
WO2024019692A1 (en) An electrochemical green surface treatment method for the use of carbon fibres as an advanced material
Zhang et al. Effects of dopant and solvent on the properties of polypyrrole: investigations with cyclic voltammetry and electrochemically in situ conductivity
Sowmiya et al. Potentiometric glucose biosensing using camphor sulfonic acid doped polyaniline
CN115343338A (en) FeOOH/CC and nitrite electrochemical sensor and application thereof
JPS60246864A (en) Production of carbon fiber
Musameh et al. Surface activation of CNT Webs towards layer by layer assembly of biosensors
CN110243914A (en) A kind of all solid state electrochemistry macromolecule sensor measuring dissolved oxygen
Sreeja et al. Multiwall carbon nanotube modified electrochemical sensor for reactive black 5

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term