JPS60243370A - Signal processing device for electronic control system for vehicle - Google Patents

Signal processing device for electronic control system for vehicle

Info

Publication number
JPS60243370A
JPS60243370A JP59098354A JP9835484A JPS60243370A JP S60243370 A JPS60243370 A JP S60243370A JP 59098354 A JP59098354 A JP 59098354A JP 9835484 A JP9835484 A JP 9835484A JP S60243370 A JPS60243370 A JP S60243370A
Authority
JP
Japan
Prior art keywords
signal
waveform shaping
waveform
period
shaping signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59098354A
Other languages
Japanese (ja)
Inventor
Yoshihisa Sato
善久 佐藤
Susumu Akiyama
進 秋山
Yuji Hirabayashi
裕司 平林
Katsuhiro Ina
伊奈 克弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59098354A priority Critical patent/JPS60243370A/en
Publication of JPS60243370A publication Critical patent/JPS60243370A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/155Analogue data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To permit to determine the frequency of waveform shaping signal with high accuracy by a method wherein the masking frequency with respect to noise is changed in accordance with a primary coil voltage in the device in which the noise in the waveform shaped signal of the primary coil voltage generated in an ignition coil is being masked. CONSTITUTION:An ignition circuit 10 is equipped with a conduction control circuit 11, generating an ignition control signal necessary for the starting and finishing of conduction for the primary coil 21 of the ignition coil 20, and a transistor 12. In this case, a comparating means, comparing a preceeding waveform shaping signal with following waveform shaping signal and masking the following waveform shaping signal when the generating period of time of the following waveform shaping signal is shorter than a predetermined period of time, is equipped in a micro-computer 50, inputting the output signal of a waveform shaping circuit 40 shaping the waveform of a primary coil voltage Vi generated in the ignition coil 20 in order to utilize for the various kinds of control of the vehicle. On the other hand, a setting means, setting an elapsed time from the level change of the preceeding waveform shaping signal after releasing masking to the level change of the following waveform shaping signal as the period of following waveform shaping signal, is equipped in the device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両の走行速度制御、車両用内燃機関の点火
時期制御、燃料噴射制御等のだめの電子制御システムに
係り、特にこの電子制御システムに採用されて内燃機関
の点火コイルの一次巻線電圧を順次波形整形して波形整
形信号として発生し、これら各波形整形信号を上述した
走行速度制御、点火時期制御、燃料噴射制御等の各種制
御に必要な信号として処理する車両用電子制御システム
のための信号処理装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electronic control system for controlling the running speed of a vehicle, controlling the ignition timing of an internal combustion engine for a vehicle, controlling fuel injection, etc., and particularly relates to this electronic control system. The primary winding voltage of the ignition coil of an internal combustion engine is sequentially waveform-shaped and generated as a waveform-shaped signal, and these waveform-shaped signals are used for various controls such as the above-mentioned traveling speed control, ignition timing control, and fuel injection control. The present invention relates to a signal processing device for a vehicle electronic control system that processes signals as necessary for a vehicle.

〔従来技術〕[Prior art]

従来、この種の信号処理装置においては、例えば、単安
定マルチバイブレークを採用し、この単安定マルチバイ
ブレークから生しる出力信号によって、上述した各波形
整形信号の周期中に同各波形整形信号に混入するノイズ
をマスクして、点火時期を表わす前記−次巻線電圧の立
上がり及び点火コイルの通電開始時期を表わす前記−次
巻線電圧の立下がりにそれぞれ対応した立下がり及び立
上がりを有する信号として前記各波形整形信号を処理す
るようにしたものがある。
Conventionally, in this type of signal processing device, for example, a monostable multi-bi break is adopted, and the output signal generated from this monostable multi-bi break is used to adjust the waveform shaping signal to each waveform shaping signal during the period of each waveform shaping signal mentioned above. A signal that masks mixed noise and has falling and rising edges corresponding to the rise of the secondary winding voltage representing the ignition timing and the falling of the secondary winding voltage representing the timing of starting energization of the ignition coil, respectively. There is a device that processes each of the waveform shaping signals.

しかしながら、このような構成にあっては、前記単安定
マルチバイブレークからの出力信号の信号幅が前記−次
巻線電圧の周期変化とはかかわりなく常に一定となって
いるため、かかる−次巻線電圧の周期の長さによっては
、上述したノイズを前記単安定マルチハイブレークから
の出力信号により確実にマスクし得ない場合が生じ、そ
の結果、上述した各波形整形信号に対応する処理内容に
誤差が生じるという不具合があった。
However, in such a configuration, the signal width of the output signal from the monostable multi-bi break is always constant regardless of the periodic change in the secondary winding voltage. Depending on the length of the voltage cycle, the above-mentioned noise may not be reliably masked by the output signal from the monostable multi-high break, and as a result, errors may occur in the processing contents corresponding to each of the above-mentioned waveform shaping signals. There was a problem that occurred.

(発明の目的〕 これに対し、本発明者等は、内燃機関の回転慣性のため
点火コイルの一次巻線電圧の周期がこの一次巻線電圧に
先行する点火コイルの一次巻線電圧の周期の約1/3〜
2/3エク上となることに着目して、点火コイルの一次
巻線電圧の周期変化に応じ、上述したノイズに対するマ
スク周期を変えるようにした車両用電子制御システムの
ための信号処理装置を提供しようとするものである。
(Object of the Invention) In contrast, the present inventors have discovered that due to the rotational inertia of the internal combustion engine, the period of the primary winding voltage of the ignition coil is shorter than the period of the primary winding voltage of the ignition coil that precedes this primary winding voltage. Approximately 1/3~
Provided is a signal processing device for a vehicle electronic control system that changes the mask period for the above-mentioned noise in accordance with the period change of the primary winding voltage of the ignition coil, focusing on the fact that the coefficient is higher than 2/3. This is what I am trying to do.

(発明の構成〕 かかる目的の達成にあたり、本発明の構成上の特徴は、
第1図にて例示するごとく、車両用内燃機関の点火周期
にて点火コイル1から生じる一次巻線電圧を順次波形整
形し波形整形信号として発生する波形整形手段2を備え
て、これら各波形整形信号を車両用電子制御システムに
よる制御に必要な信号として処理するようにした信号処
理装置において、波形整形手段2から連続して生じる先
行波形整形信号及び後行波形整形信号を比較してこの後
行波形整形信号の発生時間が前記先行波形整形信号の周
期の約I/3〜2/3内にて定めた所定時間より短いと
き前記後行波形整形信号をマスクし長くなるとこのマス
クを解除する比較手段3と、この比較手段3によるマス
ク解除下にて前記後行波形整形信号にレベル変化があっ
たとき前記先行波形整形信号の比較手段3によるマスク
解除下におけるレベル変化から前記後行波形整形信号の
レベル変化までの経過時間を当該後行波形整形信号の周
期として設定する設定手段4とを設けて、この設定手段
4による設定周期を前記電子制御システムによる制御に
必要な信号の周期とするようにしたことにある。
(Structure of the Invention) In achieving the above object, the structural features of the present invention are as follows:
As illustrated in FIG. 1, it is equipped with a waveform shaping means 2 that sequentially shapes the waveform of the primary winding voltage generated from the ignition coil 1 in the ignition period of the vehicle internal combustion engine and generates it as a waveform shaping signal. In a signal processing device that processes a signal as a signal necessary for control by a vehicle electronic control system, a preceding waveform-shaped signal and a subsequent waveform-shaped signal successively generated from the waveform shaping means 2 are compared and the following waveform-shaped signal is processed. Comparison in which the subsequent waveform-shaped signal is masked when the generation time of the waveform-shaped signal is shorter than a predetermined time set within about 1/3 to 2/3 of the period of the preceding waveform-shaped signal, and the mask is canceled when it becomes longer. means 3, and when there is a level change in the trailing waveform shaped signal under mask cancellation by the comparison means 3, the trailing waveform shaped signal is determined from a level change in the preceding waveform shaping signal under mask cancellation by the comparison means 3; A setting means 4 is provided for setting the elapsed time until the level changes as the period of the trailing waveform shaping signal, and the period set by the setting means 4 is set as the period of the signal necessary for control by the electronic control system. It's because I did it.

〔発明の効果〕〔Effect of the invention〕

しかして、このように本発明を構成したことにより、比
較手段3が、前記後行波形整形信号の発生時間が前記所
定時間以下のとき前記後行波形整形信号をマスクし、同
後行波形整形信号の発生時間が前記所定時間より長くな
ると前記マスクを解除し、設定手段4が、比較手段3に
より先行してなされたマスク下における前記先行波形整
形信号のレベル変化から前記後行波形整形信号のレベル
変化までの経過時間を同後行波形整形信号の周期として
設定するので、内燃機関の点火直後に前記後行波形整形
信号に混入する各種ノイズを、前記先行及び後行の波形
整形信号の各周期の変化とはかかわりなく、確実にマス
クした状態にて、前記後行波形整形信号の周期、即ち波
形整形手段3から順次化しる波形整形信号の周期を常に
精度よく決定し得る。
Therefore, by configuring the present invention in this way, the comparing means 3 masks the trailing waveform shaping signal when the generation time of the trailing waveform shaping signal is less than or equal to the predetermined time; When the signal generation time becomes longer than the predetermined time, the mask is released, and the setting means 4 determines the level of the preceding waveform-shaped signal from the level change of the preceding waveform-shaped signal under the mask previously made by the comparison means 3. Since the elapsed time until the level change is set as the period of the trailing waveform shaping signal, various noises mixed in the trailing waveform shaping signal immediately after the internal combustion engine is ignited can be eliminated from each of the preceding and trailing waveform shaping signals. Irrespective of changes in the period, the period of the trailing waveform-shaped signal, that is, the period of the waveform-shaped signal sequentially output from the waveform shaping means 3, can always be accurately determined in a masked state.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明すると、第2
図において各符号10及び20は車両用内燃機関の点火
回路及び点火コイルをそれぞれ示している。点火回路1
0は、通電制御回路11と、トランジスタ12とにより
構成されており、通電制御回路11は内燃機関の作動と
の関連にて公知の制御方法により点火コイル20の一次
巻線21への通電の開始及び終了に必要な通電開始信号
及び通電終了信号を発生する。トランジスタ12は通電
制御回路11からの通電開始信号に応答して導通し、当
該通電制御回路11からの通電終了信号に応答して非導
通となる。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
In the figure, reference numerals 10 and 20 respectively indicate an ignition circuit and an ignition coil of a vehicle internal combustion engine. Ignition circuit 1
0 is composed of an energization control circuit 11 and a transistor 12, and the energization control circuit 11 starts energization to the primary winding 21 of the ignition coil 20 by a known control method in relation to the operation of the internal combustion engine. and generates the energization start signal and energization end signal necessary for termination. The transistor 12 becomes conductive in response to an energization start signal from the energization control circuit 11, and becomes non-conductive in response to an energization end signal from the energization control circuit 11.

点火コイル20の一次巻線21はトランジスタ12の導
通に応答して直流電源の正側端子+B1から通電され、
この−次巻線21への通電はトランジスタ12の非導通
に応答して終了する。換言すれば、トランジスタ12の
コレクタと点火コイル20の一次巻線21との共通端子
には、第3図に示すごとく、周期Ti (i−1,2,
・・・)を有する一次巻線電圧Vi (i=1.2. 
・・・)が住じる。かかる場合、この−次巻線電圧Vi
の立上がりai(内燃機関の点火時期に対応する)はト
ランジスタ12の非導通により規定され、また−次巻線
電圧Viの立下がりbi(点火コイル20の通電開始時
期に対応する)はトランジスタ12の導通により規定さ
れる。なお、点火コイル20の二次巻線22は一次巻線
21の通電終了に応答して高電圧を発生し内燃機関のデ
ィストリビュータ30に付与する。
The primary winding 21 of the ignition coil 20 is energized from the positive terminal +B1 of the DC power supply in response to the conduction of the transistor 12,
This energization of the secondary winding 21 is terminated in response to the non-conduction of the transistor 12. In other words, the common terminal between the collector of the transistor 12 and the primary winding 21 of the ignition coil 20 has a period Ti (i-1, 2,
) with the primary winding voltage Vi (i=1.2.
) lives there. In such a case, this negative winding voltage Vi
The rising edge ai (corresponding to the ignition timing of the internal combustion engine) is determined by the non-conduction of the transistor 12, and the falling edge bi (corresponding to the timing of starting energization of the ignition coil 20) of the second winding voltage Vi is determined by the non-conduction of the transistor 12. Defined by continuity. Note that the secondary winding 22 of the ignition coil 20 generates a high voltage in response to the end of energization of the primary winding 21 and applies it to the distributor 30 of the internal combustion engine.

波形整形回路40はトランジスタ41を有しており、こ
のトランジスタ41はそのベースにて抵抗41aを介し
前記直流電源の正側端子+131に接続されるとともに
抵抗41bを介し接地されている。また、このトランジ
スタ4Iのエミッタは、抵抗41Cを介しトランジスタ
12のコレクタに接続されるとともに、ダイオード’4
1d、 コンデンサ41e及び抵抗41fを介し接地さ
れている。
The waveform shaping circuit 40 has a transistor 41, whose base is connected to the positive terminal +131 of the DC power supply via a resistor 41a and grounded via a resistor 41b. Further, the emitter of this transistor 4I is connected to the collector of the transistor 12 via a resistor 41C, and the emitter of the transistor 4I is connected to the collector of the transistor 12 through a resistor 41C.
1d, is grounded via a capacitor 41e and a resistor 41f.

しかして、トランジスタ41は、そのベースにて前記直
流電源の正側端子+81から両抵抗41a。
Thus, the transistor 41 connects the positive side terminal +81 of the DC power source to both resistors 41a at its base.

41bを介し給電されるとともに、そのエミッタにてト
ランジスタ12のコレクタから両抵抗41c、41f、
コンデンサ4.1 e及びダイオード41dを介し一次
巻線電圧Viを受けて、この−次巻線電圧Viの立上が
りaiに応答して導通し、同一次巻線電圧Viの立下が
りbiに応答して非導通となる。なお、コンデンサ4.
1 eは抵抗41Cとの協働による放電作用のもとにト
ランジスタ12からの一次巻線電圧Viをその立上がり
aiから立下がりbiにかけて低下させる。
41b, and both resistors 41c, 41f,
It receives the primary winding voltage Vi through the capacitor 4.1e and the diode 41d, becomes conductive in response to the rising edge ai of the secondary winding voltage Vi, and conducts in response to the falling edge bi of the same primary winding voltage Vi. It becomes non-conductive. In addition, capacitor 4.
1e lowers the primary winding voltage Vi from the transistor 12 from its rising edge ai to its falling edge bi under the discharging effect in cooperation with the resistor 41C.

トランジスタ42は、そのエミッタにて接地され、その
ベースにて抵抗42aを介しトランジスタ41のコレク
タに接続されており、このトランジスタ42のコレクタ
ば抵抗42bを介し直流電源の正側端子十B2に接続さ
れている。しかして、トランジスタ42は、トランジス
タ41の導通に応答する抵抗42aの制御のもとに導通
し、トランジスタ41の非導通に応答して非導通となり
、そのコI/クタから第3図に示すごとき波形整形信号
Si(周期T1を有する)を生じる。かかる場合、波形
整形信号Siの立下がりAiは一次巻線21■1の立」
二かりaiに対応し、波形整形信号S1の立上がりBi
は一次巻線電圧Viの立下がりbiに対応する。また、
内燃機関の回転慣性のため波形整形信号Si+1の周期
”f’ i +l≧Ti/2であり、−次巻線21の通
電エネルギー放出による一次巻線電圧Viの守旧がりa
iからの低下時間Δtof f i及び−次巻線21の
通電時間Δtonj (−次巻線電圧Viの立下がりb
iから一次巻線電圧■1+1の立上がりa i 4−1
まで)がそれぞれ1m5ec以上となっている。
The transistor 42 has its emitter grounded, its base connected to the collector of the transistor 41 via a resistor 42a, and the collector of this transistor 42 connected to the positive terminal 1B2 of the DC power supply via a resistor 42b. ing. Thus, the transistor 42 becomes conductive under the control of the resistor 42a which responds to the conduction of the transistor 41, becomes non-conductive in response to the non-conduction of the transistor 41, and the transistor 42 becomes conductive as shown in FIG. A waveform shaped signal Si (having a period T1) is generated. In such a case, the falling edge Ai of the waveform shaping signal Si is the rising edge of the primary winding 21.
Corresponding to the second ai, the rising edge Bi of the waveform shaping signal S1
corresponds to the fall bi of the primary winding voltage Vi. Also,
Due to the rotational inertia of the internal combustion engine, the period of the waveform shaping signal Si+1 is ``f' i +l≧Ti/2, and the primary winding voltage Vi is obsolete due to the release of energization energy in the negative winding 21.
i and the energization time Δtonj of the negative winding 21 (falling b of the negative winding voltage Vi)
Rise of primary winding voltage ■1+1 from i a i 4-1
) are each over 1m5ec.

マイクロコンピュータ50はその入力ボートにてトラン
ジスタ42のコレクタに接続されており、その内部に予
め記憶したコンピュータプログラムを第4図に示すフロ
ーチャートに従い繰返し実行し、この実行中において、
以下の作用説明にて述べるごとく、トランジスタ42か
らの波形整形信号のマスク、このマスクの解除、周期設
定、内燃機関の回転速度Nの演算等に必要な各種演算処
理を行う。なお、波形整形回路40及びマイクロコンピ
ュータ50により信号処理装置を構成する。
The microcomputer 50 is connected to the collector of the transistor 42 through its input port, and repeatedly executes a computer program stored therein in accordance with the flowchart shown in FIG. 4, and during this execution,
As will be described in the explanation of the operation below, various calculation processes necessary for masking the waveform shaping signal from the transistor 42, canceling this masking, setting the period, calculating the rotational speed N of the internal combustion engine, etc. are performed. Note that the waveform shaping circuit 40 and the microcomputer 50 constitute a signal processing device.

以上のように構成した本実施例において、当該車両の内
燃機関の作動のもとに本発明装置が作動しておれば、マ
イクロコンピュータ50が、コンピュータプログラムを
第4図のフローチャートに従いステップ61にて開始し
た後、ステップ62〜71を通る演算を約Q、1m5e
cにて繰返し実行している。しかして、波形整形回路4
oがトランジスタ12からの一次巻線電圧Vi(第3図
参照)に応答して波形整形信号S1を生じるものとすれ
ば、マイクロコンピュータ5oがステップ68にて波形
整形信号S1の立下がりAtに基きrYEsJと判別し
、ステップ70にて両計数データC1,C2を共に零と
しりセットする。
In this embodiment configured as described above, if the device of the present invention is operating under the operation of the internal combustion engine of the vehicle, the microcomputer 50 executes the computer program in step 61 according to the flowchart of FIG. After starting, the operation through steps 62 to 71 is about Q, 1m5e.
It is executed repeatedly at c. Therefore, the waveform shaping circuit 4
If o generates the waveform shaping signal S1 in response to the primary winding voltage Vi from the transistor 12 (see FIG. 3), the microcomputer 5o generates the waveform shaping signal S1 in response to the falling edge At of the waveform shaping signal S1 in step 68. rYEsJ, and in step 70 both count data C1 and C2 are set to zero.

ついで、マイクロコンピュータ50がステンブ62にて
計数データC1−0に「1」 (コンピュータプログラ
ムの一回の実行時間0.1m3ecに対応する)を加算
して計数データc1として更新し、ステップ63にて、
ステップ62における計数データCI<設定データDI
(点火コイル20の一次巻線の放電時間であるl m 
s e c以上に対応するものとしてマイクロコンピュ
ータ5oに予め記憶済み)に基きrNOJと判別する。
Next, the microcomputer 50 uses the step 62 to add "1" (corresponding to 0.1 m3ec of one execution time of the computer program) to the count data C1-0 to update the count data c1, and in step 63 ,
Counting data CI<setting data DI in step 62
(L m which is the discharge time of the primary winding of the ignition coil 20
(previously stored in the microcomputer 5o as corresponding to s e c or higher) is determined to be rNOJ.

このことは、−次巻線電圧Viの立上がりal(即ち、
波形整形信号S1の立下がりAI)の直後に内燃機関の
点火等に起因して波形整形信号s1に混入しがちな各種
ノイズna(第3図参照)がマイクロコンピュータ50
から確実にマスクされること4意味する。
This means that the rise al of the -order winding voltage Vi (i.e.,
Immediately after the falling edge AI of the waveform shaping signal S1, various noises na (see FIG. 3) that tend to be mixed into the waveform shaping signal s1 due to ignition of the internal combustion engine, etc. are detected by the microcomputer 50.
4 means that it is reliably masked from

しかして、両ステンプ62.6’3の循環演算中におい
てC1≧D1になると、マイクロコンピュータ50がス
テップ63にてl−Y E S Jと判別し、コンピュ
ータプログラムをステップ64に進める。
When C1≧D1 during the cyclic operation of both steps 62.6'3, the microcomputer 50 determines l-Y E S J in step 63 and advances the computer program to step 64.

このことば、波形整形信号s1の立下がりA1直後にお
りる波形整形信号S1のマスクが解除されたことを意味
する。このような段階において波形整形信号Sl(即ち
、マイクロコンビエータ5゜の入力ポート)がローレベ
ルにあれば、マイクロコンピュータ50がステップ64
にてrNOJと判別し、コンピュータプログラムをステ
ップ62に戻す。然る後、波形整形信号s1の立上がり
B1に基きステップ64における判別がrYEsJにな
ると、マイクロコンピュータ5oが、ステップ65にて
、ステップ62における計数データC1〈ステップ69
にてセント済みの周期データT(波形整形信号s1の先
行波形整形信号に対応する)の1/2に基きrNOJと
判別し、コンピュータフログラムをステップ62に戻す
。このことは、波形整形信号s1の立上がりBI後CI
=T/2となるまで波形整形信号s1及びこの間に生じ
がちなノイズ□b(第3図参照)を確実にマスクするこ
とを意味する。
This word means that the masking of the waveform-shaped signal S1 that occurs immediately after the falling edge A1 of the waveform-shaped signal s1 is cancelled. If the waveform shaping signal Sl (i.e., the input port of the microcombiator 5°) is at a low level at this stage, the microcomputer 50 performs step 64.
rNOJ is determined at step 62, and the computer program returns to step 62. Thereafter, when the determination in step 64 is rYEsJ based on the rising edge B1 of the waveform shaping signal s1, the microcomputer 5o, in step 65, converts the count data C1 in step 62 to <step 69
rNOJ is determined based on 1/2 of the cycle data T (corresponding to the preceding waveform shaping signal of the waveform shaping signal s1) that has been sent at step 62, and the computer program returns to step 62. This means that CI after rising BI of waveform shaping signal s1
This means that the waveform-shaped signal s1 and the noise □b (see FIG. 3) that tends to occur during this period are reliably masked until the waveform shaping signal s1 becomes equal to T/2.

ついで、ステップ65における判別がrYEsJになる
と、マイクロコンピュータ5oが、ステップ66にて計
数データC2=0に「1」を加算して計数データC2と
更新し、ステップ67にて、ステップ66におけるδ1
数データC2<設定データD2(点火コイル20の通電
時間1m5ec以上に対応するものとしてマイクロコン
ビエータ50に予め記憶済み)を基きrNOJと判別し
、コンピュータプログラムをステップ62に戻す。この
ことは1、波形整形信号s1の立上がり中、即ら点火コ
イル20の通電中において波形整形信号S1及びこの間
に生じがちなノイズnc(第3図参照)を確実にマイク
ロコンピュータ5oがらマスクすることを意味する。
Next, when the determination in step 65 becomes rYEsJ, the microcomputer 5o adds "1" to the count data C2=0 in step 66 to update the count data C2, and in step 67, δ1 in step 66 is updated.
Based on the numerical data C2<setting data D2 (previously stored in the micro combinator 50 as corresponding to the energization time of the ignition coil 20 of 1 m5 ec or more), rNOJ is determined, and the computer program returns to step 62. 1. While the waveform shaping signal s1 is rising, that is, while the ignition coil 20 is energized, the waveform shaping signal S1 and the noise nc that tends to occur during this period (see FIG. 3) can be reliably masked from the microcomputer 5o. means.

このような演算中においてC2≧D2になると、マイク
ロコンピュータ5oがステップ67にて[YESJと判
別し、コンピュータプログラムをステップ68に進める
。このことは、波形整形信号S1のマイクロコンピュー
タ5oからのすべてのマスクが解除されたことを意味す
る。しがして、ステップ68におけるrNOJとの判別
の繰返し中において、波形整形信号s1に後続する波形
整形信号32(第3図参照)の立下がりA2に基きステ
ップ68における判別がrYESJになると、マイクロ
コンピュータ50が、ステップ69にて、ステップ62
における最新の計数データC1を周期データTとして更
新する。かかる場合、点火コイル20の通電中に生じる
ノイズを確実にマスクし、このマスクを波形整形信号S
2の立上がり直前に解除するので、ステップ69におけ
る周期データT−C1が一次巻線電圧V1の周期に精度
よく対応したものとなる。
If C2≧D2 during such calculation, the microcomputer 5o determines YESJ in step 67 and advances the computer program to step 68. This means that all masks of the waveform shaped signal S1 from the microcomputer 5o have been released. However, during the repetition of the determination with rNOJ in step 68, when the determination in step 68 becomes rYESJ based on the falling edge A2 of the waveform shaping signal 32 (see FIG. 3) following the waveform shaping signal s1, the micro In step 69, the computer 50 performs step 62.
The latest count data C1 in is updated as periodic data T. In such a case, the noise generated during energization of the ignition coil 20 is reliably masked, and this mask is used as the waveform shaping signal S.
2, the period data T-C1 in step 69 accurately corresponds to the period of the primary winding voltage V1.

然る後、マイクロコンピュータ50がステップ70にて
Cl−C2=0とリセットし、ステップ71にてステッ
プ69における周期テークT=C1の逆数に基き内燃機
関の回転速度Nを演算する。
Thereafter, the microcomputer 50 resets Cl-C2=0 in step 70, and calculates the rotational speed N of the internal combustion engine in step 71 based on the reciprocal of the periodic take T=C1 in step 69.

かかる場合、周期データT=C1が上述のごとく精度よ
く得られるので、回転速度Nも同様に精度のよい値とな
る。
In such a case, the periodic data T=C1 can be obtained with high accuracy as described above, so the rotational speed N will also be a highly accurate value.

なお、前記実施例においては、ステップ69にて得られ
た周期データT=CIを回転速度Nをめるために利用し
た例について説明したが、これに限ることなく、車両用
各種電子制御システムに必要なデータとして周期データ
Tを利用してもよく、またステップ68におけるrYE
sJとの判別時期を上述した電子制御システムにおける
基準制御タイミングとして利用してもよい。
In the above embodiment, an example was explained in which the periodic data T=CI obtained in step 69 was used to determine the rotational speed N. Periodic data T may be used as necessary data, and rYE in step 68
The timing for determining sJ may be used as the reference control timing in the electronic control system described above.

また、前記実施例においては、波形整形信号Si+1の
周期Ti+1≧波形整形信号Stの周期T i / 2
である例について説明したが、これに限らず、内燃機関
の種類及び気筒数の各変化に応じTi+l≧T i /
 3〜2 T i / 3として実施してもよい。
Further, in the embodiment, the period Ti+1 of the waveform shaping signal Si+1≧the period T i /2 of the waveform shaping signal St
Although an example has been described, the example is not limited to this, and Ti+l≧T i / depending on the type of internal combustion engine and the number of cylinders.
It may be implemented as 3-2 Ti/3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲に記載の発明の構成に対する対
応図、第2図は本発明装置の一実施例を示すブロック図
、第3図は点火コイル及び波形整形回路の各出力波形図
、及び第4図はマイクロコンピュータの作用を示すフロ
ーチャートである。 符号の説明 20・・・点火コイル、40・・・波形整形回路、50
・・・マイクロコンピュータ。 第1図
FIG. 1 is a diagram corresponding to the configuration of the claimed invention, FIG. 2 is a block diagram showing an embodiment of the device of the present invention, and FIG. 3 is a diagram of each output waveform of an ignition coil and a waveform shaping circuit. and FIG. 4 are flowcharts showing the operation of the microcomputer. Explanation of symbols 20... Ignition coil, 40... Waveform shaping circuit, 50
...Microcomputer. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 車両用内燃機関の点火周期にて点火コイルから生じる一
次巻線電圧を順次波形整形し波形整形信号として発生ず
る波形整形手段を備えて、これら各波形整形信号を車両
用電子制御システムによる制御に必要な信号として処理
するようにした信号処理装置において、前記波形整形手
段から連続して生しる先行波形整形信号及び後行波形整
形信号を比較してこの後行波形整形信号の発生時間が前
記先行波形整形信号の周期の約1/3〜2/3内にて定
めた所定時間より短いとき前記後行波形整形信号をマス
クし長くなるとこのマスクを解除する比較手段と、この
比較手段によるマスク解除下にて前記後行波形整形信号
にレベル変化があったとき前記先行波形整形信号の前記
比較手段によるマスク解除下におけるレベル変化から前
記後行波形整形信号のレベル変化までの経過時間を当該
後行波形整形信号の周期として設定する設定手段とを設
けて、この設定手段による設定周期を前記電子制御シス
テムによる制御に必要な信号の周期とするようにしたこ
とを特徴とする車両用電子制御システムのための信号処
理装置。
A waveform shaping means is provided for sequentially shaping the primary winding voltage generated from the ignition coil in the ignition cycle of the vehicle internal combustion engine and generating a waveform shaping signal, and each of these waveform shaping signals is necessary for control by the vehicle electronic control system. In the signal processing device, the generation time of the trailing waveform shaped signal is determined by comparing the leading waveform shaping signal and the trailing waveform shaping signal that are successively generated from the waveform shaping means. Comparing means for masking the following waveform-shaped signal when it is shorter than a predetermined time set within about 1/3 to 2/3 of the period of the waveform-shaped signal, and canceling the mask when it is longer; and unmasking by the comparing means. At the bottom, when there is a level change in the trailing waveform shaped signal, the elapsed time from the level change of the preceding waveform shaped signal under mask removal by the comparing means to the level change of the trailing waveform shaped signal is calculated. A setting means for setting a period of a waveform shaping signal, and a period set by the setting means is a period of a signal necessary for control by the electronic control system. Signal processing equipment for.
JP59098354A 1984-05-16 1984-05-16 Signal processing device for electronic control system for vehicle Pending JPS60243370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098354A JPS60243370A (en) 1984-05-16 1984-05-16 Signal processing device for electronic control system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098354A JPS60243370A (en) 1984-05-16 1984-05-16 Signal processing device for electronic control system for vehicle

Publications (1)

Publication Number Publication Date
JPS60243370A true JPS60243370A (en) 1985-12-03

Family

ID=14217549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098354A Pending JPS60243370A (en) 1984-05-16 1984-05-16 Signal processing device for electronic control system for vehicle

Country Status (1)

Country Link
JP (1) JPS60243370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133318A (en) * 1990-09-28 1993-05-28 Prestolite Wire Corp Direct fire ignition system with separate knock detecting sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555363B2 (en) * 1975-12-29 1980-02-06
JPS57105540A (en) * 1980-12-22 1982-07-01 Japan Electronic Control Syst Co Ltd Ignition signal detecting method for internal combustion engine in case of digital control by microcomputor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555363B2 (en) * 1975-12-29 1980-02-06
JPS57105540A (en) * 1980-12-22 1982-07-01 Japan Electronic Control Syst Co Ltd Ignition signal detecting method for internal combustion engine in case of digital control by microcomputor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133318A (en) * 1990-09-28 1993-05-28 Prestolite Wire Corp Direct fire ignition system with separate knock detecting sensor

Similar Documents

Publication Publication Date Title
JPS6039509Y2 (en) Ignition timing control device for internal combustion engine ignition system
US4649888A (en) Ignition control apparatus for internal combustion engines
US4377785A (en) Device for diagnosing ignition system for use in internal combustion engine
US4099507A (en) Method and system to control the duty cycle of a pulse voltage changing in frequency
EP0203576A2 (en) Ignition timing control method for internal combustion engines
US4362144A (en) Contactless ignition system for internal combustion engine
US4355359A (en) Control system for internal combustion engines
JPS60243370A (en) Signal processing device for electronic control system for vehicle
US4517648A (en) Torque variation detecting method and apparatus for internal combustion engine
JPS61275572A (en) Ignition timing control method of internal combustion engine
EP0155680B1 (en) Ignition timing controlling apparatus for internal combustion engine
US4799380A (en) Engine rotation speed detecting apparatus
US3992930A (en) Engine cylinder identification
US4552110A (en) Electronic ignition control system
JPS6217671B2 (en)
JPH0681917B2 (en) Cylinder discrimination device for internal combustion engine
JPS6156424B2 (en)
JPS60182354A (en) Measuring device for injector driving pulse width
JPS6047877A (en) Reference position detecting device for internal- combustion engine
US4475520A (en) Contactless erroneous ignition prevention type ignition system for internal combustion engine
JPS5810580B2 (en) Automotive ignition system diagnostic device
EP0088130B1 (en) Ignition device for internal combustion engine
JPS6325181B2 (en)
GB2095443A (en) Signal generating means
JPS62168968A (en) Spark discharge duration measuring system for ignition device for automobile