JPS60243333A - Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine - Google Patents

Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine

Info

Publication number
JPS60243333A
JPS60243333A JP9942184A JP9942184A JPS60243333A JP S60243333 A JPS60243333 A JP S60243333A JP 9942184 A JP9942184 A JP 9942184A JP 9942184 A JP9942184 A JP 9942184A JP S60243333 A JPS60243333 A JP S60243333A
Authority
JP
Japan
Prior art keywords
air
fuel
engine
fuel ratio
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9942184A
Other languages
Japanese (ja)
Inventor
Akira Fujimura
章 藤村
Shuichi Kano
加納 秀一
Yoji Fukutomi
福富 庸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP9942184A priority Critical patent/JPS60243333A/en
Publication of JPS60243333A publication Critical patent/JPS60243333A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the exhaust-gas purifying characteristics of an engine, by executing open-loop control of the fuel supply rate instead of feedback control of the same in case that the fuel supply rate is higher than a reference value, and varying the above reference value according to the temperature of cooling water. CONSTITUTION:In operation of an engine 4, judgement is made at first by a control circuit 16 whether activation of an O2-sensor 14 is completed. In case that the judgement is YES, judgement is made whether the temperature TW of cooling water detected by a water-temperature sensor 12 is higher than a feedback control starting temperature TW01. In case of TW>=TW01, a reference value Tr corresponding to the temperature TW is searched from a map. Here, the above reference value Tr is set at either of two prescribed values Tr1, Tr2 by using a prescribed water temperature TW02 (>TW01) as a threshold value. Then, judgement is made whether the calculated fuel injection period TOUT is greater than said reference value Tr. In case of TOUT>Tr, an injector 15 is controlled by way of open-loop control instead of feedback control.

Description

【発明の詳細な説明】 本発明は内燃エンジン用燃料供給装置の空燃比制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for a fuel supply system for an internal combustion engine.

内燃エンジンへの適切な燃料供給をなすためにエンジン
回転数に同期した周期で吸気管内圧力等の基本的なエン
ジンパラメータに基づいて基本供給量を算出し、エンジ
ン冷却水温等の付随的なエンジンパラメータ或いはエン
ジンの過渡的変化に基づいて基本供給量を増量又は減量
補正することによって燃料供給量を算出し、燃料供給量
に対応する時間だけインジェクタ等の燃料供給器により
エンジンへ燃料供給を行なう燃料供給装置がある。
In order to provide appropriate fuel supply to the internal combustion engine, the basic supply amount is calculated based on basic engine parameters such as intake pipe pressure at a period synchronized with the engine speed, and the basic supply amount is calculated based on basic engine parameters such as intake pipe pressure, and incidental engine parameters such as engine cooling water temperature are calculated. Alternatively, the fuel supply amount is calculated by increasing or decreasing the basic supply amount based on transient changes in the engine, and fuel is supplied to the engine by a fuel supply device such as an injector for a time corresponding to the fuel supply amount. There is a device.

かかる燃料供給装置においては、排気浄化のために三元
触媒が排気系に設けられている場合、供給混合気の空燃
比が理論空燃比(例えば、14゜7)付近のとき三元触
媒がもっとも有効に作用する。よって、エンジンパラメ
ータの1つとしてエンジン排気中の酸素濃度が排気系に
設けられた酸素濃度センサによって検出され、酸素濃度
センサの出力信号に応じて基本供給量を補正して供給混
合気の空燃比を理論空燃比にフィードバック制御するこ
とが一般になされている。
In such a fuel supply device, when a three-way catalyst is installed in the exhaust system for exhaust purification, the three-way catalyst is most effective when the air-fuel ratio of the supplied mixture is around the stoichiometric air-fuel ratio (for example, 14°7). Works effectively. Therefore, as one of the engine parameters, the oxygen concentration in the engine exhaust is detected by an oxygen concentration sensor installed in the exhaust system, and the basic supply amount is corrected according to the output signal of the oxygen concentration sensor to adjust the air-fuel ratio of the supplied mixture. Generally, the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio.

この空燃比フィードバック制御は常時、行なわれるもの
ではなく、エンジンの特定運転状態、例えば低冷却水温
時、或いはエンジン高負荷時には運転状態を向上させる
ためにフィードバック制御を停止して酸素濃度センサの
出力信号に無関係なオープンループ制御をなすことによ
り空燃比がリッチ化されるのである。
This air-fuel ratio feedback control is not performed all the time; when the engine is in a specific operating state, such as when the cooling water temperature is low or the engine is under high load, the feedback control is stopped and the output signal of the oxygen concentration sensor is stopped in order to improve the operating state. The air-fuel ratio is enriched by performing open-loop control unrelated to the fuel consumption.

このような空燃比制御動作機能を備えた燃料供給装置に
おいて、燃料供給量が所定量より大となった場合には高
負荷時と判断し、空燃比フィードバック制御を停止して
オープンループ制御をなす制御方法が特開昭59−54
8号公報にて開示されている。
In a fuel supply system equipped with such an air-fuel ratio control operation function, when the amount of fuel supplied exceeds a predetermined amount, it is determined that the load is high, and air-fuel ratio feedback control is stopped to perform open-loop control. The control method is based on JP-A-59-54.
It is disclosed in Publication No. 8.

一方、近時、排気浄化効率の向上のためにエンジン始動
後における空燃比フィードバック制御開始判定用の冷却
水温のフィードバック制御開始温度を低下させてフィー
ドバック領域を広くする傾向にある。ところが、上記制
御方法においては、フィードバック制御開始温度より犬
なる低冷却水温時でも燃料供給量が所定量より小ならば
、フィードバック制御により理論空燃比の混合気がエン
ジンへ供給されるのでエンジン運転状態が不安定となる
場合が生ずる。故に低冷却水温時のエンジン運転状態が
安定するように上記所定量を小さく設定すると、フィー
ドバック制御領域が狭くなり、高冷却水温時にはフィー
ドバック制御で十分安定した運転状態が得られる燃料供
給量範囲でオープンループ制御によりリッチ化されるの
で排気浄化が悪化する不都合が生ずるのであった。
On the other hand, in recent years, in order to improve exhaust purification efficiency, there has been a trend to lower the feedback control start temperature of the cooling water temperature for determining the start of air-fuel ratio feedback control after engine startup, and to widen the feedback range. However, in the above control method, even when the cooling water temperature is lower than the feedback control start temperature, if the fuel supply amount is smaller than the predetermined amount, the mixture at the stoichiometric air-fuel ratio is supplied to the engine by feedback control, so the engine operating state is changed. may become unstable. Therefore, if the above predetermined amount is set to a small value so that the engine operating condition is stable at low cooling water temperatures, the feedback control range will be narrowed, and at high cooling water temperatures, the feedback control range will be open within the fuel supply amount range where a sufficiently stable operating condition can be obtained with feedback control. Since the exhaust gas is enriched by loop control, there arises the problem that exhaust gas purification deteriorates.

そこで、本発明の目的は冷却水温に応じたフィードバッ
ク制御領域を設定して排気浄化性能の向上を図った空燃
比制御方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air-fuel ratio control method that improves exhaust purification performance by setting a feedback control region according to cooling water temperature.

本発明の空燃比制御方法はエンジンへ供給する燃料供給
量が基準量より大なるか否かを判別し、燃料供給量がM
型置より小のときエンジン排気中の酸素濃度に応じてエ
ンジンへ供給する混合気の空燃比を補正する空燃比フィ
ードバック制御をなし、燃料供給量が基準量より大のと
き酸素濃度に無関係に混合気の空燃比を補正する空燃比
オーブンループ制御をなす方法であり、エンジン冷却水
温に応じて基準量を変化せしめることを特徴としている
The air-fuel ratio control method of the present invention determines whether the amount of fuel supplied to the engine is greater than a reference amount, and determines whether the amount of fuel supplied to the engine is M.
Air-fuel ratio feedback control is performed to correct the air-fuel ratio of the mixture supplied to the engine according to the oxygen concentration in the engine exhaust when the fuel supply amount is smaller than the standard amount, and when the fuel supply amount is larger than the standard amount, the mixture is mixed regardless of the oxygen concentration. This method performs air-fuel ratio oven loop control to correct the air-fuel ratio of air, and is characterized by changing the reference amount according to the engine cooling water temperature.

以下、本発明の実施例を第1図ないし第4図を参照しつ
つ説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

第1図に示した本発明による空燃比制御方法を適用した
電子制御式燃料噴射供給装置においては、吸入空気が大
気吸入口1からエアクリーナ2、吸気路3を介してエン
ジン4に供給されるようになっている。吸気路3内には
スロットル弁5が設けられスロットル弁5の開度によっ
てエンジン4の吸入空気口が変化するようになされてい
る。エンジン4の排気路8には排ガス中の有害成分(C
o。
In the electronically controlled fuel injection supply system to which the air-fuel ratio control method according to the present invention is applied, as shown in FIG. It has become. A throttle valve 5 is provided in the intake passage 3, and the intake air opening of the engine 4 is changed depending on the opening degree of the throttle valve 5. The exhaust passage 8 of the engine 4 has a harmful component (C) in the exhaust gas.
o.

HC及びN0x)の低減を促進させるために三元触媒9
が設けられている。
A three-way catalyst9 to promote the reduction of HC and NOx)
is provided.

一方、10は例えばポテンショメータからなり、スロッ
トル弁5の開度に応じたレベルの出力電圧を発生するス
ロットル開度センサ、11はスロットル弁5下流に設【
プられて圧力の大きさに応じたレベルの出力電圧を発生
する絶対圧センサ、12はエンジン4の冷却水温に応じ
たレベルの出力電圧を発生する冷却水温センサ、13は
エンジン4のクランクシャフト(図示せず)の回転に応
じてパルス信号を発生するクランク角センサであり、ク
ランクシャフトが例えば、120度回転する毎にパルス
を発生する。14は排ガス中の酸素濃度に応じたレベル
の出力電圧を発生する酸素濃度センサであり、排気路8
の三元触媒9の配設位置より上流に設けられている。1
5はエンジン4の吸気バルブ(図示せず)近傍の吸気路
3に設けられたインジェクタである。°スロットル間度
センザ101絶対圧センサ11、冷却水温センサ12、
クランク角センサ13及び酸素濃度センサ14の各出力
端とインジェクタ15の入力端とは制御回路16に接続
されている。
On the other hand, numeral 10 is a throttle opening sensor, which is composed of, for example, a potentiometer, and generates an output voltage at a level corresponding to the opening of the throttle valve 5;
12 is a cooling water temperature sensor that generates an output voltage at a level corresponding to the cooling water temperature of the engine 4; 13 is a crankshaft of the engine 4; This is a crank angle sensor that generates a pulse signal according to the rotation of the crankshaft (not shown), and generates a pulse every time the crankshaft rotates, for example, 120 degrees. 14 is an oxygen concentration sensor that generates an output voltage at a level corresponding to the oxygen concentration in the exhaust gas;
The three-way catalyst 9 is provided upstream from the location where the three-way catalyst 9 is located. 1
Reference numeral 5 denotes an injector provided in the intake passage 3 near the intake valve (not shown) of the engine 4. ° Throttle temperature sensor 101, absolute pressure sensor 11, cooling water temperature sensor 12,
The output terminals of the crank angle sensor 13 and the oxygen concentration sensor 14 and the input terminal of the injector 15 are connected to a control circuit 16.

制御回路16は第2図に示すようにスロットル間度セン
ザ10、絶対圧センサ11、水温センサ12及び酸素濃
度センサ14の各出力レベルを修正するレベル修正回路
21と、レベル修正回路21を経た各センサ出力の1つ
を選択的に出力する入力信号切替回路22と、この入力
信号切替回路22から出力されたアナログ信号をディジ
タル信号に変換するA/D変換器23と、クランク角セ
ンサ13の出力を波形整形する波形整形回路24と、波
形整形回路24から出力されるTDC信号のパルス間の
時間を計測するカウンタ25と、インジェクタ15を駆
動する駆動回路26と、プログラムに応じてディジタル
演算動作を行なうCPU(中央演算回路)27と、各種
の処理プログラムが記憶されたROM28と、RAM2
9とからなっている。入力信号切替回路22、A/D変
換器23、カウンタ25、駆動回路26、CPU 27
、ROM28及びRAM29は入出力バス30によって
接続されている。また波形整形回路24からTDC信号
がCPU27に供給されるようになっている。
As shown in FIG. 2, the control circuit 16 includes a level correction circuit 21 that corrects the output levels of the throttle angle sensor 10, absolute pressure sensor 11, water temperature sensor 12, and oxygen concentration sensor 14, and An input signal switching circuit 22 that selectively outputs one of the sensor outputs, an A/D converter 23 that converts the analog signal output from the input signal switching circuit 22 into a digital signal, and an output of the crank angle sensor 13. a counter 25 that measures the time between pulses of the TDC signal output from the waveform shaping circuit 24, a drive circuit 26 that drives the injector 15, and a digital calculation operation according to the program. A CPU (central processing circuit) 27, a ROM 28 in which various processing programs are stored, and a RAM 2
It consists of 9. Input signal switching circuit 22, A/D converter 23, counter 25, drive circuit 26, CPU 27
, ROM 28 and RAM 29 are connected by an input/output bus 30. Further, a TDC signal is supplied from the waveform shaping circuit 24 to the CPU 27.

かかる構成においてはA/D変換器23からスロットル
弁開度、吸気絶対圧、冷却水温及び排気中の酸素濃度の
情報が択一的に、またカウンタ25からエンジン回転数
の逆数を表わすカウント値情報がCPU27に入出力バ
ス30を介して各々供給される。ROM28にはCPU
27の演算プログラム及び各種データが予め記憶されて
おり、CPU27はこの演算プログラムに応じて上記の
各情報を読み込み、それらの情報を基にしてTDC信号
に同期して後述の算出式からエンジン4への燃料供給量
に対応するインジェクタ15の燃料In射時間To L
I Tを演算する。そして、その燃料噴射時間TOUT
だけ駆動回路26がインジェクタ15を駆動してエンジ
ン4へ燃料を供給せしめるのである。
In such a configuration, the A/D converter 23 selectively provides information on the throttle valve opening, intake absolute pressure, cooling water temperature, and exhaust oxygen concentration, and the counter 25 provides count value information representing the reciprocal of the engine speed. are respectively supplied to the CPU 27 via an input/output bus 30. ROM28 has a CPU
27 calculation programs and various data are stored in advance, and the CPU 27 reads each of the above information according to this calculation program, and based on the information, synchronizes with the TDC signal and sends it to the engine 4 from the calculation formula described later. The fuel injection time To L of the injector 15 corresponding to the fuel supply amount
Compute IT. And the fuel injection time TOUT
The drive circuit 26 drives the injector 15 to supply fuel to the engine 4.

燃料噴射時間TOLJTは、例えば、エンジン始動期間
後の基本モードでは次式から算出される。
For example, in the basic mode after the engine starting period, the fuel injection time TOLJT is calculated from the following equation.

TOUT=T1×(KTwaKAsTIIKAFcφK
woTa′Ko 2 ・KL s )−・・(1)ここ
で、T1はエンジン回転数と吸気絶対圧とから決定され
る基本供給量に対応する基本噴射時間KTWは冷却水温
増量係数、KAS丁は始動後増量係数、“KAFCは燃
料カット後増量係数、KwOTはスロットル弁6の全開
時のリッチ化係数、KO2は空燃比のフィードバック補
正係数、KLSはリーン化係数である。KTW等の補正
係数は燃料噴射時間T o IJ Tの基本モード算出
ルーチンのサブルーチンにおいて各々算出される。
TOUT=T1×(KTwaKAsTIIKAFcφK
woTa'Ko 2 ・KL s ) - (1) Here, T1 is the basic injection time corresponding to the basic supply amount determined from the engine speed and intake absolute pressure, KTW is the cooling water temperature increase coefficient, and KAS is the The increase coefficient after startup, KAFC is the increase coefficient after fuel cut, KwOT is the enrichment coefficient when the throttle valve 6 is fully open, KO2 is the air-fuel ratio feedback correction coefficient, and KLS is the lean coefficient. Each of the fuel injection times T o IJ T is calculated in a subroutine of the basic mode calculation routine.

次に、制御回路16によって実行される本発明による空
燃比制御方法の手順を第3図の動作フロー図に従って説
明する。
Next, the procedure of the air-fuel ratio control method according to the present invention executed by the control circuit 16 will be explained according to the operational flow diagram of FIG.

本手順において、制御回路16は、nTi目(今回)の
TDC信号に同期して酸素m度センサ14の活性化が完
了したか否かを判別する(ステップ51)。
In this procedure, the control circuit 16 determines whether activation of the oxygen m degree sensor 14 is completed in synchronization with the nTi-th (this time) TDC signal (step 51).

この活性化判別は例えば、酸素濃度センサ14がリーン
雰囲気下において暖機されるに従って所定時間t02以
前に酸素濃度センサ14の出力電圧VO2が一旦所定電
圧V×以上に上昇後、再び所定電圧■×以下に低下する
ように変化することから酸素濃度センサ14の出力電圧
VO2が所定電圧v×より小となりかつその後、更に所
定時間txが経過したか否かの判別によって行なわれる
This activation determination is performed, for example, as the oxygen concentration sensor 14 is warmed up in a lean atmosphere, and the output voltage VO2 of the oxygen concentration sensor 14 once rises to a predetermined voltage Vx or higher before a predetermined time t02, and then returns to the predetermined voltage ■× Since the output voltage VO2 of the oxygen concentration sensor 14 becomes smaller than the predetermined voltage vx, the determination is made by determining whether or not the predetermined time tx has further elapsed.

酸素濃度センサ14の活性化が完了していないと判断し
た場合にはフィードバック補正係数に02をほぼ1とす
ることにより空燃比制御系をオープンループとする(ス
テップ52)。
If it is determined that the activation of the oxygen concentration sensor 14 has not been completed, the air-fuel ratio control system is made into an open loop by setting the feedback correction coefficient 02 to approximately 1 (step 52).

酸素濃度センサ14の活性化が完了したと判断した場合
には冷却水温Twがフィードバック制御開始温度Two
+以上にあるか否かを判別する(ステップ53)。Tw
<Two+ならば、ステップ52に移行してオープンル
ープ制御が行なわれる。
When it is determined that the activation of the oxygen concentration sensor 14 is completed, the cooling water temperature Tw becomes the feedback control start temperature Two.
It is determined whether the value is greater than or equal to + (step 53). Tw
If <Two+, the process moves to step 52 and open loop control is performed.

一方、Tw≧Two+ならば、冷却水温Twに応じた基
準値’lrをROM28に予め記憶されたデータマツプ
から検索する(ステップ54)。基準値Trは第4図に
示すように所定水温TWO2(>Two+)を閾値とし
て第1及び第2所定値Tr I 、 Tr 2のいずれ
か一方に設定される。すなわち、Tw≧Two2ならば
、第1所定値Tr1がデータマツプから抽出されて基準
値1−rとされ、Tw <Tw O2ならば第2所定値
Tr2がデータマツプから抽出されて基準値Trどされ
る。
On the other hand, if Tw≧Two+, a reference value 'lr corresponding to the cooling water temperature Tw is searched from the data map previously stored in the ROM 28 (step 54). As shown in FIG. 4, the reference value Tr is set to one of the first and second predetermined values Tr I and Tr 2 using the predetermined water temperature TWO2 (>Two+) as a threshold value. That is, if Tw≧Two2, the first predetermined value Tr1 is extracted from the data map and set as the reference value 1-r, and if Tw<Tw O2, the second predetermined value Tr2 is extracted from the data map and set as the reference value Tr. .

こうして基準値Trを設定すると、制御回路16はn〜
1番目(前回)のTDC信号に同期して算出した燃料噴
射時間To U Tが基準値1−rより大か否かを判別
する(ステップ55)。To U T >Trならば、
エンジン高負荷状態としてステップ52に移行してオー
プンループ制御とする。T。
When the reference value Tr is set in this way, the control circuit 16
It is determined whether the fuel injection time To UT calculated in synchronization with the first (previous) TDC signal is greater than the reference value 1-r (step 55). If To U T > Tr, then
As the engine is in a high load state, the process moves to step 52 to perform open loop control. T.

UT≦Trならば、他のオープンループ制御を必要する
運転条件が成立しているか否かを判別するくステップ5
6)。燃料カット、アイドル時等のオープンループ制御
を必要とする運転状態の場合にはステップ52に移行す
る。一方、他のオープンループ制御を必要とする運転条
件が成立していない場合にはフィードバック制御すべく
フィードバック係数KO2を算出するくステップ57〉
If UT≦Tr, step 5 determines whether other operating conditions requiring open loop control are satisfied.
6). If the operating state requires open loop control such as fuel cut or idling, the process moves to step 52. On the other hand, if other operating conditions requiring open-loop control are not established, a feedback coefficient KO2 is calculated for feedback control (step 57).
.

よって、かかる本発明による空燃比制御方法においては
、冷却水温Twがフィードバック制御量913温度Tw
o+より大でかつ所定水温Two2より小なる(Two
+ ≦Tw<Two2)ときにはステップ55において
To u T >Tr 2の判別が行なわれ、丁o U
 T >Tr、2の場合には空燃比フィードバック制御
が停止されてオープンループ制御により空燃比がリッチ
化される。また冷却水温Twが所定水温Tw O2より
人なる(Tw≧Tw02’ )ときにはステップ55に
おいてTour>Tr+の判別が行なわれ、TouT>
Tr+(7)判別が行なわれ、TouT>Tr+の場合
には空燃比フィードバック制御が停止されてオープンル
ープ制御により空燃比がリッチ化されるのである。
Therefore, in the air-fuel ratio control method according to the present invention, the cooling water temperature Tw is equal to the feedback control amount 913 temperature Tw.
greater than o+ and smaller than the predetermined water temperature Two2 (Two
+ ≦Tw<Two2), it is determined in step 55 that To u T >Tr 2, and T o U
In the case of T > Tr, 2, the air-fuel ratio feedback control is stopped and the air-fuel ratio is enriched by open loop control. Further, when the cooling water temperature Tw is lower than the predetermined water temperature TwO2 (Tw≧Tw02'), it is determined in step 55 that Tour>Tr+, and TouT>
Tr+(7) determination is performed, and if TouT>Tr+, the air-fuel ratio feedback control is stopped and the air-fuel ratio is enriched by open loop control.

なお、空燃比のフィードバック制御は空燃比が常に理論
空燃比になるように排気ガス中の酸素濃度の情報がら空
燃比を判断し、空燃比がリッチのときにはリーン方向に
、リーンのときにはリッチ方向になるように、フィード
バック係数KO2を決定することにより行なわれる。
In addition, feedback control of the air-fuel ratio determines the air-fuel ratio based on information on the oxygen concentration in the exhaust gas so that the air-fuel ratio is always the stoichiometric air-fuel ratio, and when the air-fuel ratio is rich, it is moved in the lean direction, and when it is lean, it is moved in the rich direction. This is done by determining the feedback coefficient KO2 so that

上記した実施例においては冷却水温に応じて基準値、す
なわち基準量を段階的に変化させたが、冷却水温に応じ
て基準量を連続的に変化させても良いことは明らかであ
る。
In the embodiments described above, the reference value, that is, the reference amount, was changed stepwise according to the cooling water temperature, but it is clear that the reference amount may be changed continuously according to the cooling water temperature.

このように、本発明の空燃比制御方法によれば、エンジ
ンへ供給する燃料供給量が基準量より大なる場合にはフ
ィードバック制御を作出してオープンループ制御をなし
かつその基準量を冷却水温に応じて変化せしめるので冷
却水温がフィードバック制御開始温度より僅かに高い低
冷却水温時には基準量が高冷却水温時よりも小さく設定
される。
As described above, according to the air-fuel ratio control method of the present invention, when the amount of fuel supplied to the engine is larger than the reference amount, feedback control is created to perform open loop control and the reference amount is set to the cooling water temperature. Since the reference amount is changed accordingly, when the cooling water temperature is low, which is slightly higher than the feedback control start temperature, the reference amount is set smaller than when the cooling water temperature is high.

故に、従来、高冷却水温時にはフィードバック制御で十
分安定した運転状態が得られかつ低冷却水温時にはフィ
ードバック制御では不安定な運転状態となる負荷領域に
おいて低冷却水温時にはA−プンループ制御により空燃
比がリッチ化されて運転状態の安定化が図られ、高冷却
水温時には理論空燃比にフィードバック制御されて良好
な排気浄化性能が得られるのである。
Therefore, conventionally, in a load range where a sufficiently stable operating state can be obtained with feedback control at high cooling water temperatures, but an unstable operating state with feedback control at low cooling water temperatures, the air-fuel ratio is enriched by A-pun loop control at low cooling water temperatures. This stabilizes the operating state, and when the cooling water temperature is high, the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio, resulting in good exhaust purification performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による空燃比制御方法を適用した電子制
御式燃料噴射供給装置を示づ構成図、第2図は第1図の
装置中の制御回路を具体的に示すブロック図、第3図は
本発明の実施例を示す制御回路の動作フロー図、第4図
は基準値の設定特性図である。 主要部分の符号の説明 2・・・・・・エアクリーナ 3・・・・・・吸気路 5・・・・・・スロットル弁8
・・・・・・排気路 9山用三元触媒10・・・・・・
スロットル開度センサ11・・・・・・絶対圧センサ 12・・・・・・冷却水温センサ 13・・・・・・クランク角センサ 14・・・・・・酸素濃度センサ 15・・・・・・インジェクタ 出願人 本田技研工業株式会社 代理人 弁理士 藤村元彦 第2図 第3図 第4図 Tr ↑ ■−−−−−− TwO2Tw
FIG. 1 is a block diagram showing an electronically controlled fuel injection supply device to which the air-fuel ratio control method according to the present invention is applied, FIG. 2 is a block diagram specifically showing the control circuit in the device of FIG. 1, and FIG. The figure is an operation flow diagram of a control circuit showing an embodiment of the present invention, and FIG. 4 is a reference value setting characteristic diagram. Explanation of symbols of main parts 2... Air cleaner 3... Intake path 5... Throttle valve 8
...Exhaust path 9 three-way catalyst 10...
Throttle opening sensor 11...Absolute pressure sensor 12...Cooling water temperature sensor 13...Crank angle sensor 14...Oxygen concentration sensor 15...・Injector applicant Honda Motor Co., Ltd. agent Patent attorney Motohiko Fujimura Figure 2 Figure 3 Figure 4 Tr ↑ ■------ TwO2Tw

Claims (2)

【特許請求の範囲】[Claims] (1) 内燃エンジン用燃料供給装置におけるエンジン
への燃料供給量が基準量より大なるか否かを判別し、前
記燃料供給量が前記基準量より小のとぎエンジン排気中
の酸素濃度に応じてエンジンへ供給づる混合気の空燃比
を補正する空燃比フィードバック制御をなし、前記燃料
供給量が前記基準量より大のとき前記酸素濃度に無関係
に前記混合気の空燃比を補正する空燃比オーブンループ
制御をなす空燃比制御方法であって、エンジン冷却水温
に応じて前記基準量を変化せしめることを特徴とする空
燃比制御方法。
(1) Determine whether the amount of fuel supplied to the engine in the fuel supply device for an internal combustion engine is greater than a reference amount, and determine whether the amount of fuel supplied to the engine is smaller than the reference amount according to the oxygen concentration in the engine exhaust. An air-fuel ratio oven loop that performs air-fuel ratio feedback control to correct the air-fuel ratio of the air-fuel mixture supplied to the engine, and corrects the air-fuel ratio of the air-fuel mixture regardless of the oxygen concentration when the fuel supply amount is greater than the reference amount. 1. An air-fuel ratio control method comprising: changing the reference amount according to engine cooling water temperature.
(2) 前記燃料供給装置は燃料噴射供給装置であり、
前記燃料供給装置対応する燃料噴射時間が前記基準量に
対応する基準値より大なるか否かを判別することを特徴
とする特許請求の範囲第1項記載の空燃比制御方法。
(2) the fuel supply device is a fuel injection supply device;
2. The air-fuel ratio control method according to claim 1, further comprising determining whether the fuel injection time corresponding to the fuel supply device is longer than a reference value corresponding to the reference amount.
JP9942184A 1984-05-17 1984-05-17 Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine Pending JPS60243333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9942184A JPS60243333A (en) 1984-05-17 1984-05-17 Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9942184A JPS60243333A (en) 1984-05-17 1984-05-17 Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60243333A true JPS60243333A (en) 1985-12-03

Family

ID=14247001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9942184A Pending JPS60243333A (en) 1984-05-17 1984-05-17 Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60243333A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893949A (en) * 1981-11-27 1983-06-03 Toyota Motor Corp Air-fuel ratio control device of engine
JPS59548A (en) * 1982-06-23 1984-01-05 Honda Motor Co Ltd Control of fuel supply device for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893949A (en) * 1981-11-27 1983-06-03 Toyota Motor Corp Air-fuel ratio control device of engine
JPS59548A (en) * 1982-06-23 1984-01-05 Honda Motor Co Ltd Control of fuel supply device for internal-combustion engine

Similar Documents

Publication Publication Date Title
JPH08189396A (en) Air fuel ratio feedback control device for internal combustion engine
US5992144A (en) Air-fuel ratio control system for internal combustion engines
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JPS59548A (en) Control of fuel supply device for internal-combustion engine
JPS62126236A (en) Air-fuel ratio control method for fuel feed device of internal combustion engine
JPS62157252A (en) Method of feedback controlling air-fuel ratio of internal combustion engine
JPH04124439A (en) Air fuel ratio control method for internal combustion engine
JP2869820B2 (en) Air-fuel ratio control method for internal combustion engine
JPH11101144A (en) Fuel supply control device for internal combustion engine
JP2694729B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JP3826997B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JPS60243333A (en) Air-fuel ratio controlling method for fuel supply means used in internal-combustion engine
JPS6354888B2 (en)
JPS60249643A (en) Air-fuel ratio control in fuel feeding apparatus for internal-combustion engine
JPH06102999B2 (en) Fuel supply control method for internal combustion engine
JPH07119520A (en) Air-fuel ratio controller of engine
JP3577795B2 (en) Control device for multi-cylinder engine
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JP2592349B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60243334A (en) Air-fuel ratio controlling method for internal-combustion engine
JP4518362B2 (en) Air-fuel ratio control device for internal combustion engine
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JPS63215810A (en) Air-fuel ratio controlling device for internal combustion engine
JPS61272436A (en) Method of controlling air-fuel ratio of fuel feeding device for internal-combustion engine