JPS60243265A - Thin film shape memory alloy - Google Patents

Thin film shape memory alloy

Info

Publication number
JPS60243265A
JPS60243265A JP9648284A JP9648284A JPS60243265A JP S60243265 A JPS60243265 A JP S60243265A JP 9648284 A JP9648284 A JP 9648284A JP 9648284 A JP9648284 A JP 9648284A JP S60243265 A JPS60243265 A JP S60243265A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
thin film
substrate
film shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9648284A
Other languages
Japanese (ja)
Inventor
Isao Ikuta
生田 勲
Tetsuo Minemura
哲郎 峯村
Yoshiaki Kita
北 芳明
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9648284A priority Critical patent/JPS60243265A/en
Publication of JPS60243265A publication Critical patent/JPS60243265A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture the thin film of a shape memory alloy which is difficult to work by forming the thin film of the shape memory alloy on the surface of a substrate with a sputtering method. CONSTITUTION:A shape memory alloy as an Ni-Ti or a Cu-base alloy is poorly workable, and hardly shaped into a thin plate. A substrate made of metals, nonmetals, or organic materials is preheated to >=200 deg.C, and said shape memory alloy is vapor-deposited on the surface by physical or chemical vapor deposition in the form of a thin film consisting of a minute structure and having <=50mum thickness and the grain diameter <=1/3 times the film thickness. In this case, by selecting the conditions that the alloy is quenched and solidified on the substrate, the high-temp. phase is supercooled to room temp. in a noneqilibrium state, and an excellent shape memory alloy in the form of a thin film can be manufactured without requiring heat treatment.

Description

【発明の詳細な説明】 本発明は形状記憶合金に係り、特に気相から基板上に固
着させ、薄膜化するに好適な薄膜形状記憶合金に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape memory alloy, and particularly to a thin film shape memory alloy suitable for fixing onto a substrate from a gas phase and forming it into a thin film.

〔発明の背景〕[Background of the invention]

従来、形状記憶合金はバネのように比較的大型な機能材
としての実用化が進んでいるが、エレクトロニクス関連
のマイクロ機能材としての応用はほとんど見られない。
In the past, shape memory alloys have been put into practical use as relatively large functional materials such as springs, but they have rarely been applied as micro-functional materials related to electronics.

これは形状記憶合金が難加工材であり、薄板などへの加
工が難しいからである。そこで形状記憶合金をスパッタ
法によって薄膜化した。その結果、本クレーム第4項か
ら第6項を満足するスパッタ条件で作製した薄膜形状記
憶合金は良好な形状記憶効果を示すことを発見した。
This is because shape memory alloys are difficult-to-process materials and difficult to process into thin plates and the like. Therefore, the shape memory alloy was made into a thin film by sputtering. As a result, it was discovered that thin film shape memory alloys produced under sputtering conditions that satisfy claims 4 to 6 of the present invention exhibit good shape memory effects.

マルテンサイト変態の可逆性を利用した形状記憶合金効
果は種々の合金系において知られているが、実用材料と
してはNi−Tiにチノール)とCu基合金(例えば、
C,u−Zn−AQ、 Cu5n、CuAQ−Niなど
)が一般的である。
Shape memory alloy effects utilizing the reversibility of martensitic transformation are known in various alloy systems, but practical materials include Ni-Ti and tinol) and Cu-based alloys (e.g.
C, u-Zn-AQ, Cu5n, CuAQ-Ni, etc.) are common.

これら合金は母相状態で硬いためいずれも加工が難かし
い。そのため、これらを薄板などに成形するには多くの
工程を要し、素材価格が高価になるという問題点がある
。特にCu基形状記憶合金は加工、熱処理過程で結晶粒
が粗大化しやすく、さらには結晶方向に+る弾性異方性
が大きいことから、変形応力が粒界に集中し粒界破壊し
やすいという問題点がある。以上の問題から形状記憶合
金を薄板へ加工することが戴かしい。
These alloys are hard in their matrix state and are therefore difficult to process. Therefore, many steps are required to form these into thin plates and the like, resulting in a problem in that the cost of the materials is high. In particular, Cu-based shape memory alloys tend to have coarse grains during processing and heat treatment processes, and furthermore, because they have large elastic anisotropy in the crystal direction, deformation stress concentrates on grain boundaries, making them susceptible to grain boundary fracture. There is a point. Due to the above problems, it is difficult to process shape memory alloys into thin plates.

〔発明の目的〕[Purpose of the invention]

本発明の目的は形状記憶合金をスパッタ法により基板上
に薄膜化し、薄膜化した形状記憶合金が従来法のように
熱処理しなくとも良好な形状記憶効果を示す薄膜形状記
憶合金を提供するにある。
An object of the present invention is to provide a thin film shape memory alloy in which a shape memory alloy is formed into a thin film on a substrate by sputtering, and the thin film shape memory alloy exhibits a good shape memory effect without being heat-treated as in the conventional method. .

〔発明の概要〕[Summary of the invention]

本発明の特徴は形状記憶合金を気相から基板(同相)上
に急冷固着した良好な形状記憶効果を示す薄膜形状記憶
合金にある。気相からの急冷固着法としては物理的1蒸
着法、化学的蒸着法がある。
The feature of the present invention is a thin film shape memory alloy that exhibits a good shape memory effect by rapidly cooling and fixing the shape memory alloy onto a substrate (in the same phase) from a gas phase. As the rapid cooling fixation method from the gas phase, there are a physical vapor deposition method and a chemical vapor deposition method.

具体的に物理的蒸着法とは一般的な蒸着法、スパッタ法
、イオンブレーティング法がある。化学的蒸着法はガス
状態での化学反応による固化法である。これらの方法に
よれは基板上に固化した合金層は基板と良好に密着し、
基板との良好な複合材料となる。この場合、基板として
は、金属、非金属、有機物、無機物のいずれでも良い。
Specifically, physical vapor deposition methods include general vapor deposition methods, sputtering methods, and ion blating methods. The chemical vapor deposition method is a solidification method using a chemical reaction in a gaseous state. With these methods, the alloy layer solidified on the substrate adheres well to the substrate,
It becomes a good composite material with the substrate. In this case, the substrate may be a metal, a nonmetal, an organic material, or an inorganic material.

さらにその層の結晶粒は急冷固化したため非常に微細化
する。したがって、この結晶粒の微細化により変形によ
る粒界応力集中を緩和し従来結晶粒の粗大化により延性
の乏しかった形状記憶合金の延性を改善することができ
る。特にその粒径が膜厚の1/3以下であるとよく、膜
厚は50μm以下がよい。50μm以上では膜厚の上昇
とともに粒径が生長するためである。また、従′来の形
状記憶合金は形状記憶効果処理として、高温で溶体化処
理(Cu−AQ−Ni系の場合は約750℃)後節′入
れし高温相を非平衡状態で室温に保持する熱処理を施こ
して座板が、本発明では急冷固化条件を選択することに
よって、高温相が非平衡状態で室温に適冷する。したが
って、本発明法を用いれば従来法のように熱処理工程を
必要としないで良好な形状記憶効果を示す。このことは
非常に重要なことである。すなわち、基板に比較的耐熱
性の低い有機物、無機物を用いた場合、従来のよう比溶
体化処理のための高温熱処理を行なうことはできない(
基板が変形してしまうため)。また熱処理することによ
って薄膜形状記憶合金の結晶粒が粗大化し脆化してしま
う。
Furthermore, the crystal grains in that layer become extremely fine because they are rapidly solidified. Therefore, grain boundary stress concentration due to deformation can be alleviated by making the crystal grains finer, and the ductility of the shape memory alloy, which conventionally had poor ductility due to coarser grains, can be improved. In particular, the particle size is preferably 1/3 or less of the film thickness, and the film thickness is preferably 50 μm or less. This is because when the thickness is 50 μm or more, the grain size increases as the film thickness increases. In addition, conventional shape memory alloys undergo a high temperature solution treatment (approximately 750°C in the case of Cu-AQ-Ni) as a shape memory effect treatment, followed by a melting process to maintain the high-temperature phase at room temperature in a non-equilibrium state. In the present invention, by selecting rapid solidification conditions, the high-temperature phase is appropriately cooled to room temperature in a non-equilibrium state. Therefore, the method of the present invention exhibits a good shape memory effect without requiring a heat treatment step unlike the conventional method. This is very important. In other words, if an organic or inorganic material with relatively low heat resistance is used for the substrate, high-temperature heat treatment for specific solution treatment cannot be performed as in the past (
(This may cause the board to deform). Furthermore, heat treatment causes the crystal grains of the thin film shape memory alloy to become coarse and brittle.

形状記憶合金を固相基板上に急冷固化させる場合、急冷
速度がある程度以上になると薄膜は非晶質相や結晶質相
でも規則性の悪い構造となり、形状記憶効果を示さなく
なる。従って、膜め結晶構造の規則化に足る急冷速度に
よって急冷固化するのが良い。特に被蒸着基板を適切な
温度に加熱することは好ましい。
When a shape memory alloy is rapidly solidified on a solid substrate, if the quenching rate exceeds a certain level, the thin film will have a poorly ordered structure even in the amorphous or crystalline phase, and will no longer exhibit the shape memory effect. Therefore, it is preferable to rapidly solidify the film at a rapid cooling rate that is sufficient to regularize the crystal structure of the film. In particular, it is preferable to heat the substrate to be deposited to an appropriate temperature.

〔考案の実施例〕[Example of idea]

実施例1 ゛本実施例ではCu−AQ−Ni系形状記憶合金をスパ
ッタ法により種々の基板(Cu、Afi、ガラス、アル
ミナ、樹脂)上に急冷固化した。合金の組成はCu−1
4%AQ−4%Ni(重量%)とし、無酸素鋼(J I
 S I種)、電解Ni(純度99.5%)及びAQ(
純度99.8%)を配合し、真空中10’−’ 〜10
−’ Torr )にてlチャージ2 、5 kgを高
周波溶解した。それを95腸φのインゴットに鋳込んだ
。そのインゴットから直径90mmφ、厚さ5m+の円
板を機械加工により切り出しスパッタ用ターゲットとし
た。スバツ夕装置としては2極DC−マグネトロン型を
用いた。電極間距離は60mで容器内を3X10−7T
 orrまでの真空に引いた後、所定の作製条件によっ
てスパッタ蒸着した。薄膜作製条件としては、スパッタ
極間出力、基板温度、スパッタ時のAr分圧及びスパッ
タ時間について検討し、作製した薄膜形状記憶合金の形
状記憶効果の影響を調べた。
Example 1 In this example, a Cu-AQ-Ni shape memory alloy was rapidly solidified on various substrates (Cu, Afi, glass, alumina, resin) by sputtering. The composition of the alloy is Cu-1
4%AQ-4%Ni (wt%), oxygen-free steel (J I
SI type), electrolytic Ni (purity 99.5%) and AQ (
(purity 99.8%) was blended and heated in vacuum to 10'-' to 10
A charge of 2.5 kg was subjected to high frequency melting at a temperature of -' Torr. It was cast into an ingot with a diameter of 95 mm. A disk with a diameter of 90 mmφ and a thickness of 5 m+ was cut out by machining from the ingot and used as a sputtering target. A two-pole DC-magnetron type was used as the switching device. The distance between electrodes is 60m, and the inside of the container is 3X10-7T.
After evacuating the film to a vacuum level of 0.05 m, sputter deposition was performed under predetermined manufacturing conditions. As for the thin film production conditions, the sputtering electrode spacing power, substrate temperature, Ar partial pressure during sputtering, and sputtering time were investigated, and the influence of the shape memory effect of the produced thin film shape memory alloy was investigated.

第1図はAQ基板上(厚さ20μm)にデポジットした
際のスパッタ厚膜のスパッタ時間依存性を示す。形状記
憶合金膜厚は時間と共にほぼ直線的に増加しており、4
.5h で50μm近くまで積層できる。しかし、基板
との密着性は2・0μmまでは良好であるが、これ以上
厚くなると密着性が悪く50μmになると部分的に剥離
してしまった。
FIG. 1 shows the sputtering time dependence of a sputtered thick film deposited on an AQ substrate (thickness: 20 μm). The shape memory alloy film thickness increases almost linearly with time, and 4
.. It is possible to stack layers up to a thickness of nearly 50 μm in 5 hours. However, although the adhesion to the substrate was good up to 2.0 μm, the adhesion deteriorated as the thickness increased beyond this point, and when the thickness reached 50 μm, it partially peeled off.

また、スパッタ膜厚が20μm以下での結晶粒は約1μ
m以下であるが、これ以上厚くなると膜厚に比例して結
晶粒が粗大化し脆化する。したが゛うて、スパッタ膜厚
は20μm以下が望ましい。
In addition, when the sputtered film thickness is 20 μm or less, the crystal grain size is approximately 1 μm.
m or less, but if it becomes thicker than this, the crystal grains become coarse in proportion to the film thickness and become brittle. Therefore, the thickness of the sputtered film is preferably 20 μm or less.

Cu、ガラス、アルミナ、樹脂板上にても同様な傾向を
示した。
Similar trends were observed on Cu, glass, alumina, and resin plates.

Cu−14%Aj2−4%Ni形状記憶合金は高温相に
存在するD03型の規則性立方晶(β相)のマルテンサ
イト逆変態によって発生する。したがって、β相の規則
度が形状記憶効果に太き影響し、規則度が悪いと形状記
憶効果を示さない。第2回はAQ箔上に蒸着したCu−
14%AQ−4%Ni薄膜形状記憶合金の結晶構造をX
線回折により調べた。スパッタ出力を200W、スパッ
タ時間を1h、基板温度を200℃一定にし、Ar分圧
を変えた。図からAr分圧を4.OP a から高くす
ると311の規則格子反射ピークもはつきの現われ、D
O3型の回折パターンがより明確となる。一方、Ar分
圧を低くすると111 、200゜及び222の規則格
子反射ピークが弱くなる。
The Cu-14%Aj2-4%Ni shape memory alloy is generated by martensitic reverse transformation of D03 type regular cubic crystals (β phase) existing in the high temperature phase. Therefore, the degree of regularity of the β phase has a strong influence on the shape memory effect, and if the degree of regularity is poor, the shape memory effect will not be exhibited. The second time was Cu-deposited on AQ foil.
The crystal structure of the 14%AQ-4%Ni thin film shape memory alloy is
It was investigated by line diffraction. The sputtering output was 200 W, the sputtering time was 1 h, the substrate temperature was constant at 200° C., and the Ar partial pressure was varied. From the figure, Ar partial pressure is calculated as 4. When increasing from OP a, the regular lattice reflection peak of 311 also appears, and D
The O3 type diffraction pattern becomes clearer. On the other hand, when the Ar partial pressure is lowered, the regular lattice reflection peaks at 111, 200° and 222 become weaker.

Cu−14%AQ−4%Ni形状記終合金のマルテンサ
イト変態開始温度(M8)は四端子電気抵抗測定結果か
ら一55℃にある。そこで第2図でAr分圧を子種類に
かえた薄膜形状記憶合金から幅5閣、長さ50m11の
試片を切り出し:第3図に示すような過程でこれらの形
状記憶効果を調べた。
The martensitic transformation start temperature (M8) of the Cu-14%AQ-4%Ni shape final alloy is -55°C based on the results of four-terminal electrical resistance measurements. Therefore, as shown in Fig. 2, specimens with a width of 5 mm and a length of 50 m11 were cut out from thin film shape memory alloys with different Ar partial pressures, and their shape memory effects were investigated through the process shown in Fig. 3.

試片を形状記憶合金層側が引張応力になるように曲げ半
径3IIInで曲げ、それを液体窒素中に侵潰し塑性変
形させた後室温に戻し、その形状回復状態を調べた。そ
の結果、Ar分圧4.OP a 及び8、OP a の
試片は良好な形状回復が認められた。
The specimen was bent with a bending radius of 3IIIn so that the shape memory alloy layer side was under tensile stress, and after being eroded into liquid nitrogen to cause plastic deformation, the specimen was returned to room temperature and its shape recovery state was examined. As a result, the Ar partial pressure was 4. Good shape recovery was observed in the specimens of OP a, 8, and OP a.

しかし、Ar分圧0.7 P a及び2.OP aの試
片は形状回復が認められなかった。これはX線回折結果
から判断できるようにAr分圧0.7Pa。
However, Ar partial pressure 0.7 Pa and 2. No shape recovery was observed in the OP a specimen. As can be determined from the X-ray diffraction results, this is an Ar partial pressure of 0.7 Pa.

2、OP a の結晶構造はDO3型の規則性が悪いた
めである。同様に基板にCu箔(厚さ20μm)を用い
て、上記した条件でスパッタしその結晶構造を調べたが
、第2図とほぼ同じ結果が得られた。
2. This is because the crystal structure of OP a has poor regularity in the DO3 type. Similarly, using a Cu foil (thickness: 20 μm) as a substrate, sputtering was performed under the above-mentioned conditions to examine its crystal structure, and almost the same results as in FIG. 2 were obtained.

また、同様に形状回復も上記した結果と同じであった。Similarly, the shape recovery was also the same as the above results.

基板に厚さ0.8石のガラス、アルミナ、樹脂を用いて
第2図と同様にAr分圧を4種類に変えてX線回折を行
ったが、同様な結果が得られた。この場合の形状記憶効
果の判定はスパッタ膜の色で判定した。すなわち、本組
成の形状記憶合金はβ相であれば赤銅色を示し、規則度
の悪いβ相及びβ相でない場合は黄金色を示す。Ar分
圧4、OPa、8.OPaはいずれの基板を用いても赤
銅色を示し、0.7 P a 、 2.OP aは黄金
色であった。以上のことから、D03型規則性立方晶の
良好な規則度を得るスパッタ条件はAr分圧が4、OP
 aから8.OP aが好ましい。
Using glass, alumina, and resin with a thickness of 0.8 stone as a substrate, X-ray diffraction was performed with four different Ar partial pressures as shown in FIG. 2, and similar results were obtained. In this case, the shape memory effect was determined based on the color of the sputtered film. That is, the shape memory alloy of this composition exhibits a copper color if it is in the β phase, and exhibits a golden color in the case of a poorly ordered β phase or a non-β phase. Ar partial pressure 4, OPa, 8. OPa exhibits a reddish copper color no matter which substrate is used, with a temperature of 0.7 Pa, 2. OP a was golden in color. From the above, the sputtering conditions for obtaining good order of the D03 type regular cubic crystal are Ar partial pressure of 4, OP
a to 8. OP a is preferred.

実施例2 第4図は基板にAQ箔を用い基板温度を200℃、Ar
分圧4.OP a と一定にしてスパッタ出力を変えて
スパッタ蒸着したC、u −14%AQ−4%NiのX
線回折パターンの変化である。第1図で示したようにス
パッタ出力を変えると膜成長速度が大きく変化する。し
かし、X線パターンは311の規則格子反射パターンに
わずかに変化がみられるものの全体に大きな変化がみら
れず、いずれのスパッタ出力においても第3図の治具を
用い形状回復状態を調べたところ良好な形状回復が得ら
れた。なお他の基板についても同様な結果が得られた。
Example 2 Figure 4 shows an AQ foil substrate with a substrate temperature of 200°C and an Ar
Partial pressure 4. C, u -14%AQ-4%Ni
This is a change in the line diffraction pattern. As shown in FIG. 1, changing the sputtering output greatly changes the film growth rate. However, although there was a slight change in the regular grid reflection pattern of 311 in the X-ray pattern, there was no major change in the overall pattern, and the state of shape recovery was examined using the jig shown in Figure 3 at any sputtering output. Good shape recovery was obtained. Note that similar results were obtained for other substrates.

実施例3 第5図は基板にAQ箔を・用い、スパッタ出力を2(J
OW、Ar分圧を4.OPa と一定にして基板温度を
かえてスパッタ蒸着したC u −1,4%AQ−4%
NiのX線回折パターンの変化を示す回折゛ピークは基
板温度が300℃の場合、典型的なりO3型のパターン
を示し、基板温度が低くなると規則格子反射ピークは弱
くなる。第3図の治具を用い形状回復状態を調べたとこ
ろ基板温度200℃、300℃で良好な形状回復が見ら
れ、水冷温度(293K)及び100℃では形状回復が
見られなかった。このことは他の基板でも同様な効果で
あった。以上のことから、基板温度は200℃〜300
℃が良い。
Example 3 In Figure 5, AQ foil was used for the substrate, and the sputtering output was 2 (J
OW, Ar partial pressure 4. Cu-1,4%AQ-4% sputter-deposited by changing the substrate temperature while keeping OPa constant.
The diffraction peak indicating a change in the X-ray diffraction pattern of Ni shows a typical O3 type pattern when the substrate temperature is 300° C., and as the substrate temperature decreases, the regular lattice reflection peak becomes weaker. When the state of shape recovery was examined using the jig shown in FIG. 3, good shape recovery was observed at substrate temperatures of 200°C and 300°C, but no shape recovery was observed at water cooling temperature (293K) and 100°C. This effect was similar for other substrates. From the above, the substrate temperature should be between 200°C and 300°C.
Good temperature.

(発明の効果〕 本発明のスパッタ条件によれば、形状記憶合金を気相か
ら固相(基板)に急冷固化し、薄膜化することにより良
好な形状記憶効果が得られ、薄膜形状記憶合金ビンコネ
クタはもとより、相変態による色調変化を利用すること
により新たな機能材゛i)としての応用分野が期待され
る。
(Effects of the Invention) According to the sputtering conditions of the present invention, a good shape memory effect can be obtained by rapidly solidifying the shape memory alloy from the gas phase to the solid phase (substrate) and forming a thin film. Application fields are expected not only as connectors but also as new functional materials (i) by utilizing the color change caused by phase transformation.

、1 、′,1,′

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスパッタ時間によるAQ箔上に積層したCu−
14%Afi−4%Ni形状記憶合金の厚さ変化を示す
図、第2図はAQ箔上にスパッタ出力と基板温度を一定
にしてAr分圧を変えて1hスパッタ蒸着したCu−1
4%AQ−4%Ni膜のX線回折パターンを示す図、第
3図は形状記憶効果の評価方法を示す図、第4図はAf
i箔に基板温度とAr分圧を一定にしてスパッタ出力を
変えて1hスパッタ蒸着したCu−14%AQ−4%N
i膜のX線回折パターンを示す図、第5図はAΩ箔にス
パッタ出力とAr分圧を一定にして基板温度を変えて1
hスパッタ蒸着したCu−14%AQ−4%Ni膜のX
線回折パターンを示す図である。 1・・・スパッタ膜、2・・・基板、3・・・曲げ試験
治具。 代理人 弁理士 高橋明夫 λハ=、り81周 (h) l 4 m 同質A2ρ(dez、う
Figure 1 shows the Cu layered on AQ foil depending on the sputtering time.
Figure 2 shows the thickness change of 14%Afi-4%Ni shape memory alloy. Figure 2 shows Cu-1 sputter deposited on AQ foil for 1 h by changing the Ar partial pressure while keeping the sputtering power and substrate temperature constant.
Figure 3 shows the X-ray diffraction pattern of the 4%AQ-4%Ni film, Figure 3 shows the method for evaluating the shape memory effect, Figure 4 shows the Af
Cu-14%AQ-4%N was sputter-deposited on i-foil for 1 hour while keeping the substrate temperature and Ar partial pressure constant and varying the sputtering output.
Figure 5 shows the X-ray diffraction pattern of the i-film.
h sputter-deposited Cu-14%AQ-4%Ni film
It is a figure showing a line diffraction pattern. 1... Sputtered film, 2... Substrate, 3... Bending test jig. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、基板に形状記憶合金を固着させた複合材からなるも
のに、おいて、前記形状記憶合金は高温相が非平衡状態
で室温に適冷され、該高温相が形状記憶効果を示すに足
る規則度を有することを特徴とする薄膜形状記憶合金。 2、前記形状記憶合金は気相から基板上に急冷固化させ
薄膜化させることを特徴とする特許請求の範囲第1項に
記載の薄膜形状記憶合金。 3、前記形状記憶合金は物理的あるいは化学的蒸着法に
よって基板上に薄膜化させることを特徴とする特許請求
の範囲第2項に記載の薄膜形状記憶合金。 4、前記基板は有機物または無機物からなることを特徴
とする特許請求の範囲第1項に記載の薄膜形状記憶合金
。 5、前記薄膜形状記憶合金は膜の厚さが50μm以下で
あることを特徴とする特許請求の範囲第1項に記載の薄
膜形状記憶合金。 6、前記薄膜形状記憶合金は膜の結晶粒径が膜厚の17
3以下の微細組織であることを特徴とする特許請求の範
囲第1項に記載の薄膜形状記憶合金。 7、前記基板は形状記憶合金相の結晶構造の規則化に足
る構造緩和が起こる温度に加熱して作製することを特徴
とする特許請求の範囲第1項記載の薄膜形状記憶合金。 8、前記基板の温度を200℃以上に加熱したことを特
徴とする特許請求の範囲第7項に記載の薄膜形状記憶合
金。
[Claims] 1. A composite material in which a shape memory alloy is fixed to a substrate, wherein the shape memory alloy is appropriately cooled to room temperature in a non-equilibrium state with a high temperature phase, and the high temperature phase changes shape. A thin film shape memory alloy characterized by having a degree of regularity sufficient to exhibit a memory effect. 2. The thin film shape memory alloy according to claim 1, wherein the shape memory alloy is rapidly solidified from a gas phase onto a substrate to form a thin film. 3. The thin film shape memory alloy according to claim 2, wherein the shape memory alloy is formed into a thin film on a substrate by physical or chemical vapor deposition. 4. The thin film shape memory alloy according to claim 1, wherein the substrate is made of an organic or inorganic material. 5. The thin film shape memory alloy according to claim 1, wherein the thin film shape memory alloy has a film thickness of 50 μm or less. 6. The thin film shape memory alloy has a crystal grain size of 17% of the film thickness.
The thin film shape memory alloy according to claim 1, characterized in that the thin film shape memory alloy has a microstructure of 3 or less. 7. The thin film shape memory alloy according to claim 1, wherein the substrate is produced by heating to a temperature at which structural relaxation sufficient to regularize the crystal structure of the shape memory alloy phase occurs. 8. The thin film shape memory alloy according to claim 7, wherein the substrate is heated to a temperature of 200° C. or higher.
JP9648284A 1984-05-16 1984-05-16 Thin film shape memory alloy Pending JPS60243265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9648284A JPS60243265A (en) 1984-05-16 1984-05-16 Thin film shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9648284A JPS60243265A (en) 1984-05-16 1984-05-16 Thin film shape memory alloy

Publications (1)

Publication Number Publication Date
JPS60243265A true JPS60243265A (en) 1985-12-03

Family

ID=14166274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9648284A Pending JPS60243265A (en) 1984-05-16 1984-05-16 Thin film shape memory alloy

Country Status (1)

Country Link
JP (1) JPS60243265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149990A (en) * 2008-12-24 2009-07-09 Nippon Mining & Metals Co Ltd High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film
JPWO2008142980A1 (en) * 2007-05-11 2010-08-05 独立行政法人物質・材料研究機構 Bidirectional shape memory alloy thin film actuator and method of manufacturing shape memory alloy thin film used therefor
JP2015101750A (en) * 2013-11-22 2015-06-04 大日本印刷株式会社 Laminate used for manufacturing film sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008142980A1 (en) * 2007-05-11 2010-08-05 独立行政法人物質・材料研究機構 Bidirectional shape memory alloy thin film actuator and method of manufacturing shape memory alloy thin film used therefor
JP2012184777A (en) * 2007-05-11 2012-09-27 National Institute For Materials Science Bidirectional shape memory alloy thin-film actuator and fabricating method of shape memory alloy thin-film used in the same
JP2009149990A (en) * 2008-12-24 2009-07-09 Nippon Mining & Metals Co Ltd High-purity shape-memory alloy target and high-purity shape-memory alloy thin-film
JP2015101750A (en) * 2013-11-22 2015-06-04 大日本印刷株式会社 Laminate used for manufacturing film sensor

Similar Documents

Publication Publication Date Title
US11098403B2 (en) High entropy alloy thin film coating and method for preparing the same
JP6276327B2 (en) Targets containing molybdenum
CA1056620A (en) Amorphous alloys which include iron group elements and boron
Ozaki et al. Beta Ti alloys with low Young's modulus
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
JPS59230741A (en) Shape memory composite material
TW583328B (en) Target of high-purity nickel or nickel alloy and its producing method
CN113718206B (en) Preparation method of TaTiN multilayer film with sandwich structure and film
Mu et al. Nickel thin film coatings on steels with electroless plating and sputter deposition
KR20070077427A (en) Magnetic sputter targets manufactured using directional solidification
JPH0569892B2 (en)
JPS60243265A (en) Thin film shape memory alloy
Nishida et al. Effect of grain size of parent phase on twinning modes of B19'martensite in an equiatomic Ti-Ni shape memory alloy
Gavens et al. Fabrication and evaluation of Nb/Nb 5 Si 3 microlaminate foils
Dini Properties of coatings: Comparisons of electroplated, physical vapor deposited, chemical vapor deposited, and plasma sprayed coatings
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
Kawashima et al. Pitting corrosion of amorphous Ni–Zr alloys in chloride ion containing sulfuric acid solutions
JP4222444B2 (en) Ti-Ni-Cu-based shape memory alloy
Liu et al. The structure and mechanical properties of Cr-based Cr-Ti alloy films
US20050183797A1 (en) Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same
JP2629332B2 (en) Cu alloy for plastic molds
CN116550994B (en) Preparation method of NiTi shape memory alloy
US6800143B1 (en) Supermagnetostrictive alloy and method of preparation thereof
Hampshire et al. Structure and mechanical properties of co-deposited TiAl thin films
JP2002069626A (en) Sputtering target and its production method