JPS60242479A - Method for stabilizing electrification of electrophotographic sensitive body - Google Patents

Method for stabilizing electrification of electrophotographic sensitive body

Info

Publication number
JPS60242479A
JPS60242479A JP9826284A JP9826284A JPS60242479A JP S60242479 A JPS60242479 A JP S60242479A JP 9826284 A JP9826284 A JP 9826284A JP 9826284 A JP9826284 A JP 9826284A JP S60242479 A JPS60242479 A JP S60242479A
Authority
JP
Japan
Prior art keywords
potential
amount
electrification
dark part
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9826284A
Other languages
Japanese (ja)
Inventor
Susumu Honma
奨 本間
Katsuhiro Sato
勝博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9826284A priority Critical patent/JPS60242479A/en
Publication of JPS60242479A publication Critical patent/JPS60242479A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0266Arrangements for controlling the amount of charge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To compensate the fluctuation of potential in the dark part of a photosensitive body without requiring a costly surface potential sensor, etc. by determining the total compensation quantity of electrification intensity from the fluctuation quantity, decrease quantity and residual quantity of the surface potential on the photosensitive body and adjusting the electrification intensity of the succeeding operation cycle for forming latent images according to the total compensation quantity. CONSTITUTION:The decrease quantity of electrification in one cycle is handled as a function of temp. with regard to the temp. dependency of fatigue and the temp. dependency of the decrease quantity of the electrification in one cycle is expressed in certain simple function on assumption that the function for restoration of the fatigure does not depend on temp. The temp. change of the initial potential in the dark part can also be approximated by the equation and the potential in the dark part can be expressed by the equation as the potential in the dark part with the number of cycles as a variable. The difference (total compensation quantity of electrification) of the potential in the dark part with respect to the potential in the reference dark part is thereupon determined. The total compensation quantity of electrification is calculated by a compensator 1 and is applied as a compensation signal 1a to a DC high- voltage power source 2. The potential in the dark part (the electrification in the dark part) is thus always stabilized even if there is a temp. elevation in the copying machine or a change in environmental temp.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はセレン等の感光体を用いたPPC複写機や光プ
リンタ装置等の電子写真装置に於いて、感光体の高感度
化に伴う繰り返し動作時の疲労による画像濃度の不均化
を防ぐために感光体の帯電強度を安定化する方法に関す
るものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to electrophotographic devices such as PPC copiers and optical printers that use photoreceptors made of selenium, etc. The present invention relates to a method for stabilizing the charging strength of a photoreceptor in order to prevent uneven image density due to fatigue during operation.

〔従来技術とその問題点〕[Prior art and its problems]

この種の電子写真用感光体にはセレンなどの蒸着によ、
って感光層が形成されている。セレンヲ用いた電子写真
用感光体(以下セレン感光体又はドラムとも呼ぶ)では
、セレン感光層にTeやAsのドープを行うことにより
高感度化が可能である。
This type of electrophotographic photoreceptor is made by vapor deposition of selenium, etc.
A photosensitive layer is formed. In an electrophotographic photoreceptor using selenium (hereinafter also referred to as a selenium photoreceptor or drum), high sensitivity can be achieved by doping the selenium photosensitive layer with Te or As.

一方、多量にTeやAsiドープすると繰り返し動作時
において現像器部に来た感光面の静電潜像内の暗部(非
感光部)の電位(以下現像す暗部電位1又は単に暗部電
位と呼ぶ)が低下する度合が大きくなる。この場合、コ
ロナ帯電器のコロナ電流を増大し帯電量を増加させれば
、前記電位の低下を補償することができる。
On the other hand, if a large amount of Te or Asi is doped, the potential of the dark area (non-exposed area) in the electrostatic latent image on the photosensitive surface that comes to the developing unit during repeated operations (hereinafter referred to as developing dark area potential 1 or simply dark area potential) The degree to which this decreases increases. In this case, the decrease in potential can be compensated for by increasing the corona current of the corona charger to increase the amount of charge.

このような目的でコロナ帯電器と現像器の間に感光体の
表面電位を検出するセンサ(電位センサ)を設け、その
検出点での電位を一定にすることがすでに試みられてい
る。セレン感光体では、繰り返し動作での画像濃度の低
下は、帯電直後に感光面が帯びることのできる電位(受
容電位)が低下するのではなく、感光面に帯電が行なわ
れたのち現イ象が行われる迄の暗部電位の減衰(暗減衰
)が増大することに起因することが知られている。従っ
てコロナ帯電器から現像器までのどの点で電位を検出す
るかによって、電位低下の補償精度に差が生じ、電位セ
ンサーを現像器に近づけないと検出点と現像器部とでの
電位差が大きくなり、補償精度が低下する。
For this purpose, attempts have already been made to provide a sensor (potential sensor) for detecting the surface potential of the photoreceptor between the corona charger and the developer, and to make the potential at the detection point constant. With selenium photoreceptors, the decrease in image density due to repeated operations is not due to a decrease in the potential (receptive potential) that the photoreceptor surface can take on immediately after charging, but is a phenomenon that occurs after the photoreceptor surface is charged. It is known that this is caused by an increase in the attenuation of the dark potential (dark attenuation) until the dark area potential is removed. Therefore, depending on where the potential is detected from the corona charger to the developer, there will be a difference in the accuracy of compensating for the potential drop.If the potential sensor is not close to the developer, the potential difference between the detection point and the developer will be large. Therefore, the compensation accuracy decreases.

表面電位を測定する方法は既にい(つか提案されており
、そのなかでも長時間の連続使用に耐え得るものとして
は、振動セクタ一方式のものがある。このセンサーの欠
点としては、高価であることと、前述のようにセンサー
を現像器に近づけるためにトナーで汚れ易くエアーの吹
きつげ等によるトナーの払い落し手段に工夫を必要とす
ること、検出部での感光体の電位と非検出部での感光体
の電位が同一疲労ではないことからどの程度まで一致さ
せろことができるかといった問題があり、コスト高の反
面使いこなすまでに多くの問題点がある。
Several methods for measuring surface potential have already been proposed, and one that can withstand continuous use for long periods of time is a vibrating sector type sensor.The disadvantage of this sensor is that it is expensive. In addition, as mentioned above, since the sensor is placed close to the developer, it is easily contaminated with toner, and it is necessary to devise a means to remove the toner by blowing air, etc., and the potential of the photoreceptor in the detection part and the non-detection part Since the potentials of the photoreceptors are not at the same fatigue level, there is the problem of how much they can be matched, and while the cost is high, there are many problems before they can be used effectively.

表面、電位測定に関し罠、振動セクター以外にも低コス
トの電位測定法に関するおおくの提案がなされているが
、実用になっているものははとんどないと、言える。
There have been many proposals for low-cost potential measurement methods other than traps and vibration sectors for surface and potential measurements, but it can be said that very few of them have been put into practical use.

このように実際に感光体の表面電位を検出して設定電位
からの偏差をコロナ帯電器へフィードバックする方法以
外にも、このような電位変動がコピー動作サイクルに依
存し不変化する性質を表わすカーブをデジタルメモリー
に記憶したり、簡単な指数関数発生器でそのカーブを近
似して、そのカーブから補償量をめて帯電量を調整する
方法もすでに提案されている。このような動作サイクル
に応じて帯’ttv補償するようにしたサイクル補償の
方法では、表面電位センサーを必要とせず、低コストで
帯電補償できるメリットはあるが、従来の方法では使用
条件がある限定された範囲でのみしか有効に動作しない
欠点を有する。例えば、 □高感度セレン感光体では繰
り返しコピーによる濃度低下のほかに高温環境下で繰り
返しコピーを行ったときに濃度低下が室温下に較べ一段
と顕著となる。従って単純なサイクル補償では広い温度
範囲に渡って感光体の表面の暗部電位を一定に保つこと
が困難となる。
In addition to the method of actually detecting the surface potential of the photoreceptor and feeding back the deviation from the set potential to the corona charger, it is also possible to use a curve that shows the property that such potential fluctuations depend on the copy operation cycle and do not change. Methods have already been proposed in which the amount of charge is adjusted by storing the amount in a digital memory, or by approximating the curve using a simple exponential function generator and calculating the amount of compensation from that curve. This cycle compensation method that compensates for the charge voltage according to the operating cycle does not require a surface potential sensor and has the advantage of being able to compensate for the charge at low cost. However, the conventional method has limitations due to usage conditions. It has the disadvantage that it only works effectively within the specified range. For example, in the case of a high-sensitivity selenium photoreceptor, in addition to the decrease in density caused by repeated copying, the decrease in density becomes more pronounced when copies are repeatedly made in a high temperature environment than at room temperature. Therefore, with simple cycle compensation, it is difficult to keep the dark potential on the surface of the photoreceptor constant over a wide temperature range.

〔発明の目的〕[Purpose of the invention]

本発明は、前記の欠点を除き高価な表面電位センサー等
を必要とせず、繰返し動作によって生ずる感光体の暗部
電位変動を、実用上考えられる広範囲の複写機の使用モ
ード、環境温度に対し又も補償できる帯電補償の方法を
提供することを目的とする。
Except for the above-mentioned drawbacks, the present invention does not require an expensive surface potential sensor or the like, and can detect fluctuations in the dark potential of the photoreceptor caused by repeated operations over a wide range of practically conceivable copying machine usage modes and environmental temperatures. It is an object of the present invention to provide a method of charging compensation that can compensate for charging.

〔発明の要点〕[Key points of the invention]

本発明の要点は複写機などの繰返し静電潜像が形成され
る潜像担持体(セレン感光体又はドラムなど)の疲労と
しての、潜像形成に寄与する帯電強度(現像暗部電位、
暗部電位)の低下量(帯電低下量)をコロナ帯電器のコ
ロナ電流の増加などによって潜像担持体の温度変化の影
響を含め補償する方法において、前記疲労の残存してい
ない状態における前記帯電強度としての初期帯電量が潜
像担持体の温度とともに所定の第1の関数(例えばドラ
ム温度の上昇と共に所定の第1の温度係数をもって低下
する関数)に従って変化するものとし、間欠動作を含む
繰返しの潜像形成動作(間欠コピー、滴続コピーなど)
K入ったのちは、潜像担持体の同一温度におげろ前記の
初期帯電量と、潜像形成動作を経た後の前記帯電強度と
の差からなる疲労帯電低下量が、前記温度ととも処置化
する所定の第2の関数(例えばドラム温度の上昇ととも
に所定の第2の温度係数をもって増加する関数、lサイ
クル帯電低下量)と、複数(例えばそれぞれ2つ)の時
定数を持ち時間を変数として減衰する指数関数(例えば
コピー動作時とコピー停止時に対応する2つの指数関継
)などからなり、疲労の残存していない状態以後の潜像
形成動作における停止を含む動作時間の履歴から定まる
所定の関数との積で表わされるものとして、潜像形成動
作のつとあらかじめ前記帯電強度の所定値に対する変化
量を推定演算し、該変化量に対応する前記帯電強度の補
償を行うようにした点にある。
The main point of the present invention is that the charging strength (development dark area potential,
In a method of compensating for the amount of decrease in dark area potential (charging decrease amount) by increasing the corona current of a corona charger, including the influence of temperature change on the latent image carrier, the charging strength in a state where no fatigue remains. Assume that the initial charge amount changes with the temperature of the latent image carrier according to a predetermined first function (for example, a function that decreases with a predetermined first temperature coefficient as the drum temperature rises), and the repetitive operation including intermittent operation Latent image forming operation (intermittent copying, continuous copying, etc.)
After entering K, the temperature of the latent image carrier is lowered to the same temperature. A predetermined second function (for example, a function that increases with a predetermined second temperature coefficient as the drum temperature rises, an l-cycle charge reduction amount) and a plurality of time constants (for example, two for each) and a time variable. It consists of an exponential function (for example, two exponential functions corresponding to the copying operation and the copying stop) that attenuates as The amount of change in the charging intensity with respect to a predetermined value is estimated in advance during the latent image forming operation, and the charging intensity is compensated for in accordance with the amount of change. be.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図に基づいて説明する。第1図は本発
明を適用した電子写真複写機の構成例を示す図、である
The present invention will be explained below based on FIG. FIG. 1 is a diagram showing an example of the configuration of an electrophotographic copying machine to which the present invention is applied.

第1図においてDはドラム状感光体(以下ドラムと称す
る)でその外周面に静電潜像を形成するセレンの感光層
からなる感光面を持ち、図中矢印AXR方向に回転され
る。CHIはドラムDに前記潜像形成のため予めコロナ
放電によるプラスの帯電を施すコロナ帯電器、EXはド
ラムDK露光し l施す文字パターンなどの潜像を形成させる半導体レー
ザ光源などを持つ露光手段、DVは前記潜像にトナーな
どの現像剤を耐着させて現像を行う現像器、Pは前記の
現像された画像を転写するコ材 ビー用紙などの転写機、CH2は転写材に転写を行うた
めの転写コロナ帯電器、CLはドラムD上に残留する現
像剤を除去するクリーニング手段、DCHはドラムD上
の残留電荷を青色光などの照射によって除去する(光除
電という)螢光灯などの除電器である。また2はコロナ
帯電器C)11にコロナ電流icを供給するDC高圧電
源、6はドラムDの環境温度従ってドラムDの温度を測
定する温度センサである。1はCPUなどからなる帯電
補償装置(以下補償器と略す)で、コピー制御装置(以
下制御装置と略す)3のコピー指令3a等や、図外のA
/D変換器を介して温度センサ6の温度検出信号6aを
入力しつつ、DC高圧電源2に帯電量の低下を補償する
ためのコロナ電流の増加量を指示する信号としての補償
信号1aを図外のD/A変換器を介して与える。5は露
光手段EXのDC電源、制御装置3はDC高圧電源2に
オン、オフ指令3Cを、補償器1に前記コピー指令3a
等を与えるほか、DC電源5、転写コロナ帯電器CH2
等を制御する。
In FIG. 1, D is a drum-shaped photoreceptor (hereinafter referred to as drum), which has a photosensitive surface made of a selenium photosensitive layer that forms an electrostatic latent image on its outer peripheral surface, and is rotated in the direction of arrow AXR in the figure. CHI is a corona charger that preliminarily applies a positive charge to the drum D by corona discharge in order to form the latent image; EX is an exposure unit having a semiconductor laser light source that exposes the drum DK and forms a latent image such as a character pattern; DV is a developing device that develops the latent image by adhering a developer such as toner to the latent image, P is a transfer device such as co-material paper that transfers the developed image, and CH2 is a transfer device that transfers the developed image to a transfer material. CL is a cleaning means for removing the developer remaining on the drum D, and DCH is a cleaning means for removing the residual charge on the drum D by irradiation with blue light or the like (referred to as photostatic charge removal). It is a static eliminator. Further, 2 is a DC high-voltage power supply that supplies a corona current IC to the corona charger C) 11, and 6 is a temperature sensor that measures the environmental temperature of the drum D and thus the temperature of the drum D. Reference numeral 1 denotes a charge compensating device (hereinafter referred to as a compensator) consisting of a CPU, etc., which receives copy commands 3a, etc. of a copy control device (hereinafter referred to as a control device) 3, and A (not shown).
The figure shows a compensation signal 1a as a signal that instructs the DC high-voltage power supply 2 to increase the amount of corona current to compensate for the decrease in the amount of charge while inputting the temperature detection signal 6a of the temperature sensor 6 via the /D converter. Provided via an external D/A converter. Reference numeral 5 indicates a DC power source for the exposure means EX, and a control device 3 issues on/off commands 3C to the DC high voltage power supply 2, and the copy command 3a to the compensator 1.
etc., as well as a DC power supply 5 and a transfer corona charger CH2.
control etc.

次にあらかじめ本発明の詳細な説明する。前記補償器”
は・別′ド2”9が連続何フイ″使 1用されたかをカ
ウントする図外のカウンタの計数値(サイクル数N)と
、コピー停止から再びコピーを開始するまでの停止時間
を測定する図外の停止時間タイマの計数値(コピー停止
時間t’l )の2つの情報が送られる。
Next, the present invention will be explained in detail in advance. The compensator”
・Measure the count value of a counter (not shown) that counts how many times ``9'' has been used consecutively (number of cycles N) and the stopping time from when copying stops until when copying starts again. Two pieces of information are sent: the count value of a stop time timer (not shown) (copy stop time t'l).

感光体の現像暗部電位(暗部電位)Vd(T)の温度変
化は、ドラム温度をT ’Cとして、下式(10A)の
ように表わすことができる。
The temperature change in the developing dark area potential (dark area potential) Vd(T) of the photoreceptor can be expressed as in the following equation (10A), where T'C is the drum temperature.

Vd(T)= VO(T)−ΔVs (T) −(IO
A)ただしVO(T)はドラム温度T ”Cのときの疲
労の無い状態での暗部電位(初期暗部電位と呼ぶ、また
これに対応するドラムDの帯電量を初期帯電量という)
ΔVs(T)はドラム温度T ”Cのときの疲労による
電位低下量(疲労帯電低下量と呼ぶ)一方あるドラム温
度T’Cを固定して考えた場合、前記疲労帯電低下量Δ
Vsは次のように考えることができる。
Vd(T)=VO(T)−ΔVs(T)−(IO
A) However, VO(T) is the dark potential in a state without fatigue when the drum temperature is T ''C (called the initial dark potential, and the corresponding amount of charge on drum D is called the initial charge amount)
ΔVs(T) is the amount of potential decrease due to fatigue when the drum temperature is T'C (referred to as fatigue charge decrease amount).On the other hand, when a certain drum temperature T'C is fixed, the fatigue charge decrease amount Δ
Vs can be considered as follows.

初期疲労のないセレン感光体を連続コピーでサイクル数
Nだけ使用した直後の疲労帯電低下量(新たに動作特約
帯電低下量と呼ぶ)ΔVs(N)は下式(IA)で表わ
される。
Immediately after a selenium photoreceptor without initial fatigue is used for the number of cycles N in continuous copying, the fatigue charge reduction amount (newly referred to as the operation special charge reduction amount) ΔVs(N) is expressed by the following formula (IA).

ΔVs(N)工A+A−C(to)+A−C(2t0)
十・・・・・・十人・・・・・・・(1人) ここにt。′家コピーの1サイクル周期、Aは1サイク
ル毎に新たに生ずる帯電低下量(1サイクル帯電低下量
と呼ぶ)、C(t)は疲労の回復(帯電低下量自体の減
衰)の時間tへの依存性を表わす係数と、しての関数で
ある。
ΔVs(N) Engineering A+A-C(to)+A-C(2t0)
Ten...Ten people...(1 person) T here. '1 cycle period of the home copy, A is the amount of charge reduction that newly occurs every cycle (referred to as 1 cycle charge reduction amount), and C(t) is the time t for fatigue recovery (attenuation of the charge reduction amount itself). It is a function of the coefficient representing the dependence of .

C(to)はその前の回(すなわち(N−1)サイクル
目の1サイクル間)において生じた帯電低下量Aが、N
サイクル目(すなわち1サイクル周期toののも)に減
衰しつつ尚残存している帯電低下量t、同様にして右辺
最終項A−C(N−1) to)は初回のサイクルにお
いて生じた帯電低下量Aが、Nサイクル目(すなわち1
サイクル周XA”oの(N−1)倍の時間ののち)に減
衰しつつ残存している帯電低下量を示している。
C(to) is the charge reduction amount A that occurred in the previous cycle (that is, during the (N-1)th cycle), which is N
Similarly, the final term A-C(N-1) to) on the right side is the charge reduction amount t that remains after being attenuated in the cycle (i.e., one cycle period to), which is the charge that occurred in the first cycle. The amount of decrease A is the Nth cycle (i.e. 1
The graph shows the amount of charge reduction that remains while attenuating after a time (N-1) times the cycle circumference XA''o).

連続コピ一時に於ける疲労の回復過程の前記関数C(t
)としては、下式(2)な仮定できる。
The function C(t
), the following equation (2) can be assumed.

(::(t)=Ks−exp(−t/rs)+KJ−e
xp(−t/7ノ) ・・・・・・・・・(2) ここにτS、τEはそれぞれ動作時短時間時定数(短時
定数と略す)、動作特長時間時定数(長時定数と略す)
、Ks、Klは係数である。
(::(t)=Ks-exp(-t/rs)+KJ-e
xp(-t/7ノ) ・・・・・・・・・(2) Here, τS and τE are the operating short time time constant (abbreviated as short time constant) and the operating characteristic long time time constant (long time constant), respectively. omitted)
, Ks, Kl are coefficients.

ただし、時間1=0においては帯電低下量の減衰はない
(従ってC(0)=1)であるところから、下式(2人
)の関係がある。
However, since there is no attenuation of the charge reduction amount at time 1=0 (therefore, C(0)=1), there is a relationship expressed by the following equation (2 people).

えs+KJ==1 ・・間(2人) このように長短2個の時定数τS、τノを設けた理由は
、短時定数751個では500サイクル程度の短時間の
、コピー動作にたいしては補償できろが、それ以上の長
時間の連続コピーに対応出来ないこと、時定数を3個以
上設けてもその必要性は殆どないことと計算に時間がか
かることの理由で時定数は2個としたものである。しか
しながら時定数は2個に限定するものではない。
E s + KJ = = 1 ... time (2 people) The reason for providing two long and short time constants τS and τ is that 751 short time constants can compensate for the short copy operation of about 500 cycles. It is possible, but it cannot support continuous copying for a longer period of time, there is almost no need to provide three or more time constants, and it takes time to calculate, so the number of time constants is limited to two. This is what I did. However, the number of time constants is not limited to two.

式(1)の初期無疲労時の動作特約帯電低下量ΔVs(
N)は、連続コピーし続けたー極限では、ある値に収斂
する。この童を最大補償量と呼ぶ。それは、(1)、(
2)式から、 jVs(N−+ω)=A−(Ks−(τS/lo)十K
l・(τl/1o)) ・・・・・・(3)となる。従
って最大補償量は、1サイクル帯電低下量人の大小に比
例していることが分る。
The special charge reduction amount ΔVs(
N) continues to be copied continuously - in the limit, it converges to a certain value. This child is called the maximum compensation amount. It is (1), (
From formula 2), jVs(N-+ω)=A-(Ks-(τS/lo) 10K
l・(τl/1o)) ...(3). Therefore, it can be seen that the maximum compensation amount is proportional to the amount of charge reduction per cycle.

このようにあるドラム温度T″Gを固定した場合、式(
jA)、(2)により動作特約帯電低下量をめ、これを
補償するように補償器1、DC高圧電源2を介してコロ
ナ電流icを増加し、帯電補償を行うことができる。
When a certain drum temperature T″G is fixed in this way, the formula (
jA) and (2), the amount of charge reduction required for operation is determined, and the corona current IC is increased via the compensator 1 and the DC high-voltage power supply 2 to compensate for this, thereby performing charge compensation.

しかしながら高感度セレン感光体の繰り返し疲労の温度
依存性を詳しく調べた結果、疲労の回復を示す関数C(
、t)が温度で変動するのではなく、前記動作詩作帯電
低下蓋ΔVs (N )の比例定数でもあるlナイクル
帯電低下量人が温度変化し℃いることが主要因であるこ
とが判明した。
However, as a result of detailed investigation of the temperature dependence of repeated fatigue of high-sensitivity selenium photoreceptors, we found that the function C (
, t) does not vary with temperature, but it turns out that the main factor is that the temperature changes and the temperature changes, which is also a proportionality constant of ΔVs (N).

すなわち、疲労の温度依存性については式(IA)で1
サイクル帯電低下量人を温度の関数とし工扱い疲労の回
復の関数C(t)は温度に依存しないとじ ;℃、1サ
イクル帯電低下量Aの温度依存性をある簡単な関数、例
えば下式(11)のように表わすことかできる。
In other words, the temperature dependence of fatigue is expressed as 1 in equation (IA).
The cycle charge reduction A is a function of temperature, and the function C(t) of recovery from handling fatigue does not depend on temperature. 11).

A(T)=a−’f’+b −(11)ただしa、bは
定数である。
A(T)=a-'f'+b-(11) However, a and b are constants.

式(11)の関係を(1人)に導入することによって式
(IA)は下式(IB)のように表わされる。
By introducing the relationship of equation (11) into (one person), equation (IA) can be expressed as equation (IB) below.

また式(IOA)における初期暗部電位vo(’r)の
温度変化も例えば下式(12)で近似できる。
Further, the temperature change in the initial dark potential vo('r) in the formula (IOA) can also be approximated by, for example, the following formula (12).

客yo (T )= f −’r十g ・−−−−−(
12)ただしf、gは定数である。
Customer yo (T) = f −'r0g ・------(
12) However, f and g are constants.

このようにして式(IOA)における暗部電位Vd(T
)は、式(IB)の表現を導入しサイクル数Nをも変数
とする暗部電位Vd (T 、N)として、下式(10
)のように置数めることができる。
In this way, the dark potential Vd(T
) is expressed by the following formula (10
).

Vd(’1’、N)=VO(’f’)−jVs(T、N
) ・・・(10)そこで基準暗部電位Vd0JC対す
る式(1o)の暗部電位Vd(T、N)との差(#;帯
電補償量と呼ぶ)Δ■Cをめると下式(13)のように
なる。
Vd ('1', N) = VO ('f') - jVs (T, N
)...(10) Then, by substituting the difference (#; called charge compensation amount) Δ■C between the reference dark potential Vd0JC and the dark potential Vd(T, N) in equation (1o), the following equation (13) is obtained. become that way.

jvc=Vdo−Vd(T、N)=Vdo−VO(’J
”)+jVs (T 、N ) ・・曲(13)この総
帯電補償量を補償器1で演算し、補償信号1aとしてD
C高圧電源2に与えることにより、複写機内の温度上昇
があっても、また環境温度が変化しても、常に暗部電位
(暗部の帯電)を安定化することができる。
jvc=Vdo-Vd(T,N)=Vdo-VO('J
”)+jVs (T, N)...Song (13) This total charge compensation amount is calculated by the compensator 1, and D as the compensation signal 1a.
By supplying C to the high-voltage power supply 2, the dark area potential (charging in the dark area) can always be stabilized even if the temperature inside the copying machine increases or the environmental temperature changes.

−次に第1図の複写機を用いて実際のコピー動作と同等
の動作を行った場合のドラムDの暗部電位変化の測定結
果を第1表で説明する。この測定では第1図の現像器D
Vの部分に、現像器DVK代り、ドラムDの感光面の電
位な測定するための図外の表面電位計のグローブを設け
、該表面電位計で現像暗部電位(暗部電位)を測定した
ものである。
-Next, Table 1 describes the measurement results of changes in the dark area potential of the drum D when an operation equivalent to an actual copying operation is performed using the copying machine shown in FIG. In this measurement, the developing device D in Fig.
In place of the developer DVK, a surface electrometer glove (not shown) is installed in place of the developing device DVK to measure the potential of the photosensitive surface of the drum D, and the developing dark area potential (dark area potential) is measured with the surface electrometer. be.

tx オセvン感光層としては、キャリヤ輸送層(CT
L)K純セtzysoμm’g、キャリヤ発生層(CG
L)KTe40wt% の高濃度の8eTe110.6
μm、表面保護層として純セレンを2μm順次積層した
多層構造の感光層を使用した。この感光体は、通常のセ
レン感光体に(らべ白色光で約4倍の高感度化を行って
おり波長780nmの半導体レーザ−光源に対し半減衰
露光量が0,6μJ/cIlめものである。
The carrier transport layer (CT
L) K pure setzysoμm'g, carrier generation layer (CG
L) 8eTe110.6 with high concentration of KTe40wt%
A photosensitive layer having a multilayer structure in which 2 μm of pure selenium was sequentially laminated as a surface protective layer was used. This photoreceptor is approximately 4 times more sensitive than a normal selenium photoreceptor to white light, and has a half-attenuation exposure dose of 0.6μJ/cIl for a semiconductor laser light source with a wavelength of 780nm. .

疲労動作の条件としては、あらかじめ複写機を12時間
以上体止状態として感光体(ドラムD)の疲労を取り除
いたのち、1サイクル周期t0を5秒として最初の1回
は露光手段EXとしての半導体レーザの露光4OFFl
、た状態で帯電を行ってから初期暗部電位を測定し、ひ
きつづきレーザ露光なONL、た状態で連続500サイ
クルの帯電、露光、除電を繰り返し、こののちレーザ光
を再びOFFにして500サイクルのレーザ疲労後の暗
部電位(SOOサイクル後暗部電位と呼ぶ)を測定し、
両電位の差を調べた。このような試験を環境温度を変え
ドラム温度T乞5℃、20℃、35℃の3つの温度、本
発明による帯電補償を行った場合と行わない場合の2つ
の場合に付き調べた。第1表は、帯電無補償の場合(5
)では、各ドラム温度Tにおける、前記の初期暗部電位
VO(T)、疲労帯電低下量(III作時総詩作低下量
)ΔVs (T 、N)、500サイクル後暗部電位t
それぞれ示し、帯電補償の場合但)では対応する各ドラ
ム温度Tにおける補償された初期暗部電位、同じ(50
0サイクル後暗部電位を示す。なおここで式(蓼夕ソx
 2 ) 、 (13)にお(ける各定数は次のように
設定されている。
The conditions for fatigue operation are as follows: After the copying machine is stationary for at least 12 hours to remove fatigue from the photoreceptor (drum D), one cycle period t0 is 5 seconds, and the first cycle is performed using the semiconductor as exposure means EX. Laser exposure 4OFFl
, the initial dark potential was measured after charging in a state of Measure the dark potential after fatigue (referred to as post-SOO cycle dark potential),
The difference between both potentials was investigated. These tests were conducted at three temperatures: 5° C., 20° C., and 35° C., while changing the environmental temperature, and in two cases: with and without charge compensation according to the present invention. Table 1 shows the case of no charging compensation (5
), at each drum temperature T, the above-mentioned initial dark area potential VO (T), fatigue charge reduction amount (total amount of poetry reduction during III production) ΔVs (T , N), dark area potential after 500 cycles t
In the case of charging compensation, the compensated initial dark potential at each corresponding drum temperature T is the same (50
The dark potential after 0 cycles is shown. In addition, here is the ceremony (Tayuso x
2), each constant in (13) is set as follows.

すなわち、係数Ks=0.9346 、 K l =0
.0654 。
That is, coefficient Ks=0.9346, K l =0
.. 0654.

短時定数rs=25sec、長時定数71=5000s
ec、定数a= 0.0667 (v/”c ) 、定
数b=0.667V、定数f=−4(V/”C) 、定
数g=890V、基準暗部電位Vd O=810V C
なおこの値は1例として、式(12)において、ドラム
温度T=20℃とした場合の初期暗部電位vo(’I’
)の値をとったものである)、である。
Short time constant rs=25sec, long time constant 71=5000s
ec, constant a = 0.0667 (v/"c), constant b = 0.667V, constant f = -4 (V/"C), constant g = 890V, reference dark potential Vd O = 810V C
As an example, this value is expressed as the initial dark potential vo('I'
).

第1表から判るように、帯電補償の無い場合(5)にお
いては、初期暗部電位VO(T)の温度変化はほぼ一1
00V/30℃・810V=−0,41チ/℃、温度定
幅 化と疲労とを合せた変化量の副は300V(ただし基準
電圧を810■とする)、であるのに対し、帯電補償を
行った場合い)においては、初期暗部電位(7)温度変
化はほぼ一15V/30℃−810V=−0,06%/
”C1また温度変化と疲労を合せた変化量の幅は±IO
V、と著しく改善される。
As can be seen from Table 1, in the case (5) without charging compensation, the temperature change in the initial dark potential VO(T) is approximately 11
00V/30℃・810V=-0.41cm/℃, the amount of change due to temperature constant width and fatigue is 300V (however, the reference voltage is 810■), whereas charging compensation ), the initial dark potential (7) temperature change is approximately -15V/30℃-810V=-0.06%/
``C1 Also, the range of the amount of change combining temperature change and fatigue is ±IO
V, which is significantly improved.

以上の説明は簡単のためコピー動作を連続とした場合を
例にとって説明したが、間欠コピー又は連続コピーを間
欠的に繰返すような一場合においても、式(13)又は
(IB)における動作詩作帯電低下量(以下の説明では
便宜上単に疲労帯電低下量と言う)ΔVs(T、N)中
の、1サイクル帯電低下変化するだけで本発明の適用が
可能である。
For the sake of simplicity, the above explanation is based on the case where the copying operation is continuous. However, even in a case where intermittent copying or continuous copying is repeated intermittently, the operation poetry charge in equation (13) or (IB) can be used. The present invention can be applied to a one-cycle charge reduction change in the amount of charge reduction (in the following description, simply referred to as fatigue charge reduction amount for convenience) ΔVs (T, N).

すなわちいま疲労の無い状態からN1サイクルの連続コ
ピーを行って後コピーを停止した直後の疲労帯電低下量
ΔVsl(T、、Nl)は前記の式(IB)のサイクル
数N1kN1とすることにより下式(20)%式% 次にコピー停止時間t1の後に減衰しつつ残存する疲労
帯電低下量jVs2(0)は式(20)に新たな疲労、
回復の時間依存性を表わす関数C1(tl)を乗じたも
ので表わされ下式(21)で示される。
In other words, the amount of fatigue charge reduction ΔVsl (T, , Nl) immediately after N1 cycles of continuous copying and stopping the subsequent copying from a state without fatigue is calculated by the following formula by setting the cycle number N1kN1 in the above formula (IB). (20) % Formula % Next, the fatigue charge reduction amount jVs2(0) that remains while attenuating after the copy stop time t1 is calculated by adding new fatigue to equation (20).
It is expressed by multiplying by a function C1 (tl) representing the time dependence of recovery, and is expressed by the following equation (21).

ここで関数CI (t 1 )は例えば次式(22)で
表わすことができる。
Here, the function CI (t 1 ) can be expressed, for example, by the following equation (22).

CI(tl)=に1s−exp(−tl/Tl5)十K
II!・exp(−tl/τIJ) ・−・・(22)
ここにτISは停止時短時間時定数、τ17!は停止時
長時間時定数、Kls、KIJは係数でKlj十KIJ
=1の関係がある。なお式(22)の時定数は一般には
2個に限定されるものではない。
CI(tl) = 1s-exp(-tl/Tl5) 1K
II!・exp(-tl/τIJ) ・−・・(22)
Here, τIS is the short-time time constant at stop, τ17! is the long time constant at stop, Kls, KIJ are coefficients Klj + KIJ
There is a relationship of =1. Note that the number of time constants in equation (22) is generally not limited to two.

次に2度目の連続コピーが再開された場合そのNサイク
ル後の疲労帯電低下量ΔVs(T、N)は、式(21)
による初期の疲労帯電低下量が無いと考えた場合の疲労
帯電低下量(従って(IB)の値゛)と、式(21)に
よる初期疲労帯電低下量がNサイクル後(従ってN−t
oの時間ののち)に減衰しつつ残存している疲労帯電低
下量すなわち ΔVs2(0)−C(N−1o)=A(T)−C(N−
to)−C1(tl)J:υ を加えたものとなる。すなわち疲労帯電低下量jVs(
T、N)H下式(23) 又は(23A)で表わされる
Next, when the second continuous copy is restarted, the fatigue charge reduction amount ΔVs (T, N) after N cycles is calculated using the formula (21)
The amount of fatigue charge reduction (therefore, the value of (IB)) when it is assumed that there is no initial fatigue charge reduction amount due to
The amount of fatigue charge reduction remaining while attenuating after o time), that is, ΔVs2(0)-C(N-1o)=A(T)-C(N-
to)-C1(tl)J:υ. In other words, fatigue charge reduction amount jVs(
T, N)H is represented by the following formula (23) or (23A).

ΔVs(T、N)=A(T)−C(N−to)−CI(
tl)・=A(T)−[C(N−to)−C1,(tl
)このように式(23A)で示される2度目の連続コピ
ーにおける疲労帯電低下量ΔVs(T、IN)は、る所
定の関数との積で表わされることに注意する必要がある
ΔVs(T,N)=A(T)-C(N-to)-CI(
tl)・=A(T)−[C(N−to)−C1,(tl
) It should be noted that the fatigue charge reduction amount ΔVs (T, IN) in the second continuous copying shown in equation (23A) is expressed as a product of a predetermined function.

このようにしてその後に続く任意のコピー動作について
も同様な手順を繰返すこと九より疲労帯電低下量がめら
れるが、いずれにせよこのような一般のコピー動作にお
ける疲労帯電低下量は、1サーイクル帯電低下量A (
T)と、複数の時定数を持ち時間と共に減衰する指数関
数c(t)、cl(1)からなり、熱疲労時以後の停止
時間を含むコピー動作の時間の履歴から定まる所定の関
数と、の積で表わされる ことが容易に推察できであろ
う。
By repeating the same procedure for any subsequent copy operations, the amount of fatigue charge reduction can be estimated, but in any case, the fatigue charge reduction amount in such general copy operations is equal to one cycle charge reduction. Amount A (
T), and a predetermined function consisting of exponential functions c(t) and cl(1) having a plurality of time constants and decaying with time, and determined from the time history of the copy operation including the stop time after thermal fatigue; It can be easily inferred that it is expressed as the product of .

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、感光体
が無疲労の場合の初期帯電量をドラム温度の所定の第1
の関数としてとらえ、又ドラム温度を固定して考えたと
きの、前記の初期帯電量と連続又は間欠コピー後の帯電
量との差としての疲労による帯電低下量を、ドラム温度
の所定の第2の関数と、複数の時定数を持ち時間と共に
減衰する :指数関数からなり、無疲労時からのコピー
の動作と停止の時間の履歴から定まる所定の関数との積
でとらえることにより、コピー動作のつど; ドラムの
所定の帯電量に対する変化量を推定演算し帯電補償を行
うこととしたので、広い温度範囲、使用モード(連続コ
ピー、間欠コヒー)にだいしセレン感光体の暗部を位の
変動を殆ど無視しうる程度迄安定することが可能となっ
た。またこのような電位補償を複写機に内蔵されたマイ
クロプロセッサ−で行うためハードウェアのコストの上
昇も比較的小さくてすむ利点がある。
As is clear from the above description, according to the present invention, the initial charge amount when the photoreceptor is not fatigued is
The amount of charge reduction due to fatigue, which is the difference between the initial charge amount and the charge amount after continuous or intermittent copying when the drum temperature is fixed, is calculated as a function of the second drum temperature. It is composed of an exponential function that has multiple time constants and decays over time, and can be calculated as the product of a predetermined function determined from the history of the copying operation from the time of no fatigue and the time of stopping. Since we decided to perform charge compensation by estimating the amount of change in the drum's charge for a predetermined amount, it is possible to minimize changes in the dark area of the selenium photoreceptor over a wide temperature range and usage mode (continuous copying, intermittent copying). It became possible to stabilize it to the point where it could be ignored. Further, since such potential compensation is performed by a microprocessor built into the copying machine, there is an advantage that the increase in hardware cost is relatively small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した複写器の構成例を示す図であ
る。 D・・・・・・電子写真用感光体(セレン感光体、ドラ
ム)、CHI・・・・・・コロナ帯電器、EX・・・・
・・露光手段、l)V・・・・・・現像器、P・・・・
・・転写材、CH2・・・・・・転写コロナ帯電器、1
)CH・・・・・・除電器、1・・・・・・帯電補償装
置(補償器)、2・・・・・・DC高圧電源、ic・・
・・・・コロナ電流、3・・・・・・コピー制御装置(
制′御装置)、1a・・・・・・補償信号、3a・・・
・・・コピー指令、6・・・・・・温度センサ。 矛1 図
FIG. 1 is a diagram showing an example of the configuration of a copying machine to which the present invention is applied. D: Electrophotographic photoreceptor (selenium photoreceptor, drum), CHI: Corona charger, EX:
...Exposure means, l) V...Developer, P...
...Transfer material, CH2...Transfer corona charger, 1
)CH... Static eliminator, 1... Charge compensator (compensator), 2... DC high voltage power supply, IC...
...Corona current, 3...Copy control device (
control device), 1a...compensation signal, 3a...
...Copy command, 6...Temperature sensor. spear 1 figure

Claims (1)

【特許請求の範囲】 1)帯電、露光、除電の各工程を繰返して潜像形成を行
なう感光体を有する電子写真装置において、潜像形成動
作の開始時に感光体の温度を読取り、この読取った温度
における感光体の表面電位の変動量をめ、各潜像形成動
作サイクル毎に前記読取った温度により補正した感光体
の1動作サイクル当りの表面電位の低下量および当該動
作サイクルまでの表面電位低下の残存量を水物るととも
に、度 前記変動量、低下量および残存量より帯電強弱の;総補
償量をめ、この総補償量に従って次の潜像形成動作サイ
クルの帯電強度を調整することを特徴とする電子写真装
置の感光体の帯電安定化方法。
[Scope of Claims] 1) In an electrophotographic apparatus having a photoconductor that forms a latent image by repeating the steps of charging, exposing, and removing static electricity, the temperature of the photoconductor is read at the start of the latent image forming operation, and The amount of decrease in the surface potential of the photoconductor per operation cycle and the decrease in surface potential up to the relevant operation cycle, which is calculated based on the amount of variation in the surface potential of the photoreceptor due to temperature, and is corrected by the temperature read for each latent image forming operation cycle. In addition to determining the remaining amount of charge, calculate the total compensation amount of the charging strength from the above fluctuation amount, decrease amount, and remaining amount, and adjust the charging intensity of the next latent image forming operation cycle according to this total compensation amount. A method for stabilizing the charge on a photoreceptor of an electrophotographic device.
JP9826284A 1984-05-16 1984-05-16 Method for stabilizing electrification of electrophotographic sensitive body Pending JPS60242479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9826284A JPS60242479A (en) 1984-05-16 1984-05-16 Method for stabilizing electrification of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9826284A JPS60242479A (en) 1984-05-16 1984-05-16 Method for stabilizing electrification of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS60242479A true JPS60242479A (en) 1985-12-02

Family

ID=14215033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9826284A Pending JPS60242479A (en) 1984-05-16 1984-05-16 Method for stabilizing electrification of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS60242479A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536856A (en) * 1978-09-06 1980-03-14 Matsushita Electric Ind Co Ltd High voltage power source device for electrophotographic copier
JPS5672456A (en) * 1979-11-19 1981-06-16 Ricoh Co Ltd Charging control method in electrostatic recording of photoreceptor
JPS58125049A (en) * 1982-01-20 1983-07-25 Konishiroku Photo Ind Co Ltd Electrostatic recording device
JPS60229054A (en) * 1984-04-26 1985-11-14 Konishiroku Photo Ind Co Ltd Electrostatic recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536856A (en) * 1978-09-06 1980-03-14 Matsushita Electric Ind Co Ltd High voltage power source device for electrophotographic copier
JPS5672456A (en) * 1979-11-19 1981-06-16 Ricoh Co Ltd Charging control method in electrostatic recording of photoreceptor
JPS58125049A (en) * 1982-01-20 1983-07-25 Konishiroku Photo Ind Co Ltd Electrostatic recording device
JPS60229054A (en) * 1984-04-26 1985-11-14 Konishiroku Photo Ind Co Ltd Electrostatic recording device

Similar Documents

Publication Publication Date Title
EP0531167B1 (en) Electrostatic voltmeters readings of toner test patches for adjusting IR densitometer readings of developed test patches
EP0531160B1 (en) Toner dispensing rate adjustment
JPS60211476A (en) Improvement in manufacture of electrostatic image developed
JP2544066B2 (en) Dark decay control system using two electrostatic voltmeters
US5285241A (en) Maintaining precise electrostatic control using two ESVs
JPS60242479A (en) Method for stabilizing electrification of electrophotographic sensitive body
JP3309306B2 (en) Digital image forming equipment
JPH0326390B2 (en)
JP2851755B2 (en) Method for forming three-level image in three-level image forming apparatus
JPS6114671A (en) Electrophotographic copying device
JPS6359143B2 (en)
JPS60242478A (en) Method for stabilizing electrification of electrophotographic sensitive body
JPS60229054A (en) Electrostatic recording device
JPS61238070A (en) Image forming device
JPH0777853A (en) Process controller
JPS63239482A (en) Device for destaticizing electrophotographic printing device
JP3372410B2 (en) Image forming device
JPS60207164A (en) Electrostatic recording device
JPH1138702A (en) Image forming device
JPS5872165A (en) Recording device
JPH08248704A (en) Exposure extent control method for electrophotographic device
JPH0721671B2 (en) Image forming device
JPH01231073A (en) Method for controlling electrostatic charging of photosensitive body
JPH0822169A (en) Corona discharger
JPH02149867A (en) Electrostatic image forming method and its device