JPS60242054A - Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing - Google Patents

Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing

Info

Publication number
JPS60242054A
JPS60242054A JP10018284A JP10018284A JPS60242054A JP S60242054 A JPS60242054 A JP S60242054A JP 10018284 A JP10018284 A JP 10018284A JP 10018284 A JP10018284 A JP 10018284A JP S60242054 A JPS60242054 A JP S60242054A
Authority
JP
Japan
Prior art keywords
packaging material
laminated packaging
density polyethylene
layer
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10018284A
Other languages
Japanese (ja)
Other versions
JPH0376669B2 (en
Inventor
賢司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP10018284A priority Critical patent/JPS60242054A/en
Publication of JPS60242054A publication Critical patent/JPS60242054A/en
Publication of JPH0376669B2 publication Critical patent/JPH0376669B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A1本 明の技術分野 本発明は、きわめてはげしい屈曲疲労にも気体遮断性の
低下ないフレキシブル積層包装材に関する。詳しくは酸
素、炭酸ガスなどの気体遮断性を有するエチレン−酢酸
ビニル共重合体けん化物(以下EVO)Iと記す)から
なる薄膜を中間層とし、該中間層の両側に表面層を有し
、該各層を直鎖状低密度ポリエチレンに、エチレン性不
飽和カルボン酸またはその無水物を化学的に結合させて
得られる変性直鎖状低密度ポリエチレンから実質的にな
る接着性樹脂を介して設けることによって、該包装材で
包装された変質し易い物品の気密包装体が輸送、取扱い
時に該包装材が受けるきわめては1 げしい屈曲疲労に
対しても、すぐれた気体遮断性を保持することができる
被包装物の変質を防止するために有効な積層フレキシブ
ル包装材を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION A1 Technical Field of the Invention The present invention relates to a flexible laminated packaging material whose gas barrier properties do not deteriorate even under extremely severe bending fatigue. Specifically, a thin film made of a saponified ethylene-vinyl acetate copolymer (hereinafter referred to as EVO I) having gas barrier properties such as oxygen and carbon dioxide gas is used as an intermediate layer, and a surface layer is provided on both sides of the intermediate layer. Each layer is provided via an adhesive resin consisting essentially of modified linear low-density polyethylene obtained by chemically bonding ethylenically unsaturated carboxylic acid or its anhydride to linear low-density polyethylene. As a result, the airtight packaging for items that are easily deteriorated using the packaging material can maintain excellent gas barrier properties even against the extremely severe bending fatigue that the packaging material receives during transportation and handling. The object of the present invention is to provide a laminated flexible packaging material that is effective in preventing deterioration of packaged items.

B、従来技術 フレキシブル積層包装材の機能は基本的には被包装物の
保存性、すなわち変質防止であり、そのために該包装材
にあっては特に輸送振動強度、耐屈曲疲労性が要求され
、就中、所謂バッグインボックス−折畳み可能なプラス
チックの薄肉内容器と積み重ね性、持ち運び性、印刷適
性を有する外装段ボール箱とを組合せた容器−の内容器
として用いられる場合には高度の該特性が要求される。
B. Prior Art The function of flexible laminated packaging materials is basically the preservation of the packaged items, that is, the prevention of deterioration, and for this reason, the packaging materials are particularly required to have transport vibration strength and bending fatigue resistance. In particular, when used as the inner container of a so-called bag-in-box - a container that combines a foldable thin-walled plastic inner container with an outer cardboard box that is stackable, portable, and suitable for printing, a high degree of this property is required. required.

該包装材は、各種プラスチックフィルムがそれぞれの素
材の特性を活かして積層されて用いられるが、たとえば
機械的強度を保持するための基材フィルムと熱シール可
能な素材との組合せが最も一般的であり、被包装物の要
請に応じて素材が選択される。就中、基材フィルムの酸
素等のガス遮断性では不満足な用途についてはさらに高
度なガス遮断性を有するバリヤ一層を基材層上に設け、
このバリヤ一層を中間層としてヒートシール可能な素材
を少くとも一外層となる如く、熱可梨性樹脂を積層する
方法が採用される。たとえば従来のバッグインポック、
スの内容器の材質の八本は必ずヒートシール部分かりる
ので、ヒートシール可能なポリエチレン、特に軟質ポリ
エチレンを主体としているが、バッグインボックスの特
徴である折り畳みijJ能であること、内容物が液体で
あること等から物理的強度、mJ述の如く、特に輸送振
動強度、耐屈曲疲労性がめられ、このために耐ストレス
クラック性が良好であることと相俟ってエチレン−酢酸
ビニル共■合樹脂がより好ましく用いられている。さら
に要求性能の高度化に伴って酸素等のガス遮断性が要求
される場合には、ナイロンフィルム、サランコートナイ
ロンフィルム、アルミ蒸着ナイロンフィルム、アルミ蒸
盾ポリエステルフイ/レム等を組合せた該内容器が実用
化され始めている。高良なガス遮断性を付与するためK
は、エチレン−酢酸ビニル共重合体けん化物、ポリ塩化
ビニリデン、アルミ箔、金属などの蒸着フィルムなどが
用いられる。しかしこれらは、ガス遮断性については優
れるが、機械的強度は一般に低く、特に屈曲疲労に耐え
られるものでにない。従って機械的強度の優れた基材層
とヒートシール可能な素材の間に積層されて用いられる
が、なお、た゛とえはバッグインボックス内容器の構成
材として用いた場合、該構成材にピンホールを生じたり
、該構成材にピンホールを生じない段階においてさえ中
間層として、用いた該バリヤ一層に生ずるクツツクやピ
ンホール等に起因してバリヤー性の低下を生ずるなどの
ため1.きわめてはげしい屈曲疲労に対して、すぐれた
気体遮断性を保持することができず、実用的に満足なも
のは見出されていない。
The packaging material is used by laminating various plastic films to take advantage of the characteristics of each material, but the most common combination is, for example, a base film to maintain mechanical strength and a heat-sealable material. The material is selected according to the requirements of the packaged item. In particular, for applications where the oxygen and other gas barrier properties of the base film are unsatisfactory, a barrier layer with even higher gas barrier properties is provided on the base layer.
A method is adopted in which thermopolymer resin is laminated so that this barrier layer is used as an intermediate layer and at least one outer layer is made of a heat-sealable material. For example, the conventional bag in pock,
The heat-sealable parts of the bag-in-box's inner container are always known, so it is mainly made of heat-sealable polyethylene, especially soft polyethylene. Therefore, physical strength, mJ, as mentioned above, transport vibration strength, and bending fatigue resistance are particularly important. Resin is more preferably used. Furthermore, when gas barrier properties such as oxygen are required as performance requirements become more sophisticated, the inner container may be constructed using a combination of nylon film, Saran-coated nylon film, aluminum-deposited nylon film, aluminum-evaporated polyester film/REM, etc. is beginning to be put into practical use. K to provide good gas barrier properties
For example, saponified ethylene-vinyl acetate copolymer, polyvinylidene chloride, aluminum foil, vapor-deposited film of metal, etc. are used. However, although these have excellent gas barrier properties, their mechanical strength is generally low, and in particular they cannot withstand bending fatigue. Therefore, it is used by being laminated between a base material layer with excellent mechanical strength and a heat-sealable material. 1. Barrier properties may deteriorate due to holes or pinholes that may occur in the barrier layer used as an intermediate layer even when no pinholes are formed in the constituent material. No material has been found that is unable to maintain excellent gas barrier properties against extremely severe bending fatigue and is practically satisfactory.

ポリ塩化ビニリデン樹脂を主体とする層、アルミ箔、金
属などの蒸着樹脂層などをバリヤ一層とする積層包装材
についての挙動は、たとえば特開昭55−7477号公
報に示されている。すなわち実際に該包装材を使用し、
包装された包装体の輸送、取扱い後のガス遮断性が必ず
しも満足できるものでなく、最も必要性の高い一次流通
後の実用保存性がしばしば裏切られるのは、中間層に位
置する該バリヤ一層の損傷に起因する。ガス遮断性向上
のために設ける中間層の素材としてはEV(M樹脂が最
も優れており、各種の多層フィルム、多層構造をもつ容
器のバリヤー材として好んで用いられる。
The behavior of laminated packaging materials whose barrier layer is a layer mainly composed of polyvinylidene chloride resin, aluminum foil, a vapor-deposited resin layer of metal, etc. is shown in, for example, Japanese Patent Laid-Open No. 7477/1983. That is, actually using the packaging material,
The reason why the gas barrier property after transportation and handling of the packaged package is not always satisfactory, and the practical shelf life after the primary distribution, which is the most important, is often betrayed is because of the barrier layer located in the middle layer. Due to damage. EV (M resin) is the most excellent material for the intermediate layer provided to improve gas barrier properties, and is preferably used as a barrier material for various multilayer films and containers with multilayer structures.

これは、この樹脂が抜群のバリヤー性を有するだけでな
く透明性、耐油性、印刷性、成形性などにもすぐれてい
て、基材樹脂の特性を損うことがないという、きわめて
有利な性質を持つからである。
This resin not only has excellent barrier properties, but also has excellent transparency, oil resistance, printability, moldability, etc., and has extremely advantageous properties such as not impairing the properties of the base resin. This is because it has

しかるに耐屈曲疲労性を特に要求される分野には積層包
装材のバリヤーに1としてEVOH樹脂が満足に用いら
れる例はみられない。就中、前述の如゛く輸送振動によ
る屈曲疲労に耐えることが強くめられている酸素等の気
体航断性を有するバッグインボックスの内容器にEVO
H樹脂が用いられて、該要求を満足するものは、見出さ
れておらず、EVO)1層をバリヤ一層とする優れたバ
リヤー性と輸送振動に耐える屈曲疲労強度をもったフレ
キシブル積層包装材の開発は、重要課題の一つであった
However, in fields where bending fatigue resistance is particularly required, there have been no examples of EVOH resin being satisfactorily used as a barrier in laminated packaging materials. In particular, as mentioned above, EVO is used in the bag-in-box inner container, which has gas permeability such as oxygen, which is strongly recommended to withstand bending fatigue due to transportation vibration.
A flexible laminated packaging material that uses H resin and satisfies these requirements has not been found, and has excellent barrier properties with one barrier layer and bending fatigue strength that can withstand transportation vibration. The development of was one of the important issues.

C0本発明の目的、構成および作用効果本発明者らはE
VOI(フィルムは、前記優れた緒特性をもっている反
面、ポリエチレン、ポリプロピレン、ナイロン、熱可塑
性ポリエステルなどの熱可塑性フィルムに比べ、耐屈曲
疲労性に著しく劣るという大きな欠点を有するのみなら
ず、前記屈曲疲労に強い樹脂層と積層し、中間層として
EVOH樹脂層を用いた複層フレキシブル包装材におい
て予想外にもEVOHの剛性等の物理的特性とも関連が
あるものとみられるが、該包装材の耐屈曲疲労性は前記
屈曲疲労に強い熱可Vt性樹脂が単体で示す耐屈曲疲労
性より顕著に低下し、より少い屈曲疲労で積層包装材に
ビンホー〜を生じるようになること、さらに驚くべきこ
とに該ピンホールの発生に至るまでは、該E VOI(
層が単独で耐え得る屈曲疲労をこえてもなお屈曲疲労に
よるクツツク、ピンホール等が該EVO)1層に発生し
ないことに起因するとみられるが、バリヤー性の低下が
殆んど認められない点で、前記塩化ビニリデン樹脂等を
バリヤ一層として中間層に用いた従来の積層包装材の挙
動と著しく異っていることを見出し、該観点からEVO
H層をバリヤ一層とする耐屈曲疲労に優れたフレキシブ
ルな気体遮断性積層包装材に関し鋭意検討を進めて本発
明を完成するに至った。
C0 Objectives, structure, and effects of the present invention The inventors have E
Although VOI (film) has the above-mentioned excellent properties, it not only has the major drawback of being significantly inferior in bending fatigue resistance compared to thermoplastic films such as polyethylene, polypropylene, nylon, and thermoplastic polyester. In multi-layer flexible packaging materials that are laminated with resin layers that are resistant to bending, and that use an EVOH resin layer as an intermediate layer, unexpectedly it seems to be related to physical properties such as the stiffness of EVOH, but the bending resistance of the packaging material It is even more surprising that the fatigue resistance is significantly lower than the bending fatigue resistance exhibited by the thermoplastic Vt resin that is strong against bending fatigue, and that the bending fatigue is caused to occur in the laminated packaging material with less bending fatigue. Until the occurrence of the pinhole, the E VOI (
This seems to be due to the fact that nicks, pinholes, etc. due to bending fatigue do not occur in the EVO layer even after the bending fatigue that the layer alone can withstand is exceeded, but there is almost no decrease in barrier properties. We found that the behavior was significantly different from that of conventional laminated packaging materials that used vinylidene chloride resin as a barrier layer and as an intermediate layer, and from this point of view, we developed EVO.
The present invention has been completed through extensive research into a flexible gas-barrier laminated packaging material with excellent bending fatigue resistance that uses the H layer as a barrier layer.

すなわち、本発明はEVULIの薄膜を中間層とし、該
中間層の両側に表面層を有し、該各層が接着性樹脂を介
して配されてなるフレキシブル積層包装材において、該
接着性樹脂が実質的に直鎖状低密度ポリエチレンにエチ
レン性不飽和カルボン酸またはその無水物を化学的に結
合させて得られる直鎖状低密度ポリエチレンであること
を特徴とする耐ArJ曲疲労に優れたフギシプルな気体
遮断性積層包装材を提供せんとするものである。
That is, the present invention provides a flexible laminated packaging material in which a thin film of EVULI is used as an intermediate layer, surface layers are provided on both sides of the intermediate layer, and each layer is disposed via an adhesive resin, in which the adhesive resin is substantially Fugisipuru is a linear low-density polyethylene that is obtained by chemically bonding ethylenically unsaturated carboxylic acid or its anhydride to linear low-density polyethylene, and has excellent resistance to ArJ bending fatigue. It is an object of the present invention to provide a gas-barrier laminated packaging material.

耐屈曲疲労性は、所謂ゲルポフレックステスターを用い
て行う評価テストにおけるガスバリヤ−牲低下の屈曲回
数依存性、ピンホール発生に至るまでの屈曲回数等のデ
ータから種4の素材、または種々の素材からなる積層包
装材の耐屈曲疲労性の優劣を判断することができる。本
発明者らは、各梯熱可塑性樹脂の単体フィルム、各種樹
脂からなる多層構成のラミネートフィルムについて就中
該ラミネートフィルムの各層間に用いられる接着性樹脂
が異なる該フィルムについてゲルポフレックステスター
を用い、屈曲回数とピンホール発生数との関係、ピンホ
ール発生に至る屈曲回数、さらに多層構成のラミネート
物についてはピンホール発生に至るまでの過程における
屈曲回数とバリヤー性(たとえば酸素透過量)との関係
を多岐に亘って測定した結果いくつかの事実を見出した
The bending fatigue resistance is determined based on data such as the dependence of the gas barrier reduction on the number of bends and the number of bends until the formation of pinholes in an evaluation test conducted using a so-called gelpo flex tester. It is possible to judge the superiority or inferiority of the bending fatigue resistance of laminated packaging materials made of The present inventors used a Gelpoflex tester to test single films of thermoplastic resins and laminate films with multilayer structures made of various resins, particularly films with different adhesive resins used between each layer of the laminate film. , the relationship between the number of bends and the number of pinholes, the number of bends that lead to the formation of pinholes, and the relationship between the number of bends and barrier properties (for example, oxygen permeation rate) in the process leading to the formation of pinholes for multilayer laminates. As a result of measuring a wide range of relationships, we discovered several facts.

すなわち(1) EVOH樹脂フィルムはいづれも耐屈
曲疲労性は極めて不良であり、実用に耐える輸送振動強
度水準に面かに及ばないこと、(2)従来一般的に使用
されている高圧法低密度ポリエチレン、低圧法高密度ポ
リエチレン、ナイロン、ポリプロピレン、熱可塑性ポリ
エステルなどの各樹脂のフィルムは該EVO)I樹脂フ
ィルムに比し、耐屈曲疲労性は顕著に優れているけれど
も、該樹脂フィルムをEVOHを中間層として積層した
ラミネートフィルムの耐屈曲疲労性は詳細は明かでない
が、EVOH層が存在することに起因するとみられる顕
著な低下、つまり該樹脂単体フィルムの優れた耐屈曲疲
方性に比し顕著な低下がみられること、(3)更に驚く
べきことにEVOI=I層を中間層とした該積層物にピ
ンホール発生を見るに至るまでは、ガスバリヤ−性の低
下の殆んどないこと、(4)就中EVOH層を中間層に
、両表面層を接着性樹脂を介して設けるが、特定の直鎖
状低質度ポリエチレン変性物を該樹脂として用いて積層
された該積層物は、耐屈曲疲労性の改善が著しいことを
認めた。該現象についての詳細は末だ明かではないが、
該改善の効果は父性前の該直鎖状低密度ポリエチレンの
共重合成分であるα−オレフィンの炭素数、示差走査型
熱量計の熱分析による融解熱、ヤング率および該直鎖状
低密度ポリエチレンの父性成分に深くかかわっており、
これらが選定された特定の領域にあり、かつ特定の父性
成分で変性された該ポリエチレンの変性物を該接着性樹
脂として用いたときに特に顕著である。
In other words, (1) all EVOH resin films have extremely poor bending fatigue resistance, and are far below the transport vibration strength level that can withstand practical use, and (2) the high-pressure method low density that has been commonly used in the past Films made of various resins such as polyethylene, low-pressure high-density polyethylene, nylon, polypropylene, and thermoplastic polyester have significantly superior bending fatigue resistance compared to the EVO) I resin film, but Although the details of the flexural fatigue resistance of the laminate film laminated as an intermediate layer are not clear, there is a significant decrease that appears to be due to the presence of the EVOH layer, that is, compared to the excellent flexural fatigue resistance of the single resin film. (3) More surprisingly, there was almost no decrease in gas barrier properties until pinholes were observed in the laminate with the EVOI=I layer as an intermediate layer. , (4) In particular, the EVOH layer is provided as an intermediate layer and both surface layers are provided via an adhesive resin, but the laminate is laminated using a specific modified linear low-quality polyethylene as the resin, It was observed that the bending fatigue resistance was significantly improved. The details of this phenomenon are not yet clear, but
The effect of this improvement is the carbon number of α-olefin, which is a copolymerization component of the linear low-density polyethylene before paternity, the heat of fusion, Young's modulus, and Young's modulus determined by thermal analysis using a differential scanning calorimeter. is deeply involved in the paternal component of
This is particularly noticeable when these are present in a selected specific region and a modified polyethylene modified with a specific paternal component is used as the adhesive resin.

01本 明のよシ詳細な説明 本発明に使用される直鎖状低密度ポリエチレンとは実質
的に長鎖分岐を持たない直鎖状の低密度ポリエチレンで
ある。一般には長鎖分岐数の定量的な尺度0−4η)b
/[η〕l(〔η)bは分岐ポリエチレンの極限粘度、
〔η〕eは分岐ポリエチレンと同じ分子量を持つ直鎖状
ポリエチレンの極限粘度)がほぼ1 (一般的には0.
9〜1の範囲にあり]に近い場合が多い)であシ、密度
が0.910〜0.945のものである。(なお従来の
通常の高圧法低密度ポリエチレンのO値はo、i〜0.
6である。)直鎖状低密度ポリエチレンの製造法は特に
制限されない。代表的な製造方法を例示すれば7〜45
 Kg / am’の圧力(高圧法低密度ポリエチレン
の場合は通常2000〜3oooKq/cm’)、75
〜100℃の温度(高圧法低密度ポリエチレンの場合は
120〜250℃)で、クロム系触媒またはチーグラー
触媒を用いて炭素数3以上、好ましくは4以上、さらに
好ましくは5〜10のα−オレフィン、たとえばプロピ
レン、フテンー1、メチルペンテン−1、ヘキセン−1
、オクテン−1等のα−オレフィンを共重合成分トして
、エチレンの共重合を行う方法がある。重合方法として
は溶液洗液相法、スラリー洗液相法、流動床気相法、攪
拌法気相法等が用いられる。
01 Detailed Description of the Invention The linear low-density polyethylene used in the present invention is a linear low-density polyethylene having substantially no long chain branches. In general, a quantitative measure of the number of long chain branches 0-4η)b
/[η]l([η)b is the limiting viscosity of branched polyethylene,
[η]e is the intrinsic viscosity of linear polyethylene with the same molecular weight as branched polyethylene) is approximately 1 (generally 0.
(often in the range of 9 to 1) and has a density of 0.910 to 0.945. (The O value of conventional high-pressure low-density polyethylene is o, i~0.
It is 6. ) The method for producing linear low density polyethylene is not particularly limited. Examples of typical manufacturing methods are 7 to 45.
Kg/am' pressure (usually 2000-3oooKq/cm' for high pressure low density polyethylene), 75
α-olefin having 3 or more carbon atoms, preferably 4 or more carbon atoms, and more preferably 5 to 10 carbon atoms, using a chromium-based catalyst or a Ziegler catalyst at a temperature of ~100°C (120 to 250°C in the case of high-pressure low density polyethylene) , such as propylene, phthene-1, methylpentene-1, hexene-1
There is a method of copolymerizing ethylene by copolymerizing α-olefins such as , octene-1, etc. As the polymerization method, a solution washing liquid phase method, a slurry washing liquid phase method, a fluidized bed vapor phase method, an agitation vapor phase method, etc. are used.

該直鎖状低密度ポリエチレンをさらにエチレン性不飽和
カルボン酸またはその無水物で変性するに当っては該直
鎖状低密度ポリエチレンを、たとえばラジカル開始剤の
存在下に該カルボン酸またはその無水物をグラフトさせ
るなどのそれ自体公知の方法を採用することができる。
When the linear low density polyethylene is further modified with an ethylenically unsaturated carboxylic acid or its anhydride, the linear low density polyethylene is modified with the carboxylic acid or its anhydride in the presence of a radical initiator, for example. Methods known per se can be employed, such as grafting.

本発明に用いるエチレン性不飽和カルボン酸またはその
無水物としては、アクリル酸、メタアクリル酸などの一
塩基性不飽和脂肪酸あるいはマレイン酸、フマル酸、イ
タコン酸などの二塩基性不飽和脂肪酸であり、さらに二
塩基性不飽和脂肪酸の無水物すガわち無水マレイン酸、
無水イタコン酸などである。
Ethylenically unsaturated carboxylic acids or their anhydrides used in the present invention include monobasic unsaturated fatty acids such as acrylic acid and methacrylic acid, or dibasic unsaturated fatty acids such as maleic acid, fumaric acid, and itaconic acid. , and anhydride of dibasic unsaturated fatty acid, maleic anhydride,
Such as itaconic anhydride.

就中、該積層包装材の両表面層と中間〜でめるEVO)
J層との接着性の観点から二塩基性不飽和脂肪酸の無水
物が好ましく、無水マレイン酸、無水イタコン酸がよシ
好ましく、無水マレイン酸が最も好適である。
In particular, both surface layers and intermediate to EVO) of the laminated packaging material
From the viewpoint of adhesion to the J layer, dibasic unsaturated fatty acid anhydrides are preferred, maleic anhydride and itaconic anhydride are more preferred, and maleic anhydride is most preferred.

本発明で使用されるエチレン性不飽和脂肪酸または、そ
の無水物を化学的に結合した変性直鎖状低@度ポリエチ
レンを得るには、それ自体公知の種々の方法を採用する
ことができる。その一つに適当な溶媒中に溶解または懸
濁している該ポリエチレンにグラフトモノマーであるエ
チレン性不飽和脂肪酸またはその無水物および触媒、た
とえば過酸化物のようなラジカル開始剤を添加する溶液
グラフト市合法(たとえば特開昭50−4144号公報
、同50−4189号公報など)、また他の方法として
液状媒体の不存在下において、たとえば粉末状の該ポリ
エチレンとグラフトモノマーであるエチレン性不飽和脂
肪゛酸またはその無水物、たとえば無水マレイン酸を接
触させ、触媒、たとえば過酸化物のようなラジカル開始
剤を用いて該ポリエチレンの融解温度より高い温度でグ
ラフト共重合させる溶融グラフト重合法(たとえば特公
昭50−74493号公報など)がある。
To obtain the modified linear low-degree polyethylene chemically bonded with ethylenically unsaturated fatty acids or their anhydrides used in the present invention, various methods known per se can be employed. One of them is a solution grafting process in which a grafting monomer, an ethylenically unsaturated fatty acid or its anhydride, and a catalyst, such as a radical initiator such as a peroxide, are added to the polyethylene dissolved or suspended in a suitable solvent. (e.g., JP-A-50-4144, JP-A-50-4189, etc.), and other methods in which, for example, powdered polyethylene and ethylenically unsaturated fat as a graft monomer are used in the absence of a liquid medium. A melt graft polymerization method (e.g., special Publication No. 50-74493, etc.).

直鎖状低密度ポリエチレンに対するエチレン性不飽和脂
肪酸またはその無水物の化学結合量は、0.01〜15
重量%、より好ましくは、0.05〜10重量%さらに
好ましくは、0.1〜5重景%が好適である。結合量が
0.01重量%未満であると接着性が悪くなり所望の効
果が得られない。壕だ15重量%を越えると樹脂が着色
したり、ゲル化が進み異物発生の原因となるので好まし
くない。グラフト重合M[とじてはジクミルパーオキシ
ド、ジー1−ブチルパーオキシド、t−ブチルパーオキ
シベンゾエート、ベンゾイルパーオキシドなどの通常の
パーオキシド触媒、アゾビスイソブチロニトリルなどの
アゾ化合物が挙げられる。グラフト重合に当りパーオキ
シド等のグラフト重合触媒は、使用せず熱を与えるだけ
でよい場合もあるがゲル分率が高いものしか得られない
ので好ましくない。
The chemical bond amount of ethylenically unsaturated fatty acid or its anhydride to linear low density polyethylene is 0.01 to 15
Weight %, more preferably 0.05 to 10 weight %, still more preferably 0.1 to 5 weight % is suitable. If the amount of bonding is less than 0.01% by weight, the adhesiveness will be poor and the desired effect will not be obtained. If the amount exceeds 15% by weight, the resin may be colored or gelatinized, leading to the generation of foreign matter, which is not preferable. Examples of graft polymerization M include common peroxide catalysts such as dicumyl peroxide, di-1-butyl peroxide, t-butyl peroxybenzoate, and benzoyl peroxide, and azo compounds such as azobisisobutyronitrile. In graft polymerization, there are cases where it is sufficient to simply apply heat without using a graft polymerization catalyst such as peroxide, but this is not preferable because only a product with a high gel fraction can be obtained.

本発明の効果と該α−オレフィンの炭素数と該直鎖状低
密度ポリエチレンの示差走査型熱量計の熱分析による融
解熱、さらにヤング率とに深くかかわっていることは前
述の通シであるが、より具体的に述べれば次の通シであ
る。直鎖状抵密度ポリエチレンは本発明に好適に用いら
れるが°、該融解熱が25 Cal!/ f以下、好ま
しくは25〜5 Qal/fであるか、または20℃に
おけるヤング率が22Kq/−以下、好ましくは22〜
3に9/14、さらに好ましくけ22〜5に9/−であ
る該ポリエチレンについて本発明の効果がよシ顕著であ
シ、特に両者が前記領域にある場合に最も顕著である。
As mentioned above, the effect of the present invention is deeply related to the number of carbon atoms in the α-olefin, the heat of fusion of the linear low-density polyethylene determined by thermal analysis using a differential scanning calorimeter, and Young's modulus. However, to be more specific, it is as follows. Linear low density polyethylene is preferably used in the present invention, but the heat of fusion is 25 Cal! / f or less, preferably 25-5 Qal/f, or Young's modulus at 20°C is 22 Kq/- or less, preferably 22-5
The effect of the present invention is most remarkable for the polyethylene having a ratio of 3 to 9/14, more preferably 22 to 5 to 9/-, particularly when both are in the above range.

該融解熱、ヤング率が前記領域にあるものは重合法、重
合条件によって多少異るが、概していえは共重合成分で
ある該α−オレフィンの含有量が約2モル%以上、好ま
しくは約2〜7モル%の領域で得られる場合が多い。共
重合成分がブテン−1である直鎖状低密度ポリエチレン
については該融解熱が15cat/ 9以下であるか、
または20℃におけるヤング率が12Kq/−以下であ
る場合に本発明の効果はより顕著であり、特に該両者が
前記領域にある場合に最も顕著に該効果を享受すること
ができる。
The heat of fusion and Young's modulus in the above range vary somewhat depending on the polymerization method and polymerization conditions, but generally speaking, the content of the α-olefin, which is a copolymer component, is about 2 mol% or more, preferably about 2 mol%. It is often obtained in the range of ~7 mol%. For linear low density polyethylene whose copolymerization component is butene-1, the heat of fusion is 15 cat/9 or less,
Alternatively, the effect of the present invention is more remarkable when the Young's modulus at 20° C. is 12 Kq/− or less, and especially when both of them are in the above range, the effect can be most significantly enjoyed.

該融解熱、ヤング率が前記領域にある該低密度ポリエチ
レンは、概していえばブテン−1の含有量が約4モル%
以上の領域で得られる場合が多い。
The low density polyethylene whose heat of fusion and Young's modulus are in the above range generally has a butene-1 content of about 4 mol%.
It is often obtained in the above areas.

該含有量が多くなり過ぎると、該ポリエチレンのもつ他
の物理的特性が不満足なものとなり、好ましくなく、該
含有量は高々数モル%、たとえば7七ル%であることが
望ましい。また本発明の効果は前述の如く該融解熱また
は/およびヤング率が前記特定の領域にある直鎖状低密
度ポリエチレンについて享受し得るが、特に炭素数5以
上、たとえば5〜10のα−オレフィンを共重合成分と
する該ポリエチレンについてよりw4著に該効果を享受
することができる。この場合前述と同様の理由カラ、該
6−オレフィンの含有量は2〜7モ/L/%、より具体
的には2〜6モル%が′好ましく、また該融解熱は前記
の如く該α−オレフィン含有量等と関連しているが、就
中該融解熱は25〜5 CBl!/fであることが好ま
しく、またヤング率は22KQ/−以下、好ましくは2
2〜3Kq/mtA、さらに好ましくは22〜5 Kg
/ldである。該オレフィンの中でも本発明の効果がよ
り顕著であり、工業的にも容易に得られる4−メチ)v
−1−ペンテンを共重合成分とする直鎖状低密度ポリエ
チレンは最も好適なものの一つである。従来の高圧法低
密度ポリエチレンの場合は示差走査型熱量計の熱分析に
よる融解熱または/およびヤング率が前記領域にあって
も本発明の効果を享受することはできない。
If the content is too large, other physical properties of the polyethylene become unsatisfactory, which is not preferable, and the content is desirably at most several mol%, for example 77 mol%. Furthermore, as described above, the effects of the present invention can be enjoyed with linear low-density polyethylene whose heat of fusion and/or Young's modulus are in the specific range, but particularly with α-olefins having 5 or more carbon atoms, for example, 5 to 10 carbon atoms. The effect of w4 can be greatly enjoyed by the polyethylene containing as a copolymerization component. In this case, for the same reasons as mentioned above, the content of the 6-olefin is preferably 2 to 7 mol/L/%, more specifically 2 to 6 mol%, and the heat of fusion is - It is related to the olefin content, etc., but in particular, the heat of fusion is 25 to 5 CBl! /f, and the Young's modulus is 22KQ/- or less, preferably 2
2-3 Kq/mtA, more preferably 22-5 Kg
/ld. Among these olefins, the effect of the present invention is more remarkable, and 4-methy)v is easily obtained industrially.
Linear low density polyethylene containing -1-pentene as a copolymerization component is one of the most preferred. In the case of conventional high-pressure low-density polyethylene, the effects of the present invention cannot be enjoyed even if the heat of fusion and/or Young's modulus as determined by thermal analysis using a differential scanning calorimeter are in the above range.

本発明の積層包装材は、該ゲルポフレックステスターに
よる耐屈曲疲労テスト時にデラミネーションを起すもの
であってはならないが本発明の接着性樹脂は接着性Kl
れたE Won層と、ポリエチレン、ポリプロピレン、
ナイロン−6などのポリアミド、エチレン−酢酸ビニル
共重合体などの熱可7g4性樹脂層との層間接着力はは
けしい屈曲疲労にも耐え得て全くデラミネーションを起
さない。
The laminated packaging material of the present invention must not cause delamination during the bending fatigue test using the Gelpoflex tester, but the adhesive resin of the present invention has adhesive Kl
E Won layer, polyethylene, polypropylene,
The interlayer adhesion between the layer and the layer of polyamide such as nylon-6 or thermoplastic 7g4 resin such as ethylene-vinyl acetate copolymer can withstand severe bending fatigue without causing any delamination.

接着性樹脂層の厚さは、本発明の積層包装材の耐屈曲疲
労性と関係しており、概して言えば該層厚の増加ととも
に耐屈曲疲労性は低下する。本発明の効果をよシ顕著に
発現させるためには】5μ以下が好ましく、i o I
t以下がより好ましい。また接着性樹脂層が余りにも薄
きに過ぎると該層を切れ目なく均一な厚さで設ける技術
上の困難さが増加するので実用的には該層厚は】μ以上
、より好ましくは2μ以上が好適である。
The thickness of the adhesive resin layer is related to the bending fatigue resistance of the laminated packaging material of the present invention, and generally speaking, as the layer thickness increases, the bending fatigue resistance decreases. In order to bring out the effects of the present invention more markedly, it is preferably 5μ or less, i o I
t or less is more preferable. Furthermore, if the adhesive resin layer is too thin, it will be technically difficult to provide the layer with a uniform thickness without any breaks, so in practical terms, the layer thickness should be 】μ or more, more preferably 2μ or more. suitable.

さらに実質的に該接着性樹脂が該変性直鎖状低密度ポリ
エチレンであるとは、該変性直鎖状低密度ポリエチレン
を未変性や該直鎖状低密度ポリエチレンとブレンド使用
する態様をも本発明は包含し、該変性ポリエチレンがエ
チレン性不飽和カルボン酸またはその無水物を0.01
〜15重量%化学的に結合した該ポリエチレンであり、
しかもブレンド物の該カルボン酸またはその無水物成分
の含有量が0.01重量%以上15重量%未満、よシ好
ましくけ0.05〜10重量%、さらに好ましく7o、
x〜5重景%であれば本発明の効果を享受できることを
意味するものである。この場合該変性ポリエチレンの変
性前の該直鎖状低密度ポリエチレンとブレンドする直鎖
状低密度ポリエチレンは同一であっても、また異なるも
のであってもよく、さらに後者は2種以上の異なる該直
鎖状低密度ポリエチレンの混合物であってもよい。
Furthermore, the fact that the adhesive resin is substantially the modified linear low-density polyethylene means that the present invention also includes embodiments in which the modified linear low-density polyethylene is blended with unmodified or linear low-density polyethylene. includes, and the modified polyethylene contains 0.01 ethylenically unsaturated carboxylic acid or its anhydride.
~15% by weight of the polyethylene chemically bonded;
Moreover, the content of the carboxylic acid or its anhydride component in the blend is 0.01% by weight or more and less than 15% by weight, preferably 0.05 to 10% by weight, more preferably 7o,
This means that the effects of the present invention can be enjoyed if the ratio is x to 5%. In this case, the linear low-density polyethylene blended with the linear low-density polyethylene before modification of the modified polyethylene may be the same or different, and the latter may contain two or more different types of linear low-density polyethylene. It may also be a mixture of linear low density polyethylenes.

本発明の該変性直鎖状低密度ポリエチレンは、該変性成
分含有量が前記領域にある如く選定され害 ) たものである限りにおいて異なる2以上の該直鎖状
低密度ポリエチレンの変性物の混合物であっても本発明
の効果を享受することができる。
The modified linear low-density polyethylene of the present invention is a mixture of two or more modified linear low-density polyethylenes that differ insofar as the content of the modifying component is selected to be within the above range. Even in this case, the effects of the present invention can be enjoyed.

本発明に用いられるEVOH樹脂はエチレン含有量25
〜60モル%、けん化度95%以上のものが好適に用い
られる。エチレン含有量が25モル%以下では成形性が
低下するのみならず、該EV014の剛性が増加するこ
とと関連があるとみられるが、本発明の効果が減殺され
、またエチレン含有量が60モル%を越えると剛性は減
少するものの該樹脂の最も特徴とする酸素等のガスバリ
ヤ−性が低下して不満足なものとなる。該EVOLT樹
脂は25〜60モル%の領域内のエチレン含有量をもつ
2種またはそれ以上のエチレン含有量の異なる該樹脂の
ブレンド物であっても相溶性を示す範囲内のものでろれ
は本発明の効果を享受することができる。該樹脂のけん
化度は95%以上が好適でアリ。
The EVOH resin used in the present invention has an ethylene content of 25
~60 mol % and a saponification degree of 95% or more are preferably used. When the ethylene content is 25 mol% or less, not only the moldability decreases but also the stiffness of the EV014 increases, but the effect of the present invention is diminished, and when the ethylene content is 60 mol% If it exceeds this value, although the rigidity decreases, the gas barrier property against oxygen and the like, which is the most characteristic feature of the resin, decreases and becomes unsatisfactory. The EVOLT resin has an ethylene content in the range of 25 to 60 mol%, and even if it is a blend of two or more resins with different ethylene contents, it is within the range that shows compatibility. It is possible to enjoy the effects of the invention. The degree of saponification of the resin is preferably 95% or more.

95%未満では該バリヤー性が低下するので好ましくな
い。さらにホウ酸などのホウ素化合物で処理したEVO
H、ケイ素含有オレフィン性不飽和単量体など第3成分
をエチレン及び酢酸ビニルとともに共重きし、けん化し
て得られる変性EVOHについても溶融成形が可能でバ
イヤー性を害しない範囲の変性度のものであれば本発明
の効果を享受することができる。
If it is less than 95%, the barrier properties will deteriorate, which is not preferable. Furthermore, EVO treated with boron compounds such as boric acid
Modified EVOH obtained by copolymerizing a third component such as H, a silicon-containing olefinic unsaturated monomer with ethylene and vinyl acetate, and saponifying it can also be melt molded and has a degree of modification within a range that does not impair Bayer property. If so, the effects of the present invention can be enjoyed.

前述の如(EVOI(9層の場合、耐屈曲疲労性は。As mentioned above (EVOI (in the case of 9 layers, the bending fatigue resistance is.

極めて不良であり、ただ厚みの減少に伴って若干の改善
傾向を示すが、これは実用的に要求される輸送振動強度
を満たすに足る耐屈曲疲労性の程度に而かに及ばない領
域における現象に過ぎない。しかるに本発明の積層包装
材の構成においては屈曲疲労によシヒンホールを発生す
るに至るゲルレボフレックステスターの屈曲回数への、
中間層として存在するEVOHの層厚依存性が極めて顕
著に発現するという特異性が認められる。該EVOH層
の厚さが20μを越えると耐屈曲疲労性が低下し、本発
明の効果が減殺されるので好ましくない。本発明の効果
を充分に享受するためにはEvou層の厚さは20μ以
下が好適であり、15μ以下がより好ましい。耐屈曲疲
労性のみの観点からは、特に10μ以下が最も好適であ
る。しかし酸素等のガスバリヤ−性に関してより高度な
要求がある場合、20/I以下の該中間層の厚さでは該
要求を満足できない場合がしばしば生じる。耐屈曲疲労
性及び該バリヤー性に関し、より高度な要求を満足させ
る本発明の最も好適な実施態様は該J5VOH層の厚さ
を20μ以下、好ましくは15μ以下、より好ましくは
10μ以下に選定して、該バリヤー性についての高度の
要求の程度に応じて該EVOH層を2またはそれ以上の
複数設ける構成である。耐屈曲疲労性の観点からはEV
OH層の厚さはできる限シ小さい力が好ましいが成形加
工の技術の面からの困難性はそれだけ増加する。実用的
には2μ以上が好ましく、5μ以上が該観点から比較的
困難性も少〈よシ好適である。2μ以下では、しばしば
ピンホールの発生がEVOH層に生じ、良品の歩留りが
低下する。複数の該バリヤ一層を設けるに当っては、該
層のすべてにエチレン含有量の同じEVOHを用いても
よく、また容器等の内部の相対湿度が該容器の外部の相
対湿度より大きい場合、たとえば被包装物がワインなど
の水性混合物である場合などEVOHのバリヤー性の湿
度依存性とも関連して該複数のバリヤ一層の各層の位置
関係は、よりエチレン含有量の小さいEVOH[を外側
に配し、よりエチレン含有量の大きい上VOR層を内側
に配するのがよシ好適であり、該相対湿度の関係が逆の
場合には該EVOH層の位置関係は逆に配するのが好ま
しいなど、それぞれの目的に応じて最適の構成を選定す
ることができる。この場合該構成を採った効果を得るた
めには該バリヤ一層の少くとも2Mが、5モル%以上エ
チレン含W景を異にするEVOI:1で構成されること
が好ましい。
Although it shows a slight improvement trend as the thickness decreases, this is a phenomenon in the area where the bending fatigue resistance is far below the level required to meet the practically required transport vibration strength. It's nothing more than that. However, in the structure of the laminated packaging material of the present invention, the number of times the gellevoflex tester is bent is
A peculiarity is recognized in that the layer thickness dependence of EVOH present as an intermediate layer is extremely pronounced. If the thickness of the EVOH layer exceeds 20 μm, the bending fatigue resistance decreases and the effects of the present invention are diminished, which is not preferable. In order to fully enjoy the effects of the present invention, the thickness of the Evou layer is preferably 20 μm or less, more preferably 15 μm or less. From the viewpoint of bending fatigue resistance alone, a thickness of 10 μm or less is most suitable. However, when there are higher requirements regarding gas barrier properties such as oxygen, it often happens that the thickness of the intermediate layer of 20/I or less cannot satisfy the requirements. The most preferred embodiment of the present invention, which satisfies higher requirements regarding bending fatigue resistance and barrier properties, is to select the thickness of the J5VOH layer to be 20μ or less, preferably 15μ or less, more preferably 10μ or less. The structure is such that two or more EVOH layers are provided depending on the degree of high barrier properties required. From the viewpoint of bending fatigue resistance, EV
Although it is preferable that the thickness of the OH layer be as small as possible, the difficulty in terms of molding technology increases accordingly. Practically speaking, a value of 2μ or more is preferable, and a value of 5μ or more is relatively less difficult from this point of view and is therefore more suitable. If it is less than 2μ, pinholes often occur in the EVOH layer and the yield of non-defective products decreases. When providing a plurality of such barrier layers, EVOH with the same ethylene content may be used for all of the layers, and if the relative humidity inside the container is greater than the relative humidity outside the container, e.g. When the packaged item is an aqueous mixture such as wine, etc., the positional relationship of each layer of the plurality of barrier layers is such that EVOH [with a lower ethylene content] is placed on the outside in relation to the humidity dependence of the barrier properties of EVOH. , it is preferable to arrange the upper VOR layer with a higher ethylene content on the inside, and when the relative humidity relationship is reversed, it is preferable to arrange the EVOH layer in the opposite positional relationship, etc. The optimal configuration can be selected according to each purpose. In this case, in order to obtain the effect of adopting this structure, it is preferable that at least 2M of the barrier layer be composed of EVOI:1 having a different W content of 5 mol % or more.

本発明に係る積層包装材は、たとえばバッグインボック
スの内容器の構成材として用いる場合の如く熱シールし
て各種フレキシブル包装材として用いることを目的とす
るものであり、該表面層の少くとも片方が熱シール可能
な熱町偵性樹脂である必要があるが、該表面層の他の一
つけ熱シール不能な樹脂層であってもよい。該表面層を
構成する樹脂としては、高圧法低密度ポリエチレン、低
圧法高密度ポリエチレン、直鎖状低密度ポリエチレン、
ポリプロピレン、各拙ナイロンの如きポリアミド樹脂ポ
リエステル樹脂、エチレン−酢酸ビニル共重合樹脂など
がある。
The laminated packaging material according to the present invention is intended to be heat-sealed and used as various flexible packaging materials, such as when used as a component of the inner container of a bag-in-box, and at least one of the surface layers Although the surface layer needs to be a heat-sealable thermostatic resin, it may be another resin layer that cannot be heat-sealed. The resin constituting the surface layer includes high-pressure low-density polyethylene, low-pressure high-density polyethylene, linear low-density polyethylene,
Examples include polypropylene, polyamide resins such as nylon, polyester resins, and ethylene-vinyl acetate copolymer resins.

これらの該表面層を構成する樹脂の中°で智直鎖状低密
度ポリエチレン、エチレン−酢酸ビニル共重合体がより
好適に用いられる。直鎖状低密度ポリエチレンを該表面
層の少くとも片方に用いた場合、特に両表面層に用いた
ときには、該構成材の耐屈曲疲労性の改善がよシ顯著で
ある。就中、詳細は末だ明かでないが、該改善の効果は
、表面層に用いる該低密度ポリエチレンの共重合成分で
あるα−オレフィンの炭素数、示差走査型熱量計の熱分
析に基づく融解熱、20℃におけるヤング率等に深くか
かわっており、これらが選定された特定の領域にある前
述の直鎖状低密度ポリエチレンを採用したときにより一
層顕著である。
Among the resins constituting the surface layer, linear low-density polyethylene and ethylene-vinyl acetate copolymer are more preferably used. When linear low-density polyethylene is used in at least one of the surface layers, especially when it is used in both surface layers, the bending fatigue resistance of the constituent material is significantly improved. In particular, although the details are not clear, the improvement effects include the number of carbon atoms in the α-olefin, which is a copolymer component of the low-density polyethylene used in the surface layer, and the heat of fusion based on thermal analysis using a differential scanning calorimeter. , Young's modulus at 20° C., etc., and these are even more noticeable when the above-mentioned linear low-density polyethylene in a selected specific region is employed.

他のより好適な該表面層を構成する樹脂としては、エチ
レン−酢酸ビニル共重合体がある。就中、酢酸ビニル含
有量が少くとも7重量%である該共重合体は、°より顕
著に本発明の効果を享受することができる。該含有量が
あまりに多きに過ぎると該樹脂表面が粘着性を示すよう
になり好ましくなく、12友量%以下であることが好ま
しい。本発明の積層包装材からなる包装容器などへの充
填物が水性混合物または含水食品などの場合には、内外
両表面層の透湿速度とも関連して該共重合体を外表面層
に、前記直鎖状低密度ポリエチレンを内表面層に用いる
態様は、該積層包装材の好ましい構成の一つである。さ
らに該包装充填物の場合に、さらに優れた耐屈曲疲労性
が要求されるときには、該バリヤー性の要求を満たす限
度内において内外両表面層に前記ポリエチレンよシ透湿
度の大きい該共重合体を用い、内表面層厚さ、外表面層
厚さを前記透湿速度についての条件を満たすように選定
してnvouの定常湿分を好適な領域に保持するように
構成して好適に用いることができる。 EVOfi単体
フィルムの耐ピンホール性が極めて不良であるにも拘ら
ず、本発明の構成をもつ積層フィルムの耐ピンホール性
が顕著に向上した時点において、つま5 i;voki
単体フィルムの特性に鑑みて判断すれば、当然に中間層
であるEVOH層にクラックないしはピンホールが発生
し、該積層包装材のバリヤー性が低下することが予想さ
れる段階において該積層包装材のバリヤー性の低下が認
められない点は前記塩化ビニリデン等のバリヤー材を用
いた従来の積層包装材と異なり、極めて特異的である。
Another more suitable resin constituting the surface layer is ethylene-vinyl acetate copolymer. In particular, the copolymer having a vinyl acetate content of at least 7% by weight can enjoy the effects of the present invention more markedly. If the content is too large, the resin surface will become sticky, which is undesirable, and the content is preferably 12% or less. When the filling in a packaging container made of the laminated packaging material of the present invention is an aqueous mixture or a water-containing food, the copolymer is added to the outer surface layer in relation to the moisture permeation rate of both the inner and outer surface layers. The embodiment in which linear low-density polyethylene is used for the inner surface layer is one of the preferable configurations of the laminated packaging material. Furthermore, in the case of the packaging filling, when even better bending fatigue resistance is required, the copolymer having a higher moisture permeability than the polyethylene is added to both the inner and outer surface layers within the limit that satisfies the barrier properties. The thickness of the inner surface layer and the outer surface layer are selected so as to satisfy the above-mentioned conditions regarding the moisture permeation rate, and the constant moisture of the nvou is maintained in a suitable range. can. Although the pinhole resistance of the EVOfi single film was extremely poor, at the time when the pinhole resistance of the laminated film having the structure of the present invention was significantly improved,
Judging from the characteristics of the single film, it is natural that cracks or pinholes will occur in the intermediate EVOH layer, and the barrier properties of the laminated packaging material will deteriorate. Unlike conventional laminated packaging materials using barrier materials such as vinylidene chloride, the present invention is extremely unique in that no deterioration in barrier properties is observed.

本発明の積層包装材にあっては、該表面層の各層があ甘
りに薄すぎると、たとえば10μ以下に至ると、強度な
どの他の物理的特性が低下するので101t以上である
ことが好ましく、20μ以上であることがより好適であ
る。捷たあまりに厚さが増加しすぎると、本発明の効果
が減殺されるので、該表面層の各層は60μ以下で用い
ることがより好ましい。特にバッグインボックスの内容
器の構成材には、通常25〜60μの厚さ領域から内容
量に応じて選定し、好適に用いることができる。
In the laminated packaging material of the present invention, if each layer of the surface layer is too thin, for example, 10μ or less, other physical properties such as strength will deteriorate, so the thickness should not be less than 101t. Preferably, it is more preferably 20μ or more. If the thickness increases too much, the effect of the present invention will be diminished, so it is more preferable that each layer of the surface layer has a thickness of 60 μm or less. In particular, for the constituent material of the inner container of a bag-in-box, it can be suitably selected from a thickness range of 25 to 60 μm depending on the inner volume.

本発明に係る積層包装材は、共押出法、押出ラミネーシ
ョン法、などの公知の方法によシ得られ、本発明は、積
層方法を限定するものではない。またたとえば該積層包
装材を用いたバッグインボックスの内容器は該積層構成
のフィルムを公知の方法で得た後、ヒートシールし、口
部を装着するフィルムシール方式、製品の形状に合せて
あらかじめ成膜して得た該積M構成のシートより成形し
た後、口金を物理的に固定する真空成形方式、多層溶融
押出成形方式で本発明の素材の組合せからなる多層パリ
ソンを口金を挿入した金型ではさみ、圧縮空気で成形し
、この時のパリソンの熱と空気圧力で本体と口金を熱接
着するブロー成形方式など公知の方法で得ることができ
る。
The laminated packaging material according to the present invention can be obtained by a known method such as a coextrusion method or an extrusion lamination method, and the present invention does not limit the lamination method. In addition, for example, the inner container of a bag-in-box using the laminated packaging material can be produced using a film sealing method in which a film with the laminated structure is obtained by a known method, then heat-sealed and a mouth part is attached. A multilayer parison made of the combination of the materials of the present invention is formed by a vacuum forming method in which the cap is physically fixed after forming the sheet with the thickness M configuration obtained by film formation, or a multilayer melt extrusion molding method. It can be obtained by a known method such as a blow molding method in which the body is held in a mold and molded with compressed air, and the body and the cap are thermally bonded using the heat of the parison and the air pressure.

以下実施例により、本発明をさらに説明するが、本発明
はこれに限定されるものではない。
The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

//′ 1 /′ 、/ 一2/′ ノ/ / / 実施例1 エチレン含有量61モル%、けん7Jj99.4%のE
VOH樹脂からなる厚さ12μの中間層と、該中間層の
両側に厚さ各55μの4−メチル−1−ペンテンを共重
合成分とし、該共重合成分を5.2モル%含み、190
℃、2160g荷重の条件下Cζ査型熱量計Cコまる融
解熱が19CaVgの直鎖状低密度ポリエチレン(以下
LLDPEと記す)からなる表面層を有し、各層間齋ζ
厚さ5μの無水マレイン酸変性度(LLDPHに対する
無水マレイン酸の化学的結合重)07重瀘%の前記LL
IJPEの変性物からなる接着性樹脂層を介して配され
た積層フィルムを3基の押出後、3種5層用多層ダイヘ
ッドを用いて共押出法Iζまり得た1、得られた積層フ
ィルム(ζついて屈曲疲労テストを該積層フィルムにピ
ンホールの発生を認めるまで行うとともに、該ピンホー
ル発生に至るまでの各段階での酸素ガス透過量を測定し
tこ。
//' 1 /' , / 12/' ノ/ / / Example 1 E with 61 mol% ethylene content and 99.4% 7Jj
An intermediate layer made of VOH resin with a thickness of 12μ, and 4-methyl-1-pentene with a thickness of 55μ on each side of the intermediate layer as a copolymerization component, containing 5.2% by mole of the copolymerization component, 190
℃, under a load of 2160 g, the surface layer is made of linear low density polyethylene (LLDPE) with a heat of fusion of 19 CaVg, and the interlayer
The above LL with a thickness of 5μ and a degree of maleic anhydride modification (chemical bonding weight of maleic anhydride to LLDPH) of 07%
After extruding three laminated films arranged through adhesive resin layers made of a modified product of IJPE, coextrusion method Iζ was carried out using a multilayer die head for three types and five layers. A bending fatigue test was performed on the laminated film until the occurrence of pinholes was observed, and the amount of oxygen gas permeation was measured at each stage up to the occurrence of the pinholes.

屈曲疲労テストは、ゲルボフレソクステスター(iM学
工業f1m製)を用い、12inX8irl)試料片を
直径3ylnの円筒状となし、両端を把持し、初期把持
間隔7in、最大屈曲時の把持間隔11n、ストローク
の最初の5−2−1nで、44000角度のひねりを加
え、その後の22 +nは直線水平動である動作のくり
返し往復動を40回/分の速さで、20℃相対湿度65
%の条件下に行うものである。
For the bending fatigue test, a 12in x 8irl) sample piece was made into a cylindrical shape with a diameter of 3yln using a Gerbo Flexo tester (manufactured by iM Gakko f1m), gripped at both ends, and the initial gripping interval was 7in, and the gripping interval at maximum bending was 11n. , the first 5-2-1n of the stroke is a twist of 44,000 degrees, and the subsequent 22+n are linear horizontal motions. Repeated reciprocating motion at a speed of 40 times/min at 20°C relative humidity 65
% conditions.

酸素ガス透過量の測定は、Modern Contro
1社製OX −TI(AN 100 ヲ([用り、、2
0℃m対1i(R11と記す)65%および20°G8
0%IIHで測定した。各段階の屈曲疲労テスト後の試
料については12inX8inの平面となし、その中央
部で測定した。またヤング率はA13TM D−882
−67に準じて20℃、相対湿度65%で測定し1こ。
The amount of oxygen gas permeation can be measured using Modern Control
OX-TI manufactured by 1 company (AN 100 wo ([use, 2
0°C m vs. 1i (denoted as R11) 65% and 20°G8
Measured at 0% IIH. The samples after each stage of the bending fatigue test were made into a 12 inch x 8 inch plane, and measurements were taken at the center of the plane. Also, Young's modulus is A13TM D-882
-67, measured at 20℃ and relative humidity 65%.

測定結果を第1表に示す。ビンポール発生に至るまでの
屈曲疲労テスト過程にわいては、酸素透過量の灰化は殆
んどなかった。またピンホール発生は該屈曲疲労テスト
5ooo往復を経過するまで認められず、5050往復
経過後、ビンネールの有無を検査に付した時点でピンホ
ール1ケが既に発生しているのを認めtこ。また各層間
のデラミネーションは、全くhられなかった。なお該L
 L D P Hのフィルムを別に得て20℃において
ヤング率を測定しtこ結果1sh帖」であつtこ。
The measurement results are shown in Table 1. During the bending fatigue test process leading up to the occurrence of vinyl poles, there was almost no ashing of oxygen permeation. In addition, the occurrence of pinholes was not observed until 5050 cycles of the bending fatigue test had passed, and when the plastic nail was inspected for presence or absence of plastic nails, one pinhole had already occurred. Moreover, delamination between each layer was not improved at all. In addition, the L
A film of LDPH was obtained separately and its Young's modulus was measured at 20°C.The results are as follows.

第 1 表 実施例2 エチレン含有量45モル%、けん化度99.2%のP:
■OH樹脂を中間層とし、また該中間層の両側に配され
る表面層(LLDPE )の厚さを一方を40μ、他方
を30μとした以外は実施例1と同様に行った。該屈曲
疲労テスト5soo往復する才でピンホールは認められ
ず、5600往復経過後ピンホ一ル2ケ発生しているの
を認めた。酸素透過量の111i!I芝値を第2表に示
す。各層間のデラミネーションは認められなかつtこ。
Table 1 Example 2 P with ethylene content of 45 mol% and saponification degree of 99.2%:
(2) The same procedure as in Example 1 was carried out except that OH resin was used as the intermediate layer, and the thickness of the surface layers (LLDPE) disposed on both sides of the intermediate layer was 40 μm on one side and 30 μm on the other side. No pinholes were observed after 5 cycles of the bending fatigue test, and two pinholes were observed after 5,600 cycles. 111i of oxygen permeation! The I grass values are shown in Table 2. No delamination between layers was observed.

実施例3 D /Ad/ E /Ad/ F /I、d/ Gなる
構成の積層フィルムを5種7層用多層ダイヘットを有す
る共押出設備を用いて得た。各層はそれぞれ次に示めす
各樹脂及び層厚さからなる。
Example 3 A laminated film having the following configurations: D/Ad/E/Ad/F/I, d/G was obtained using coextrusion equipment having a multilayer die head for 5 types and 7 layers. Each layer consists of each resin and layer thickness shown below.

Ad:実施例1で用いたLLDPEの無水マレイン酸変
性度2.8重量%の変性LLDEからなる厚さ5μの接
着性樹脂層 DlG : 4−メチル−1−ペンテン41モル%を熱
15 caII/g□)厚さ58μノ’l、I、i) 
P E層E、F:エチレン含有量58モル%、けん化度
99.4%、厚さ6μのEVO)I1台実施例1に準じ
て屈曲疲労テストを行つtコ。該屈曲疲労デスト600
0往、復経過後もピンホールの発生を認めなかった。該
6000往復に至る各段階における酸素透過量の測定値
を第3表に示すっ各層間のデラミネーションは認めらλ
′シなか・つt:。なお該LLDPEのフィルムを別に
得て20℃で測定したヤング率は7.5にシーであった
Ad: Adhesive resin layer with a thickness of 5 μm made of modified LLDE with a maleic anhydride modification degree of 2.8% by weight of the LLDPE used in Example 1 DlG: 41 mol% of 4-methyl-1-pentene was heated at 15 caII/ g□) Thickness: 58 μm, I, i)
P E layer E, F: EVO with ethylene content of 58 mol%, saponification degree of 99.4%, thickness of 6 μm) 1 unit A bending fatigue test was conducted in accordance with Example 1. The bending fatigue rest 600
No pinholes were observed even after 0 and no return passes. The measured values of oxygen permeation at each stage up to the 6000 round trip are shown in Table 3. No delamination was observed between each layer.
'Shinaka・tsut:. The LLDPE film was separately obtained and measured at 20° C., and its Young's modulus was 7.5.

実施例4 Eを実施例1と同じEVOH樹脂からなる厚さ8μの層
、Fを実施例2と同じEVOEI樹脂からなる厚さ6μ
の層、接着性樹脂層AdをDおよびGに用いたLLDP
Eの無水マレイン酸変性度5.1重量%の変性LLDP
E層とした以外は実施例6と同様に行った。該屈曲疲労
テストロ000往復経過後もピンホールの発生を認めな
かつ1こ。該6000住復に至る各段階における酸素透
過量の測定値を第4表に示す。なお各層間のデラミネー
ションは認められなかった。
Example 4 E is an 8μ thick layer made of the same EVOH resin as in Example 1, and F is a 6μ thick layer made of the same EVOEI resin as in Example 2.
layer, LLDP using adhesive resin layer Ad for D and G
Modified LLDP with maleic anhydride modification degree of E of 5.1% by weight
The same procedure as in Example 6 was carried out except that the E layer was used. Even after 000 cycles of the bending fatigue test, no pinholes were observed. Table 4 shows the measured values of the amount of oxygen permeation at each stage up to the 6,000-year recovery. Note that no delamination between layers was observed.

第 4 表 実施例5 実施例1において、接着性樹脂層に共重合成分を1−ヘ
プテンとし、該含有量が2.9モル%、示差走査型熱量
計による融解熱が21 cdl/gのフィルムを別に得
て、20℃で測定したヤング率が154−のLLDPH
の無水マレイン酸変性度2.6重量%の変性LLDPE
を用いた以外は実施例1と同様に行った。該屈曲疲労デ
スト5500往復経過するもピンホールの発生は認めら
几ず、酸素透過量の値は殆んど変化がなく、(」ぼ1 
、4 cc/7i、24hr (20°C180%EH
)であつf:、。
Table 4 Example 5 In Example 1, a film was prepared in which the adhesive resin layer contained 1-heptene as a copolymer component, the content was 2.9 mol%, and the heat of fusion as measured by a differential scanning calorimeter was 21 cdl/g. LLDPH with a Young's modulus of 154-, which was obtained separately and measured at 20°C.
Modified LLDPE with maleic anhydride modification degree of 2.6% by weight
The same procedure as in Example 1 was carried out except that . Even after 5,500 cycles of the bending fatigue test, the occurrence of pinholes did not subside, and the value of oxygen permeation remained almost unchanged.
, 4 cc/7i, 24hr (20°C180%EH
) and f:,.

実施例6 実施例1において、ブテン−1を共1合成分とし、該成
分含有量51モル%、示差走肴型熱虞計による融解熱が
12 Ca(1/gのフィルムを別に得て、20℃で測
定したヤング率が8に−のLLDPHの無水マレイン酸
斐性度1.8重厘%の変性LLDPEで接着性樹脂層を
構成した以外は実施例1と同様に行った。該屈曲疲労テ
ス) 5000往復を経過するもピンホールの発生は認
められず、また酸素透過量の値にも殆んど変化がなく、
1.5CCβ、24hr(20℃、80%Bfi)であ
った。
Example 6 In Example 1, butene-1 was used as one of the synthetic components, and a film with a content of the component of 51 mol % and a heat of fusion of 12 Ca (1/g) as measured by a differential scanning type thermometer was separately obtained. The same procedure as in Example 1 was carried out except that the adhesive resin layer was composed of modified LLDPE having a Young's modulus of 8-8 and a maleic anhydride susceptibility of 1.8% by weight as measured at 20°C. Fatigue test) After 5,000 round trips, no pinholes were observed, and there was almost no change in the oxygen permeation value.
It was 1.5 CCβ, 24 hr (20°C, 80% Bfi).

実施例7 エチレン含有量!11モル%、けん化度99.3%のE
VOK樹脂からなる厚さ12μの中間層、該中間層の両
側に位置する表面層の片方に厚さ65μの実施例1で用
いyこt、LDPEからなる表面層及び該表面層の他の
片方に、酢酸ビニル含有mBNN%のエチレン−酢酸ビ
ニル共重合体から4する、厚さ35μの表面層を有し各
層間に6μの実施例3で用いtコ変性L l、 D P
 Eからなる接着性樹脂層を介して配された積層フィル
ムを4基の押出機、4種5層用多層グイヘッドを用いて
共押出法tζより待て、屈曲疲労テストに付した。結果
を第5表に示す。ピンホールの発生に至るまでの屈曲疲
労テスト過程Cζおいては、m累透過量の変化は殆んど
なかった。まtニビン小−ルの発生は該屈曲疲労テスト
4500往復を経過する才で認められず、4600往復
経過後ビン小−ルの発生の有無を検査にイリしたところ
、ピンホール1ケが既に発圧しているのを認めた。また
各層間のデラミネーションは全くみられなかった。
Example 7 Ethylene content! E with 11 mol% and saponification degree of 99.3%
An intermediate layer made of VOK resin with a thickness of 12μ, one of the surface layers located on both sides of the intermediate layer used in Example 1 with a thickness of 65μ, a surface layer made of LDPE, and the other side of the surface layer. The modified L used in Example 3 was prepared from an ethylene-vinyl acetate copolymer containing mBNN% vinyl acetate, with a surface layer of 35μ thick and 6μ between each layer.
A laminated film disposed through an adhesive resin layer consisting of E was subjected to a coextrusion method tζ using four extruders and a multilayer head for four types and five layers, and subjected to a bending fatigue test. The results are shown in Table 5. During the bending fatigue test process Cζ up to the occurrence of pinholes, there was almost no change in the m-cumulative permeation amount. However, the occurrence of small holes was not observed after 4,500 cycles of the bending fatigue test, and after 4,600 cycles, an inspection was conducted to check for the occurrence of small holes, and one pinhole had already occurred. I admitted that I was under pressure. Furthermore, no delamination between the layers was observed.

実施例8 実施例7においてEV+JH層をエチレン含有量46モ
ル%、けん化度99.6%のEVOkI樹脂から、 な
る、厚さ14μの層とし該表面層片方に用いるエチレン
−酢酸ビニル共重合体の層を酢酸ビニル含有量か9重j
1%の該共重合体からなる、厚さ40μの層とし接着性
樹脂として実施例1に用いたLLDPHの無水マレイン
酸変性2.5重量%の変性LLDPEを用いた以外は実
施例7に準じて行った。該屈曲疲労テスト5000往復
経過するまでピンホールの発生は認められず、55DO
往復経過後ビンキール1ケが発生しているのがみられた
Example 8 In Example 7, the EV+JH layer was made of EVOkI resin with an ethylene content of 46 mol% and a saponification degree of 99.6%, and had a thickness of 14μ, and one of the surface layers was made of an ethylene-vinyl acetate copolymer. Vinyl acetate content or 9 layers
A 40μ thick layer consisting of 1% of the copolymer was prepared in the same manner as in Example 7, except that LLDPH used in Example 1 was modified with maleic anhydride and 2.5% by weight of modified LLDPE was used as the adhesive resin. I went. No pinholes were observed until after 5000 cycles of the bending fatigue test, and the result was 55 DO.
After the round trip, one bin keel was observed to have occurred.

5000往復経過後才での各段階で酸素透過量を測定し
たが、いづれも20℃65%Bki及び80%E l(
の条件下でそれぞれ2.QCC/d、24hr、 5.
5cCβ、24hrで殆んど変化が認めらnなかった。
Oxygen permeation was measured at each stage after 5,000 round trips, and all were measured at 20°C, 65% Bki and 80% El (
2 respectively under the conditions of. QCC/d, 24hr, 5.
Almost no change was observed with 5cCβ for 24 hours.

ま1こ各層間のデラミネーションは全く認められなかっ
た。
No delamination between the layers was observed at all.

実施例9 実施例1において、接着性樹脂としてオクテン−1を共
重合成分とし3.5モル%含何する示差走査型熱量計に
基く融解熱が17 Ca17gのLLDPEの無水マレ
イン酸変性度が5.2重量%の変性LLDPEを用いた
以外は実施例1と同様に行った。
Example 9 In Example 1, the adhesive resin contained 3.5 mol% of octene-1 as a copolymerization component, and the heat of fusion based on a differential scanning calorimeter was 17. The maleic anhydride modification degree of LLDPE with 17 g of Ca was 5. Example 1 was repeated except that .2% by weight of modified LLDPE was used.

該屈曲疲労テスト5000往復経過後もピンホールの発
生は認めなかった。
No pinholes were observed even after 5000 reciprocations of the bending fatigue test.

5000往復に至るまでの各段階で酸素透過量を測定し
丁こが、20℃65%fluで0 、7 ct2/74
.241〕r、 20℃、80%B m テ1.5 c
c/i、24hrで5000往復に至るまでの各段階で
殆んど変化がなかった。なお?8層間のデラミネーショ
ンは認められなかった。
The amount of oxygen permeation was measured at each stage up to 5,000 round trips, and the result was 0.7 ct2/74 at 20°C and 65% flu.
.. 241] r, 20℃, 80% B m Te 1.5 c
There was almost no change at each stage up to 5,000 round trips at c/i, 24 hours. In addition? No delamination between the 8 layers was observed.

実施例10 エチレン含有量68モル%、I′iん化度99.4%の
nvou樹脂からなる厚さが間々12μの2層が下記接
着剤l−を介L7て配されてなる複層の中間層と該中間
層の両側に厚さ35μのブテン−1を共重合成分とし、
該成分含有量5.1モル%、示差走査型熱量計の熱分析
に基づく融解熱が12 cdl/g、フィルムを別に得
て20℃において測定したヤング率が8 kg7−のL
 L D rEからなる表面層を、実施例5で用いた変
性LLDPEの5μの接着性樹脂層を介して設けた積層
フィルムを得て、これを該屈曲疲労テストに伺した。該
屈曲疲労テスト4500往榎を経過するもピンホールの
発生は認められず、ま丁コ酸素透過盪の値にも殆んど父
上がなく1.5cc、4’、24hr(20℃、80%
B H)であった。
Example 10 A multi-layered product consisting of two 12 μm thick layers of nvou resin with an ethylene content of 68 mol% and an I'ination degree of 99.4%, arranged with the following adhesive L7 interposed between them. An intermediate layer and a copolymerized butene-1 having a thickness of 35μ on both sides of the intermediate layer,
L with a component content of 5.1 mol%, a heat of fusion of 12 cdl/g based on thermal analysis with a differential scanning calorimeter, and a Young's modulus of 8 kg7- when a film was separately obtained and measured at 20°C.
A laminated film was obtained in which a surface layer consisting of L DrE was provided via a 5 μm adhesive resin layer of the modified LLDPE used in Example 5, and this was subjected to the bending fatigue test. Even after 4,500 cycles of the bending fatigue test, no pinholes were observed, and the oxygen permeation value was almost the same.1.5cc, 4', 24hr (20℃, 80%
BH).

特許出願人 株式会社 クララ 代理人弁理士本多 堅Patent applicant Clara Co., Ltd. Representative Patent Attorney Ken Honda

Claims (1)

【特許請求の範囲】 (1)エチレン−酢酸ビニル共重合体けん化物の薄膜を
中間層とし、該中間層の両側に表面層を有し、該各表面
層が接着性樹脂層を介して配されてなるフレキシブル積
層包装材において、実質的に該接着性樹脂が直鎖状低密
度ポリエチレンに、エチレン性不飽和カルボン酸または
その無水物をo、ol−L1s重量%化学的に結合させ
て得られる変性直鎖状低密度ポリエチレンであることを
特徴とする耐屈曲疲労に優れたフレキシブルな気体遮断
性積層包装材。 (2)直鎖状低密度ポリエチレンが次素数4以上のα−
オレフィンを共重合成分とするものである特許請求の範
囲第1項記載の積層包装材。 (3)直鎖状像、密度ポリエチレンの示差走査型熱量計
の熱分析に基づく融解熱が25ca//g以下である特
許請求の範囲第1項または第2項記載の積層包装材。 (4)直鎖状低密度ポリエチレンがブテン−1を共重合
成分とし、示差走査型熱量計の熱分析による融解熱が1
s cat/fl以下である特許請求の範囲第1項記載
の積層包装材。 問直鎖状低密度ポリエチレンの20℃におけるヤング率
が22Kg/−以下である特許請求の範囲第1項ないし
第3項のいづれかに記載の積層包装材。 (6)直鎖状低臀度ポリエチレンがブテン−1を共重合
成分とし、20℃におけるヤング率か12KQ/a−以
下である特許請求の範囲第1項または第4項記載の積層
包装材。 t71直鎖状低密度ポリエチレンが広素数5以上のα−
オレフィンを共重合成分とするものである特許請求の範
囲第1項、第3項または第5項記載の積層包装材。 f8Jiftjl低蜜度ポリエチレンが4−メチル−1
−ペンテンを共重合成分とするものである特許請求の範
囲第1項、第35項または第5項記載の積層包装材。 ヰ (91性着性樹脂が直鎖状低密度ポリエチレンにエチレ
ン性不飽和カルボン酸またはその無水物を0.05〜1
0重量%化学的に結合させて得られる変性直鎖状低密度
ポリエチレンである特許請求の範囲第1項ないし第8項
のいづれかに記載の積層包装材。 0(ン エチレン性不飽和カルボン酸またはその無水物
が無水マレイン酸である特許請求の範囲第1項ないし第
9項のいづれかに記載の積層包装材。 OD エチレン−酢酸ビニル共重合体けん化物がエチレ
ン含有量25〜6O−1=/L’%、けん化度95%以
上である特許請求の範囲第1項ないし第10項のいづれ
かに記載の積層包装材。 0諺中間層の厚さが2071以下である特許請求の範囲
第1項ないし第11項のいづれかに記載の積層包装材。 0エチレン−酢酸ビニル共重合体けん化物からなる中間
層が少くとも2層からなる特許請求の範囲第1項ないし
第12項のいづれかに記載の積層包装材。 04 エチレン−酢酸ビニル共重合体けん化物からなる
中間層が5モル%以上異なるエチレン含有量の該けん化
物からなる少くとも2層を含む特許請求の範囲第1項な
いし第13項のいづれかに記載の積層包装材。 aυエチレン−酢酸ビニル共重合体けん化物からなる中
間層が各層の厚さが15μ以下である少くとも2層から
なる特許請求の範囲第1項ないし第12項、及び第14
項のいづれかに記載の積層包装材。 (ト)表面層が直鎖状低密度ポリエチレン層およびエチ
レン−酢酸ビニル共重合体層から選ばれた少くとも1種
の層を含む特許請求の範囲第1項ないし第15項のいづ
れかに記載の積層包装材。 a力表面層の少くとも片方が炭素数4以上のα−オレフ
ィンを共重合成分とする直鎖状低密度ポリエチレンから
なる層である特許請求の範囲第1項ないし第16項のい
づれかに記載の積層包装材。 (1(至)表面層の少くとも片方が示差走査型熱量計の
熱分析に基づく融解熱が25C,al19以下であるr
Km状低状変密度ポリエチレンなる層である特許請求の
範囲第1項ないし第17項のいづれかに記載の積層包装
材。 01表面層の少くとも片方がブテン−1を共重合成分と
し、示差走査型熱量計の熱分析に基づく融解熱が35 
calf/ 9以下である直鎖状低密度ポリエチレンか
らなる層である特許請求の範囲第1項ないし第16項の
いづれかに記載の積層包装材。 勾表面層の少くとも片方が20℃におけるヤング率が2
2Kg/−以下でめる直鎖状低密度ポリエチレンからな
る層である特許請求の範囲第1項ないし第18項のいづ
れかに記載の積層包装材。 21)表面層の少くとも片方がブテン−1を共重合成分
とし、20℃におけるヤング率が12 Kq/mA以下
である直鎖状低密度ポリエチレンからなる層である特許
請求の範囲第1項ないし第16項、第18項及び第19
項のいづれかに記載の積層包装材。 @表面層の少くとも片方が炭素数5以上のα−オレフィ
ンを共重合成分とする直鎖状低密度ポリエチレンからな
る層である特許請求の範囲第1項ないし第16項、第1
8項及び第20項のいづれかに記載の積層包装材。 轍表面層の少くとも片方が4−メチル−】−ペンテンを
共重合成分とする直鎖状低剖度ポリエチレンから成る層
である特許請求の範囲第1項ないし第16項、第18項
及び第20項のいづれかに記載の積層包装材。 (至)表面層の少くとも片方が酢酸ビニルを7重量%以
上含有するエチレン−酢酸ビニル共重合体からなる層で
ある特許請求の範囲第1項ないし第16項のいづれかに
記載の積層包装材。 嘘該積層包装材が包装充填物が水性混合物または含水物
である、包装容器の構成材である特許請求の範囲第1項
ないし第24項のいづれかに記載の積層包装材。 (至)該包装材がバッグインボックス内容器の構成材で
ある特許請求の範囲第1項ないし第25項のいづれかに
記載の積層包装材。
[Scope of Claims] (1) A thin film of saponified ethylene-vinyl acetate copolymer is used as an intermediate layer, and surface layers are provided on both sides of the intermediate layer, and each surface layer is disposed with an adhesive resin layer in between. In the flexible laminated packaging material, the adhesive resin is obtained by chemically bonding ethylenically unsaturated carboxylic acid or anhydride thereof to linear low-density polyethylene in an amount of o, ol-L1s by weight. A flexible gas-barrier laminated packaging material with excellent bending fatigue resistance, characterized by being made of modified linear low-density polyethylene. (2) Linear low-density polyethylene has an order prime number of 4 or more α-
The laminated packaging material according to claim 1, which contains an olefin as a copolymerization component. (3) The laminated packaging material according to claim 1 or 2, which has a heat of fusion of 25 ca//g or less based on thermal analysis of linear image and density polyethylene using a differential scanning calorimeter. (4) Linear low-density polyethylene has butene-1 as a copolymer component, and the heat of fusion as determined by thermal analysis using a differential scanning calorimeter is 1.
The laminated packaging material according to claim 1, which has a scat/fl or less. The laminated packaging material according to any one of claims 1 to 3, wherein the linear low-density polyethylene has a Young's modulus of 22 kg/- or less at 20°C. (6) The laminated packaging material according to claim 1 or 4, wherein the linear low-stiffness polyethylene contains butene-1 as a copolymerization component and has a Young's modulus of 12 KQ/a- or less at 20°C. t71 linear low density polyethylene has a wide prime number of 5 or more α-
The laminated packaging material according to claim 1, 3, or 5, which contains an olefin as a copolymer component. f8Jiftjl low-density polyethylene is 4-methyl-1
- The laminated packaging material according to claim 1, claim 35, or claim 5, which contains pentene as a copolymerization component.ヰ(91 adhesive resin is a linear low density polyethylene with 0.05 to 1% of ethylenically unsaturated carboxylic acid or its anhydride.
The laminated packaging material according to any one of claims 1 to 8, which is a modified linear low-density polyethylene obtained by chemically bonding 0% by weight. OD The laminated packaging material according to any one of claims 1 to 9, wherein the ethylenically unsaturated carboxylic acid or its anhydride is maleic anhydride. OD The saponified ethylene-vinyl acetate copolymer is The laminated packaging material according to any one of claims 1 to 10, which has an ethylene content of 25 to 6 O-1 = /L'% and a saponification degree of 95% or more. The laminated packaging material according to any one of claims 1 to 11, which is as follows: Claim 1, wherein the intermediate layer is made of at least two saponified ethylene-vinyl acetate copolymers. Laminated packaging material according to any one of Items 1 to 12. 04 A patent in which the intermediate layer made of a saponified ethylene-vinyl acetate copolymer includes at least two layers made of the saponified material having ethylene contents different by 5 mol% or more. A laminated packaging material according to any one of claims 1 to 13. A patent in which the intermediate layer made of a saponified ethylene-vinyl acetate copolymer has at least two layers, each layer having a thickness of 15 μm or less. Claims 1 to 12 and 14
The laminated packaging material described in any of the paragraphs. (g) The surface layer according to any one of claims 1 to 15, wherein the surface layer includes at least one layer selected from a linear low-density polyethylene layer and an ethylene-vinyl acetate copolymer layer. Laminated packaging material. Claims 1 to 16, wherein at least one of the a-force surface layers is a layer made of linear low-density polyethylene containing an α-olefin having 4 or more carbon atoms as a copolymerization component. Laminated packaging material. (1) At least one of the surface layers has a heat of fusion of 25C, al19 or less based on thermal analysis using a differential scanning calorimeter.
The laminated packaging material according to any one of claims 1 to 17, which is a layer made of Km-shaped low-density modified polyethylene. At least one side of the 01 surface layer contains butene-1 as a copolymerized component, and the heat of fusion is 35% based on thermal analysis using a differential scanning calorimeter.
The laminated packaging material according to any one of claims 1 to 16, which is a layer made of linear low-density polyethylene having a calf/9 or less. At least one of the gradient surface layers has a Young's modulus of 2 at 20°C.
The laminated packaging material according to any one of claims 1 to 18, which is a layer made of linear low-density polyethylene having a weight of 2 kg/- or less. 21) At least one of the surface layers is a layer made of linear low-density polyethylene containing butene-1 as a copolymer component and having a Young's modulus of 12 Kq/mA or less at 20° C. Sections 16, 18 and 19
The laminated packaging material described in any of the paragraphs. @At least one of the surface layers is a layer made of linear low-density polyethylene containing an α-olefin having 5 or more carbon atoms as a copolymer component.Claims 1 to 16, 1
The laminated packaging material according to any one of Items 8 and 20. Claims 1 to 16, 18, and 18, wherein at least one of the rut surface layers is a layer made of linear low-density polyethylene containing 4-methyl-]-pentene as a copolymer component. The laminated packaging material according to any of Item 20. (to) The laminated packaging material according to any one of claims 1 to 16, wherein at least one of the surface layers is a layer made of an ethylene-vinyl acetate copolymer containing 7% by weight or more of vinyl acetate. . 25. The laminated packaging material according to any one of claims 1 to 24, wherein the laminated packaging material is a constituent material of a packaging container in which the packaging filler is an aqueous mixture or a water-containing substance. (to) The laminated packaging material according to any one of claims 1 to 25, wherein the packaging material is a constituent material of a bag-in-box inner container.
JP10018284A 1984-05-17 1984-05-17 Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing Granted JPS60242054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10018284A JPS60242054A (en) 1984-05-17 1984-05-17 Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10018284A JPS60242054A (en) 1984-05-17 1984-05-17 Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing

Publications (2)

Publication Number Publication Date
JPS60242054A true JPS60242054A (en) 1985-12-02
JPH0376669B2 JPH0376669B2 (en) 1991-12-06

Family

ID=14267163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10018284A Granted JPS60242054A (en) 1984-05-17 1984-05-17 Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing

Country Status (1)

Country Link
JP (1) JPS60242054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130847A (en) * 1985-12-03 1987-06-13 日本石油化学株式会社 Inner bag for bag-in-box
US4746562A (en) * 1986-02-28 1988-05-24 W. R. Grace & Co., Cryovac Div. Packaging film
JPS6464843A (en) * 1987-09-07 1989-03-10 Kuraray Co Laminate
JPH0691824A (en) * 1992-09-11 1994-04-05 Nippon Synthetic Chem Ind Co Ltd:The Inner container for bag-in-box

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130847A (en) * 1985-12-03 1987-06-13 日本石油化学株式会社 Inner bag for bag-in-box
JPH0531473B2 (en) * 1985-12-03 1993-05-12 Nippon Petrochemicals Co Ltd
US4746562A (en) * 1986-02-28 1988-05-24 W. R. Grace & Co., Cryovac Div. Packaging film
JPS6464843A (en) * 1987-09-07 1989-03-10 Kuraray Co Laminate
JPH0691824A (en) * 1992-09-11 1994-04-05 Nippon Synthetic Chem Ind Co Ltd:The Inner container for bag-in-box

Also Published As

Publication number Publication date
JPH0376669B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
US4608286A (en) Gas barrier multilayer packaging material having excellent flexing endurance
US4842951A (en) Thermoforming resin laminate sheet
CN100410071C (en) Barrier laminate structure for packaging beverages
FI104544B (en) Film with multilayer construction and process for its preparation
US4220684A (en) Coextruded laminar thermoplastic bags
JPH0450906B2 (en)
US20060110554A1 (en) Film comprising a gas barrier layer
JPS60242054A (en) Flexible gas barrier property laminated packaging material having excellent resistance to fatigue from flexing
KR19980018586A (en) Fleece-retained plastic multilayer container
JP7528421B2 (en) Barrier, easy-tear coextruded multilayer film and packaging material
JPH0523184B2 (en)
JP6086137B2 (en) Packaging material and paper container comprising the same
JP7456197B2 (en) Resin composition, easily tearable film, easily tearable sheet
JP4240252B2 (en) Laminate, multilayer container and sealed container
JP3011934B2 (en) Flexible gas barrier laminate packaging with excellent bending fatigue resistance
JPS60168649A (en) Gas barrier property flexible laminated packaging material having excellent resistance to fatigue from flexing
JPS6034461B2 (en) Method for manufacturing multilayer blow container
JPH0427941B2 (en)
JP3145206B2 (en) Inner container for bag-in-box
JPS615942A (en) Flexible laminated packaging material having resistance to fatigue from flexing and gas barrier property
JPH0554429B2 (en)
JPH0376670B2 (en)
JPS62152848A (en) Laminated packaging material having excellent resistance to fatigue from flexing
JPH0531863A (en) Multilayered structure and package
JPH10119204A (en) Laminated film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees