JPS60241668A - Fuel cell controller - Google Patents

Fuel cell controller

Info

Publication number
JPS60241668A
JPS60241668A JP59099201A JP9920184A JPS60241668A JP S60241668 A JPS60241668 A JP S60241668A JP 59099201 A JP59099201 A JP 59099201A JP 9920184 A JP9920184 A JP 9920184A JP S60241668 A JPS60241668 A JP S60241668A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
cooling
flow rate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59099201A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiomi
塩見 哲郎
Masashi Fujitsuka
正史 藤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59099201A priority Critical patent/JPS60241668A/en
Publication of JPS60241668A publication Critical patent/JPS60241668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To control the cell temperature to predetermined level against the load variation by comparing the temperature of fuel cell with a setting level to obtain the flow then comparing said flow with the flow through a cooling flow path and increasing/decreasing the rotation of a circulation pump. CONSTITUTION:Cooling water 5 in a tank 4 is circulated through a circulation pump 8 and cooling flow paths 6, 7 in a fuel cell 1 to perform cooling. Here, the temperature of cell 1 is detected through a detector 11 and compared with a setting level 10 in a controller 13 to produce a setting flow 14 which is further compared with the cooling water 5 flow detected through a detector 15 in a controller 17 to produce the rotation operating amount 18 of pump 8 thus to increase/decrease the rotation. When varying the temperature in accordance to the variation of the cooling water 5 flow through the cooling flow paths 6, 7, the temperature of the cell 1 can follow after the temperature variation due to the load variation while the response is with quickened response and maintained at predetermined level.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は燃料電池本体の温度を所定の温度に保つよう
制御する燃料電池装置の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a fuel cell device that controls the temperature of a fuel cell main body to maintain it at a predetermined temperature.

〔従来技術〕[Prior art]

第1図は例えば特開昭57−82978号公報fこ示さ
れた従来の燃料電池装置の制御装置を示す図である。図
におい°C1(10よ燃料電池本体であり、燃料極(2
)と空気極(3)とから構成される。(4)は燃料電池
本体11Jを冷却する冷却水(5)を貯えるタンク、(
6)及び(7)はタンク(4)内の冷却水15)を燃料
電池本体+1)へ導くと共に燃料電池本体+1)を冷却
した後の冷却水田)をタンク(4)に導く冷却流路、(
8)は冷却流路(7)に設けられ、冷却水(6)を循環
させるポンプ、19)はタンク(4)内で発生する蒸気
をタンク外に放出させるための放出口である。
FIG. 1 is a diagram showing a conventional control device for a fuel cell device as disclosed in, for example, Japanese Unexamined Patent Publication No. 57-82978. In the figure, °C1 (10) is the fuel cell body, and the fuel electrode (2
) and an air electrode (3). (4) is a tank for storing cooling water (5) for cooling the fuel cell main body 11J;
6) and (7) are cooling channels that guide the cooling water 15) in the tank (4) to the fuel cell main body +1) and lead the cooling water field (after cooling the fuel cell main body +1) to the tank (4); (
8) is a pump provided in the cooling channel (7) to circulate the cooling water (6), and 19) is a discharge port for discharging steam generated within the tank (4) to the outside of the tank.

次に動作について説明する。燃料電池本体(すは燃料で
ある水素が供給される燃料極(2)、酸化剤として空気
が供給される空気極(3)をおもな構成要素とし、燃料
のもつ化学エネルギーから直接電気エネルギーに変換さ
せるためのものであり、このエネルギー変換時には副次
的に熱が発生する。この熱により電池内の温度が所定以
上に上昇すると、電極劣化の加速や電解質の蒸発、ある
いは電池構成部材の耐熱性等の悪影響を及ぼし、電池を
効率よく運転することが困難になるので、ヤング(8)
により冷却流路(61、(7)内に冷却水+5)を循環
させて冷却しなければならない。さらに冷却流路(6)
 、 (7)内を循環した冷却水(5)は電池の温度を
吸収して水温が上昇するためタンク(4)に設けられた
放出口19)より蒸気を放出することにより、タンク(
4)内の冷却水(5)の水温を下げ、燃料電池本体(1
)の温度を所定の温度に保つよう1こなっている。
Next, the operation will be explained. The main components of the fuel cell are a fuel electrode (2) to which hydrogen is supplied as fuel, and an air electrode (3) to which air is supplied as an oxidizing agent, and generates electrical energy directly from the chemical energy of the fuel. Heat is generated as a side effect during this energy conversion.If the temperature inside the battery rises above a certain level due to this heat, it may accelerate deterioration of the electrodes, evaporate the electrolyte, or damage the battery components. Young (8)
Therefore, cooling water must be circulated in the cooling channels (61, (7)) for cooling. Furthermore, the cooling channel (6)
The cooling water (5) that circulated in the tank (7) absorbs the temperature of the battery and the water temperature rises.
4) lower the water temperature of the cooling water (5) in the fuel cell body (1).
) is kept at a predetermined temperature.

従来の燃料電池装置の制御装置は以上のような構成のも
とになされているので、電池の負荷変動等による温度変
化に対して冷却水の温度を追従させることが困難であり
、燃料電池本体+1)の温度上昇を抑制することができ
ず所定の温度に保つことができないなどの欠点があった
。また、これら欠点に起因して電解質の蒸発や電極の劣
化を招く恐れもあり、効率の良い燃料電池の運転が得ら
れない欠点が生じていた。
Conventional control devices for fuel cell devices are configured as described above, so it is difficult to make the cooling water temperature follow temperature changes due to changes in battery load, etc. There were drawbacks such as the inability to suppress the temperature rise of +1) and the inability to maintain the temperature at a predetermined level. Furthermore, these drawbacks may cause evaporation of the electrolyte and deterioration of the electrodes, resulting in the drawback that efficient fuel cell operation cannot be achieved.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料電池本体の温度値と予め設定
された設定測度値とを演算処理して設定流量値を出力す
る第1の制御装置を設け、この第1の制御装置から出力
される設定流量値と冷却流路を流通する冷却媒体の流氷
値とを演算処理してポンプ回転数操作量を出力しポンプ
の回転数の増減を制御する第2の制御装置を設けること
により、燃料電池の温度を所定の温度に保つことができ
る燃料電池装置の制御装置を提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes a first method that outputs a set flow rate value by calculating the temperature value of the fuel cell body and a preset set measurement value. A control device is provided, and the set flow rate value outputted from the first control device and the drift ice value of the cooling medium flowing through the cooling channel are processed to output a pump rotational speed manipulated variable to increase or decrease the rotational speed of the pump. The present invention provides a control device for a fuel cell device that can maintain the temperature of the fuel cell at a predetermined temperature by providing a second control device that controls the temperature of the fuel cell.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図1こおいて、+lJないしく9)は上述した従来装置
の構成と同様のものである。図は予め設定されている設
定温度値、συは燃料電池本体(1)の温度を検出する
温度検出器(以下、温度センサと記す)、(2)はこの
温度センサ(6)により検出された燃料電池本体(1)
の温度値、0は設定温度値U*と燃料電池本体(1)の
温度値(2)とを演算処理して設定流量値α→を出力す
る第1の制御装置、0!9は冷却水(5)の流量を検出
する流量検出器(以下、流量センサと記す)、QQはこ
の流量センサQ*により検出された冷却水(5)の流が
値、Oηは設定流量値α荀と冷却水(5)の流量値a→
とを演算処理してポンプ回転数操作量(至)を出力しポ
ンプ(8)の回転数の増減を制御する第2の制御装置で
ある。
An embodiment of the present invention will be described below with reference to the drawings. Second
In FIG. 1, +lJ to 9) have the same configuration as the conventional device described above. The figure shows the preset temperature value, συ is a temperature detector (hereinafter referred to as temperature sensor) that detects the temperature of the fuel cell main body (1), and (2) is the temperature detected by this temperature sensor (6). Fuel cell body (1)
temperature value, 0 is the first control device that calculates the set temperature value U* and the temperature value (2) of the fuel cell main body (1) and outputs the set flow rate value α→, 0!9 is the cooling water A flow rate detector (hereinafter referred to as flow rate sensor) that detects the flow rate of (5), QQ is the value of the flow of cooling water (5) detected by this flow rate sensor Q*, and Oη is the set flow rate value α 荀 and cooling Flow rate value a of water (5)→
This is a second control device that calculates and outputs a pump rotational speed manipulated variable (maximum) to control increase/decrease in the rotational speed of the pump (8).

次に動作を第8図のフローチャートに沿って説明する。Next, the operation will be explained along the flowchart of FIG.

燃料電池本体(1)に発生した熱は温度上昇となり、温
度センサaυにより現在の温度値PV、(ロ)として第
1の制御装置Q3へ取込まれ、あらかじめ与えられた設
定温度値5V1QOとの演算fこより設定流量値5V2
(141をめる。設定流量値α◆は、第1の制御装WL
Q3の演算結果EV+ (tea) +こより温度値P
v、(2)が設定温度値SV1αQより低い場合(18
a)は、低い温度に見合った分の流量値を減じた値(1
4a)が設定流量値5V2Q4として、また温度値PV
l(6)の方が高い場合(18C)は、高い温度に見合
った分の流量値を加えた値(14b)が設定流量値5V
2c14として第2の制御装置0カへ与えられる。この
第2の制御装置uηは、冷却流路(6) 、 (7)を
循環する冷却水(5)の流量を流量センサOQにより検
出して、その流量値PV200と設定流量値5V2I+
4との演算によりポンプ回転数繰作4J)VIV2(支
)をめる。回転数操作量MV。
The heat generated in the fuel cell main body (1) becomes a temperature rise, and is taken into the first control device Q3 as the current temperature value PV, (b) by the temperature sensor aυ, and is compared with the preset temperature value 5V1QO. Set flow rate value 5V2 from calculation f
(Include 141. The set flow rate value α◆ is the first control device WL
Calculation result of Q3 EV+ (tea) + Temperature value P
If v, (2) is lower than the set temperature value SV1αQ (18
a) is the value obtained by subtracting the flow rate corresponding to the low temperature (1
4a) is the set flow rate value 5V2Q4, and the temperature value PV
If l(6) is higher (18C), the value (14b) added with the flow rate commensurate with the higher temperature is the set flow rate value 5V.
2c14 to the second controller 0. This second control device uη detects the flow rate of the cooling water (5) circulating through the cooling channels (6) and (7) using a flow rate sensor OQ, and calculates the detected flow rate value PV200 and the set flow rate value 5V2I+
Calculate the pump rotation speed (4J) VIV2 (support) by calculation with 4. Rotation speed manipulated variable MV.

(ト)は、第2の制御装MQηの演算結果Ev2 (1
7a)により?lI8!環している冷却水+5)の流量
値PV、(至)の方が低い場合(17b)は、低い流量
に見合った分のポンプ回転数操作量を加えた値(18a
)の回転数操作iMV2(ト)をポンプ(8)に与える
ことにより、ポンプ(8)の回転数が増加して冷却流路
(61、(7)を循環する冷却水(5)の流量が増加す
ることになり、冷却水(5)の温度が減少する。また逆
に、循環している冷却水(6)の流z信pv2asO方
が高い場合(17c)は、高い流量に見合った分の回転
数操作量を減じた値(tab)の回転数操作fi MV
2(財)をポンプ(8)に与えることにより、ポンプ(
8)の回転数が減少して冷却流路t6) 、 (7)を
循環する冷却水(5)の流量が減少することになり、冷
却水(5)のmlvが増加する。このように冷却流路(
6) 、 +7)の冷却水15)の温度を変化させるこ
とにより、負荷変動等の温度変化に追従して燃料電池の
温度を所定に保つことができる。従って、温度変化に対
して応答の早い冷却効果が得られ、電解質の蒸発や電極
の劣化も抑えることができ、効率の良い燃料電池の運転
が得られる。
(g) is the calculation result Ev2 (1
By 7a)? lI8! If the flow rate value PV of the circulating cooling water + 5) is lower (17b), the value (18a) is the sum of the pump rotational speed operation amount corresponding to the lower flow rate.
) by applying rotational speed control iMV2 (g) to the pump (8), the rotational speed of the pump (8) increases and the flow rate of the cooling water (5) circulating through the cooling channel (61, (7)) increases. As a result, the temperature of the cooling water (5) decreases.Conversely, if the flow rate pv2asO of the circulating cooling water (6) is higher (17c), the temperature of the cooling water (5) decreases. Rotation speed operation fi MV of the value (tab) obtained by subtracting the rotation speed operation amount of
By giving 2 (goods) to pump (8), pump (
8) decreases, the flow rate of the cooling water (5) circulating through the cooling channels t6) and (7) decreases, and the mlv of the cooling water (5) increases. In this way, the cooling flow path (
By changing the temperature of the cooling water 15) in 6) and +7), it is possible to keep the temperature of the fuel cell at a predetermined level by following temperature changes such as load fluctuations. Therefore, a cooling effect with a quick response to temperature changes can be obtained, evaporation of the electrolyte and deterioration of the electrodes can be suppressed, and efficient fuel cell operation can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、燃料電池本体の温度値と
予め設定された設定測度値とを演算処理して設定流量値
を出力する第1の制御装置を設け、この第1の制御装置
から出力される設定流量値と冷却流路を流通する冷却媒
体の流量値とを演算処理してポンプ回転数操作量を出力
しポンプの回転数の増減を制御する第2の制御装置を設
けたことにより、燃料電池の温度を効率良く所定の温度
に保つことができる燃料電池装置の制御装置を得ること
ができる。
As explained above, the present invention includes a first control device that performs arithmetic processing on the temperature value of the fuel cell main body and a preset set measurement value to output a set flow rate value, and outputs an output from this first control device. By providing a second control device that performs arithmetic processing on the set flow rate value to be used and the flow rate value of the cooling medium flowing through the cooling flow path, outputs a pump rotation speed manipulated variable, and controls increase/decrease in the pump rotation speed. Therefore, it is possible to obtain a control device for a fuel cell device that can efficiently maintain the temperature of a fuel cell at a predetermined temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料電池装置の制御装置を示す系統図、
第2図及び第8図はこの発明の一実施例による燃料電池
装置の制御装置を示す系統図及びフローチャートである
。 図において、(υは燃料電池本体、(2)は燃料極、(
3)は電気極、(4)はタンク、(61、+7)は冷却
流路、(8)はポンプ、■は設定温度値、(6)は温度
値、(至)は第1の制御装置、Q4は設定流量値、α0
は流量値、α力は第2の制御装置、(至)は回転数操作
量である。 尚、閤中同−符号は同−又は相当部分を示す。 代理人 大 岩 増 雄 第1図 第2図 一1θ 第3図
FIG. 1 is a system diagram showing a control device of a conventional fuel cell device.
FIG. 2 and FIG. 8 are a system diagram and a flowchart showing a control device for a fuel cell device according to an embodiment of the present invention. In the figure, (υ is the fuel cell body, (2) is the fuel electrode, (
3) is the electric electrode, (4) is the tank, (61, +7) is the cooling channel, (8) is the pump, ■ is the set temperature value, (6) is the temperature value, (to) is the first control device , Q4 is the set flow rate value, α0
is the flow rate value, α force is the second control device, and (to) is the rotational speed manipulated variable. Note that the same symbols in the middle indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2 - 1θ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 燃料極と空気極から構成される燃料電池本体と、この燃
料電池本体を冷却するための冷却媒体も貯留されるタン
クと、このタンク内の冷却媒体を上記燃料電池本体に導
くと共に上記燃料電池本体を冷却した後の上記冷却媒体
を上記タンクに導く冷却流路と、この冷却流路に設けら
れ、上記冷却媒体を循環流通させるポンプとを有する燃
料電池装置において、上記燃料電池本体の温度値と予め
設定された設定温度値とを演算処理して設定流量値を出
力する第1の制御装置と、この第1の制御装置から出力
される設定流量値と上記冷却流路を流通する冷却媒体の
流量値とを演算処理してポンプ回転数操作量を出力し上
記ポンプの回転数の増減を制御する第2の制御装置とを
備えたことを特徴とする燃料電池装置の制御装置。
A fuel cell main body consisting of a fuel electrode and an air electrode, a tank in which a cooling medium for cooling the fuel cell main body is also stored, and a tank that leads the cooling medium in the tank to the fuel cell main body and the fuel cell main body. In a fuel cell device having a cooling channel that guides the cooling medium to the tank after cooling the cooling medium, and a pump that is provided in the cooling channel and circulates the cooling medium, the temperature value of the fuel cell main body and a first control device that calculates a preset temperature value and outputs a set flow rate value; and a first control device that outputs a set flow rate value by calculating a preset temperature value; 1. A control device for a fuel cell device, comprising: a second control device which performs arithmetic processing on a flow rate value and outputs a pump rotational speed manipulated variable to control an increase/decrease in the rotational speed of the pump.
JP59099201A 1984-05-15 1984-05-15 Fuel cell controller Pending JPS60241668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099201A JPS60241668A (en) 1984-05-15 1984-05-15 Fuel cell controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099201A JPS60241668A (en) 1984-05-15 1984-05-15 Fuel cell controller

Publications (1)

Publication Number Publication Date
JPS60241668A true JPS60241668A (en) 1985-11-30

Family

ID=14241033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099201A Pending JPS60241668A (en) 1984-05-15 1984-05-15 Fuel cell controller

Country Status (1)

Country Link
JP (1) JPS60241668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340269A (en) * 1986-08-05 1988-02-20 Fuji Electric Co Ltd Cooling line control device of fuel cell power generating plant
FR2809535A1 (en) * 2000-05-26 2001-11-30 Renault Thermal regulator for motor vehicle fuel cell has temperature sensor positioned in auxiliary coolant circuit outside of fuel cell
JP2002216817A (en) * 2001-01-24 2002-08-02 Nissan Motor Co Ltd Conductivity control device for fuel cell cooling liquid
FR2827427A1 (en) * 2001-07-12 2003-01-17 Commissariat Energie Atomique Solid electrolyte fuel cell with temperature regulation has thermally conducting supports of varying conductivity removing and dissipating excess heat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143271A (en) * 1981-02-27 1982-09-04 Shin Kobe Electric Mach Co Ltd Temperature regulating system for fuel cell
JPS58133782A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant
JPS58133784A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143271A (en) * 1981-02-27 1982-09-04 Shin Kobe Electric Mach Co Ltd Temperature regulating system for fuel cell
JPS58133782A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant
JPS58133784A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340269A (en) * 1986-08-05 1988-02-20 Fuji Electric Co Ltd Cooling line control device of fuel cell power generating plant
FR2809535A1 (en) * 2000-05-26 2001-11-30 Renault Thermal regulator for motor vehicle fuel cell has temperature sensor positioned in auxiliary coolant circuit outside of fuel cell
JP2002216817A (en) * 2001-01-24 2002-08-02 Nissan Motor Co Ltd Conductivity control device for fuel cell cooling liquid
FR2827427A1 (en) * 2001-07-12 2003-01-17 Commissariat Energie Atomique Solid electrolyte fuel cell with temperature regulation has thermally conducting supports of varying conductivity removing and dissipating excess heat
US7255951B2 (en) 2001-07-12 2007-08-14 Commissariat A L'energie Atomique Optimized thermal management fuel cell

Similar Documents

Publication Publication Date Title
JP6380625B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP4877656B2 (en) Fuel cell system and current control method thereof
US10957925B2 (en) Method of running-in operation of fuel cell
KR101881270B1 (en) Control device of fuel cell system and control method of fuel cell system
JP5196246B2 (en) Fuel cell system
JP5812118B2 (en) Fuel cell system
JP6432675B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2016096083A (en) Fuel battery system
JPS60241668A (en) Fuel cell controller
JP3687530B2 (en) Fuel cell system and operation method thereof
JPH07320755A (en) Fuel cell
JP2005150019A (en) Fuel cell system
JP2006344401A (en) Fuel cell system
JPS60241670A (en) Fuel cell controller
JP2815690B2 (en) Startup control device for liquid electrolyte fuel cell
JP2008147121A (en) Fuel cell evaluation device
JP6136185B2 (en) Fuel cell system
JP2016134258A (en) Control device for fuel battery system
JPH0719616B2 (en) Liquid electrolyte fuel cell power generator
JPS60241669A (en) Fuel cell controller
JP2005190843A (en) Reactant gas feeder of fuel cell
JP2005158662A (en) Fuel cell system
JP6512047B2 (en) Fuel control system and control method for fuel cell system
JP6540408B2 (en) Fuel control system and control method for fuel cell system
JP5380935B2 (en) Fuel cell system