JPS60240976A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS60240976A
JPS60240976A JP9588584A JP9588584A JPS60240976A JP S60240976 A JPS60240976 A JP S60240976A JP 9588584 A JP9588584 A JP 9588584A JP 9588584 A JP9588584 A JP 9588584A JP S60240976 A JPS60240976 A JP S60240976A
Authority
JP
Japan
Prior art keywords
flow path
cooler
quick freezing
refrigerator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9588584A
Other languages
Japanese (ja)
Inventor
大橋 祥記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP9588584A priority Critical patent/JPS60240976A/en
Publication of JPS60240976A publication Critical patent/JPS60240976A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強制通風方式の冷凍冷蔵庫等の冷凍室の一部に
直接冷却方式の補助冷却器を備えた急速冷凍装置を設け
てなる冷蔵庫に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a forced draft type refrigerator, etc., in which a part of the freezer compartment is provided with a rapid freezing device equipped with a direct cooling type auxiliary cooler.

従来例の構成とその問題点 従来例を第2図、第3図にて説明する。1は区画室2内
に構成した冷却室3に収納した主冷却器4で、冷却した
空気を送風機5にて冷凍室6及び冷蔵室7に循環させる
強制通風方式の冷蔵庫である。6′は冷凍室6内に別途
、直接冷却方式の補助冷却器8を備えた急速冷凍室であ
り、食品の急速冷凍を行なわせる。
The structure of the conventional example and its problems The conventional example will be explained with reference to FIGS. 2 and 3. Reference numeral 1 denotes a main cooler 4 housed in a cooling chamber 3 configured within a compartment 2, and the refrigerator is a forced draft type refrigerator in which cooled air is circulated through a freezer compartment 6 and a refrigerator compartment 7 using a blower 5. Reference numeral 6' denotes a quick-freezing room which is provided with an auxiliary cooler 8 of a direct cooling type separately within the freezer room 6, and allows food to be quickly frozen.

なお、冷蔵室7の入口には冷気流々量を調節するダンパ
ーサーモスタット14が設けられている。
Note that a damper thermostat 14 is provided at the entrance of the refrigerator compartment 7 to adjust the flow rate of cold air.

冷凍サイクルとしては第2図のように、圧縮機9−凝縮
器1〇−第1の毛細管11−主冷却器43 亭ノ ー圧縮機9と循環する通常の流路と、圧縮機9−凝縮器
10−第2の毛細管12−補助冷却器8−主冷却器4−
圧縮器9と循環する急速冷凍用の流路とに切替える流路
制御装置13(以後流路制御弁13という)を備え、こ
の切替弁13の流路切替操作にて急速冷凍作用を行なわ
せるものである。
As shown in Fig. 2, the refrigeration cycle consists of a normal flow path that circulates between compressor 9 - condenser 10 - first capillary tube 11 - main cooler 43 and compressor 9, and compressor 9 - condenser. 10-Second capillary tube 12-Auxiliary cooler 8-Main cooler 4-
It is equipped with a flow path control device 13 (hereinafter referred to as flow path control valve 13) that switches between the compressor 9 and a circulating flow path for quick freezing, and performs a quick freezing action by switching the flow path of this switching valve 13. It is.

しかしながら、このような急速冷凍用の冷凍サイクルを
備えた冷蔵庫であるが、第2の毛細管12−補助冷却器
8−主冷却器4の冷媒流路は実質上急速冷凍所望時のみ
にしか利用されず、装置の利用度としては今一つ低いも
のにとどまっていた。
However, although the refrigerator is equipped with such a refrigeration cycle for quick freezing, the refrigerant flow path from the second capillary tube 12 to the auxiliary cooler 8 to the main cooler 4 is essentially used only when quick freezing is desired. However, the utilization of the equipment remained relatively low.

一方、一般的な冷蔵庫において、外気温度によって実質
上の熱負荷量は異なり、機器の効率良い設計を行なう意
味からは外気温度による負荷条件別に冷凍サイクルの能
力を可変させてやるのが望ましいことが知られている。
On the other hand, in a typical refrigerator, the actual amount of heat load varies depending on the outside temperature, and from the point of view of efficient equipment design, it is desirable to vary the capacity of the refrigeration cycle depending on the load condition depending on the outside temperature. Are known.

即ち熱負荷条件の厳しい高外気温時には冷凍サイクルの
冷却能力を大きく設定し過負荷運転を排除し、逆に負荷
の軽い低外気温時にはそれに見合った冷却能力にまでセ
ーブしてやることによって、仕事量の減少による消費電
力の削減を図れる。ところが通常の冷凍サイクルを有し
た冷蔵庫においては、前述のような能力制御が困難であ
り、概収高負荷時の能力を成る程度発揮出来る様に能力
設計が成されるため、概して軽負荷時の電力消費が節約
出来ず、年間通期を通じての効率が不十分なものになっ
てしまうことが少なくない。
In other words, when the heat load conditions are severe and the outside temperature is high, the cooling capacity of the refrigeration cycle is set to a large value to eliminate overload operation, and when the load is light and the outside temperature is low, the cooling capacity is saved to match that, thereby reducing the amount of work. This can reduce power consumption. However, in a refrigerator with a normal refrigeration cycle, it is difficult to control the capacity as described above, and the capacity is designed so that it can demonstrate its capacity to a certain extent under high loads, so generally speaking, it is difficult to control the capacity as described above. Electric power consumption cannot be saved, and efficiency throughout the year is often insufficient.

発明の目的 本発明は上記の点に鑑み、急速冷凍流路を備えた冷蔵庫
において、外気温度による負荷条件によって冷凍サイク
ルの冷却効率を低下させないことを目的としている。
OBJECTS OF THE INVENTION In view of the above points, the present invention aims to prevent the cooling efficiency of the refrigeration cycle from decreasing due to the load condition caused by the outside temperature in a refrigerator equipped with a rapid freezing channel.

発明の構成 この目的を達成するために、本発明は、急速冷凍装置の
動作とは無関係に外気温度に応じて冷媒流路を切替える
切替手段を設け、急速冷凍操作時以外に外気温度によっ
ては急速冷凍流路を通常運転時にも活用することで、予
め冷凍サイクルの機器の設計を行ない外気温負荷に応じ
た冷却能力で効率よく冷却を行なわせるものである。
Structure of the Invention In order to achieve this object, the present invention provides a switching means that switches the refrigerant flow path according to the outside temperature, regardless of the operation of the quick freezing device, and By utilizing the refrigeration channel even during normal operation, the refrigeration cycle equipment can be designed in advance to efficiently perform cooling with a cooling capacity that corresponds to the outside temperature load.

5 ・−・ 実施例の説明 以下、本発明の一実施例を示す第1図に従い説明する。5 ・-・ Description of examples DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

尚、冷蔵庫の本体構造、冷凍サイクルは従来と同一構成
であり、その説明を省略する。図において、圧縮機9.
送風機5はリレー16を介して電源に接続されており、
流路切替弁13はリレー16を介して電源に接続されて
いる。この流路切替弁13は励磁コイル導通時は通常流
路、非導通時は急速冷凍流路に切替えるよう構成してい
る。尚ここでリレー15は励磁コイル通電時に接点を閉
成、リレー16は励磁コイル非通電時に接点を閉成する
よう構成されている。次にこれらリレーを駆動させる制
御装置について述べる。17は温度制御装置で冷凍室6
内の一部に設けたサーミスタ18.抵抗R1,R2,R
3,R4,R5,コアパレータ19で構成されている。
Note that the main body structure and refrigeration cycle of the refrigerator are the same as those of the conventional refrigerator, and the explanation thereof will be omitted. In the figure, compressor 9.
The blower 5 is connected to a power source via a relay 16,
The flow path switching valve 13 is connected to a power source via a relay 16. The flow path switching valve 13 is configured to switch to the normal flow path when the excitation coil is conductive, and to switch to the rapid freezing flow path when the excitation coil is not conductive. Here, the relay 15 is configured to close its contacts when the exciting coil is energized, and the relay 16 is configured to close its contacts when the exciting coil is not energized. Next, a control device for driving these relays will be described. 17 is a temperature control device and the freezer compartment 6
A thermistor 18 provided in a part of the inside. Resistance R1, R2, R
3, R4, R5, and a core parator 19.

コンパレータ19の出力はOR回路2oを介して、トラ
ンジスタ等のドライバー回路(図示せず)によってリレ
ー15を0N10FFする信号を送るよう構成されてい
る。
The output of the comparator 19 is configured to send a signal to turn the relay 15 0N10FF via an OR circuit 2o by a driver circuit (not shown) such as a transistor.

21は急速冷凍スイッチ、22は急冷時間タイ61.2 7−で、急速冷凍装置23を構成している。急冷タイマ
ー22は急速冷凍スイッチ21の投入後急速冷凍中Hi
 g hの信号(以下単に°H″とよぶ)を出しつづけ
、その他の間は常にLowの信号(以下単にパL′″と
よぶ)を出力するよう構成されている。そして急冷タイ
マー22の出力はOR回路2oの入力及びリレー15を
0N10FFする信号を送るよう接続されるとともに、
OR回路24を通じドライバー回路を介してリレー16
を0N10FF するよう接続されている。26は外気
温度検出装置で冷蔵庫本体外殻の一部に設けた外気温サ
ーミスタ26.抵抗R′1.R′2.R′3.R14,
R′5.コンパレータ27で構成されている。コンパレ
ータ27の出力は前記OR回路24の入力及び、リレー
16を0N10FFする信号を送るよう接続されている
21 is a quick freezing switch, 22 is a quick cooling time tie 61.27-, and constitutes a quick freezing device 23. The quick cooling timer 22 is set to Hi during quick freezing after the quick freezing switch 21 is turned on.
It is configured to continue outputting a signal g h (hereinafter simply referred to as °H''), and always output a low signal (hereinafter simply referred to as L''') during the rest of the time. The output of the quenching timer 22 is connected to the input of the OR circuit 2o and to send a signal to turn the relay 15 on and off.
Relay 16 via OR circuit 24 and driver circuit
It is connected to 0N10FF. Reference numeral 26 denotes an outside temperature detection device, which is an outside temperature thermistor 26 installed in a part of the outer shell of the refrigerator body. Resistance R'1. R'2. R'3. R14,
R'5. It is composed of a comparator 27. The output of the comparator 27 is connected to the input of the OR circuit 24 so as to send a signal to turn the relay 16 on and off.

次にかかる構成における動作状況を説明する。Next, the operational status of this configuration will be explained.

通常時、冷蔵庫の庫内温度(冷凍室温度)が所定値より
高い場合は、サーミスタ18の抵抗値RTHが小さくな
っており温度制御装置17のす〜ミス71−7 り18の抵抗値RTHと抵抗R1とで決定されるA点の
電位が、抵抗R2,R3で決定されるB点の電位よす高
くなりコンパレータ19の出力が” H”となるからO
R回路2oの出力も“′H″′となり、リレー15がト
ランジスタ(図示せず)等のドライバー回路を介してO
Nし、圧縮機9.送風機5が運転する0この時、リレー
16の0N10FF状態は、その時の外気温度に係わる
。即ち外気温度が所定値より低ければ、外気温度検出装
置25の外気温サーミスタ26の抵抗値RIrHが大き
くなり、サーミスタ26の抵抗値”THと抵抗用とで決
定されるA′点の電位が、抵抗1(4、R’、とで決定
されるB′点の電位より低くなりコンパレータ27の出
力が”L″となるから、OR回路24の一方の入力は”
 L ”になる0この時急速冷凍スイッチ21は押され
ていないから急冷タイマー22の出力は” L ”であ
り従ってOR回路24の入力は両方とも°“L IIで
あるからリレー16はOFF即ち、流路切替弁13の吸
引コイルに通電されて、冷媒回路は圧縮機9−凝縮器1
o−第1の毛細管11−主冷却器→圧縮機9の通常の循
環サイクルを構成して軽負荷に対応すべて冷却力をセー
ブし、圧縮機の運転入力を低減させる。
Normally, when the internal temperature of the refrigerator (freezer compartment temperature) is higher than a predetermined value, the resistance value RTH of the thermistor 18 is small and the resistance value RTH of the temperature control device 17 is higher than the resistance value RTH of the temperature control device 17. The potential at point A determined by resistor R1 becomes higher than the potential at point B determined by resistors R2 and R3, and the output of comparator 19 becomes "H".
The output of the R circuit 2o also becomes "H"', and the relay 15 becomes O through a driver circuit such as a transistor (not shown).
N, compressor 9. At this time, when the blower 5 is operating, the 0N10FF state of the relay 16 is related to the outside air temperature at that time. That is, if the outside air temperature is lower than a predetermined value, the resistance value RIrH of the outside temperature thermistor 26 of the outside air temperature detection device 25 increases, and the potential at point A' determined by the resistance value "TH" of the thermistor 26 and the resistance value becomes Since the potential at point B' determined by resistor 1 (4, R', and
Since the quick freezing switch 21 is not pressed at this time, the output of the quick cooling timer 22 is "L", and therefore both inputs of the OR circuit 24 are "L II", so the relay 16 is OFF, that is, The suction coil of the flow path switching valve 13 is energized, and the refrigerant circuit is connected to the compressor 9-condenser 1.
o - A normal circulation cycle of the first capillary tube 11 - main cooler -> compressor 9 is constructed to cope with light loads, save all cooling power, and reduce the operating input of the compressor.

又一方前述の場合に外気温度が所定値よりも高い場合は
、外気温度検出装置25の外気温サーミスタ26の抵抗
値RTH′が小さくなり、サーミスタ26の抵抗値RT
H′と抵抗R1′とで決定されるA′点の電位が抵抗R
2′、R3′とで決定されるB点の電位より高くなりコ
ンパレータ27の出力が°H°′となるからOR回路2
4を介してリレー16をONし、流路切替弁13は非通
電となって冷媒回路は圧縮機9→凝縮器10→第2の毛
細管12→補助冷却器8→主冷却器4→圧縮機9の急速
冷凍用の環状流路に切替わって高負荷時に対する冷却能
力を発揮し、能力不足による運転率の大幅な増大、即ち
圧縮機の消費電力量の増大を抑制させる。
On the other hand, in the case described above, when the outside air temperature is higher than the predetermined value, the resistance value RTH' of the outside air temperature thermistor 26 of the outside air temperature detection device 25 becomes small, and the resistance value RT of the thermistor 26 decreases.
The potential at point A' determined by H' and resistor R1' is
2' and R3', and the output of the comparator 27 becomes °H°', so the OR circuit 2
4, the relay 16 is turned on, the flow path switching valve 13 is de-energized, and the refrigerant circuit is compressor 9 → condenser 10 → second capillary tube 12 → auxiliary cooler 8 → main cooler 4 → compressor 9 to the annular flow path for rapid freezing to exhibit cooling capacity during high loads, and to suppress a significant increase in the operating rate due to insufficient capacity, that is, an increase in the power consumption of the compressor.

尚、急速冷凍動作については、任意に急速冷凍スイッチ
21をONすると急冷タイマー22の出力は所定の急冷
時間中n Hnとなり、外気温検出装置26からの信号
に係わりな(OR回路24を9 ′″−・ 介してリレー16をONさせ流路切替弁を非通電にして
急速冷凍流路に切替えて補助冷却器8が急速冷凍作用を
行なう。尚、この時急冷タイマー22の出力″H″′に
よってOR回路2oは、温度制御装置17に係わりなく
°H″゛となるためリレー15は強制的にONされて圧
縮機9.送風機6は連続運転され冷却効果を一層高める
ものである。
Regarding the quick freezing operation, when the quick freezing switch 21 is arbitrarily turned on, the output of the quick cooling timer 22 becomes nHn during the predetermined rapid cooling time, regardless of the signal from the outside temperature detection device 26 (OR circuit 24 is The relay 16 is turned ON through the auxiliary cooler 8 to perform quick freezing by turning on the flow path switching valve and switching to the quick freezing channel. At this time, the output of the quick cooling timer 22 is "H" As a result, the OR circuit 2o becomes ``H'' regardless of the temperature control device 17, so the relay 15 is forcibly turned on and the compressor 9 and blower 6 are operated continuously to further enhance the cooling effect.

次に、通常運転中庫内が一定温度にまで冷却されれば、
サーミスタ18の抵抗値RTHが大きくなり、温度制御
装置17のA電位がB電位よりも小さく々るため、コン
パレータ19の出力は“L″′となって、急冷タイマー
22の出力からの°′L″信号と合わせてOR回路2o
の出力も゛°Lパとなり、従ってリレー16がOFFし
圧縮機9.送風機5が停止する。以後この作用を繰り返
して外気温度に応じた冷却力をもつ冷媒流路を選択して
冷却運転を行なうものである0 また、第2の毛細管12の流路抵抗を第1の毛細管11
の流路抵抗よりも大きく設計することにより高外気温時
には、急速冷凍流路に切替わって10へ−7 冷却器能力は増大するが、毛細管の絞り効果が犬となる
ため冷却器の蒸発温度は相応に低い温度が得られて、圧
縮機の仕事量、即ち入力は増大させずに所定の能力が得
られる。逆に低外気温時には予め通常流路の第1の毛細
管の流路抵抗は小さ目であるため、冷媒循環能力が確保
されて、特に低外気温時に凝縮器能力が相対的に過大と
なり、高圧圧力が低下し循環量不足によって冷却効率が
著しく低下することがなくなる。
Next, if the inside of the refrigerator is cooled to a certain temperature during normal operation,
Since the resistance value RTH of the thermistor 18 becomes large and the A potential of the temperature control device 17 becomes smaller than the B potential, the output of the comparator 19 becomes "L"', and the output of the quenching timer 22 becomes "L"'. '' together with the OR circuit 2o
The output of the compressor 9 also becomes ゛°L, so the relay 16 is turned off and the compressor 9. The blower 5 stops. Thereafter, this operation is repeated to select a refrigerant flow path having a cooling power according to the outside air temperature and perform a cooling operation.
By designing the flow path resistance to be larger than the flow path resistance, when the outside temperature is high, the flow path is switched to the rapid freezing flow path and the cooler capacity increases, but the condenser's evaporation temperature decreases because the capillary throttling effect is A correspondingly low temperature is obtained, and a given capacity is obtained without increasing the work or input of the compressor. On the other hand, when the outside temperature is low, the flow resistance of the first capillary tube in the normal flow path is small, so the refrigerant circulation capacity is ensured, and the condenser capacity becomes relatively excessive, especially at low outside temperatures, resulting in high pressure. This prevents a significant drop in cooling efficiency due to insufficient circulation.

発明の効果 以上の構成よシ明らかな様に本発明は強制通風方式の冷
凍冷蔵庫の冷凍室内に、直接冷却方式の補助冷却器を配
設した急速冷凍室を設け、急速冷凍時は主冷却器と補助
冷却器の相方に冷媒を流し、通常冷却時は外気温度によ
り主冷却器のみか、主動器と補助冷却器の相方に冷媒を
流すように流路制御装置で切替を行なわせるよう構成し
たもので。
As is clear from the structure of the invention, the present invention provides a quick freezing compartment in which a direct cooling type auxiliary cooler is installed in the freezer compartment of a forced ventilation type refrigerator-freezer. The refrigerant flows through the main cooler and the auxiliary cooler, and during normal cooling, the flow path control device switches the refrigerant between the main cooler and the auxiliary cooler depending on the outside temperature. Something.

急速冷凍流路を上手く活用して、外気温度による負荷条
件に応じた冷却力を持つ冷媒流路を自動的に選択して運
転を行なうため、従来例のように単11 ぺ−・ −の冷凍サイクルで、外気温度の変化に対応出来ず、止
むなく効率の悪いシステムの組合せで運転することがな
く、予め冷凍サイクルの設計の際に外気温度の高低に対
応して十分に効率の良い機器の組合せ選択を行なうこと
によって、外気温度の変化に対して常に冷却効率の高い
冷凍サイクルを有した冷蔵庫を提供することが出来1本
来の急速冷凍機能と相まって実用上の効果は極めて高い
ものである。
By making good use of the rapid freezing channel, the system automatically selects and operates a refrigerant channel that has a cooling power according to the load conditions based on the outside temperature, so it is possible to operate the system by automatically selecting a refrigerant channel that has a cooling power according to the load conditions based on the outside temperature. By designing a refrigeration cycle in advance, it is possible to avoid operating a combination of systems that are unavoidably inefficient due to their inability to respond to changes in outside air temperature. By selecting combinations, it is possible to provide a refrigerator with a refrigeration cycle that always has high cooling efficiency against changes in outside temperature, and in combination with the original rapid freezing function, the practical effect is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す制御回路図、第2図は
従来例を示す冷蔵庫の断面図、第3図はその冷凍サイク
ル配管図である。 3・・・・・・冷却室、4・・・・・・主冷却器、5・
・・・・・送風機、6・・・・・・冷凍室、6′・・・
・・・急速冷凍室、7・・・・・・冷蔵室、8・・・・
・・補助冷却器、9・・・・・・圧縮機、13・・・・
・流路制御装置、21・・・・・・急速冷凍スイッチ、
23・・・・・・急速冷凍装置、26・・・・・・外気
温度検出装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 1 / 第3図
FIG. 1 is a control circuit diagram showing an embodiment of the present invention, FIG. 2 is a sectional view of a conventional refrigerator, and FIG. 3 is a refrigeration cycle piping diagram thereof. 3... Cooling room, 4... Main cooler, 5.
...Blower, 6...Freezer compartment, 6'...
...Quick freezing room, 7...Refrigerating room, 8...
...Auxiliary cooler, 9...Compressor, 13...
・Flow path control device, 21... Rapid freezing switch,
23... Rapid freezing device, 26... Outside air temperature detection device. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 1 / Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)冷却室内に設けた主冷却器で冷却した空気を冷凍
室と冷蔵室へ循環せしめる送風機と、前記冷凍室内に設
けた前記主冷却器で冷却した空気が通過する急速冷凍室
と、この急速冷凍室内に配置した直接冷却方式の補助冷
却器と、冷媒を前記主冷却器のみに流すか、前記主冷却
器と補助冷却器の両方に流すかを制御する流路制御装置
と、冷凍サイクルの一部を構成する圧縮機を連続運転さ
せ、かつ前記流路制御装置を作動させて前記補助冷却器
に連続的に冷媒を流し急速冷凍を行なわせる急速冷凍装
置と、外気温度を検出し、前記急速冷凍装置の動作とは
無関係に外気温度に応じて前記流路制御装置を作動させ
て前記冷媒流路を切替える手段とを備えた冷蔵庫。
(1) A blower that circulates the air cooled by the main cooler installed in the cooling room to the freezer and refrigerator compartments, a quick freezing room through which the air cooled by the main cooler installed in the freezer room passes; A direct cooling type auxiliary cooler placed in a quick freezing chamber, a flow path control device that controls whether the refrigerant flows only to the main cooler or to both the main cooler and the auxiliary cooler, and a refrigeration cycle. A quick freezing device that continuously operates a compressor that constitutes a part of the device and operates the flow path control device to continuously flow refrigerant to the auxiliary cooler to perform quick freezing, and detects outside air temperature; A refrigerator comprising means for operating the flow path control device to switch the refrigerant flow path in accordance with outside air temperature, regardless of the operation of the quick freezing device.
(2)外気温度に応じて冷媒流路のを切替える切替手段
は、高外気温時には主冷却器と補助冷却器の2 ・\ 両方に、低外気温時には主冷却器にのみ冷媒を流すよう
構成した特許請求の範囲第1項記載の冷蔵庫。
(2) The switching means that switches the refrigerant flow path according to the outside temperature is configured so that when the outside temperature is high, the refrigerant flows through both the main cooler and the auxiliary cooler, and when the outside temperature is low, the refrigerant flows only through the main cooler. A refrigerator according to claim 1.
JP9588584A 1984-05-14 1984-05-14 Refrigerator Pending JPS60240976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9588584A JPS60240976A (en) 1984-05-14 1984-05-14 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9588584A JPS60240976A (en) 1984-05-14 1984-05-14 Refrigerator

Publications (1)

Publication Number Publication Date
JPS60240976A true JPS60240976A (en) 1985-11-29

Family

ID=14149770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9588584A Pending JPS60240976A (en) 1984-05-14 1984-05-14 Refrigerator

Country Status (1)

Country Link
JP (1) JPS60240976A (en)

Similar Documents

Publication Publication Date Title
JPS60240976A (en) Refrigerator
JPS60240975A (en) Quick refrigerator for refrigerator
US3040544A (en) Air conditioning unit having high and low capacity operation
JPS59229162A (en) Quick refrigerator for refrigerator
JPH0570067B2 (en)
JPH0138472Y2 (en)
KR100364530B1 (en) Refrigerator
JPS6066080A (en) Rapid refrigerator for refrigerator
JPH0235917B2 (en)
JPS60256775A (en) Rapid refrigerator for refrigerator
JPH0120626Y2 (en)
JPS6091171A (en) Rapid optical refrigerator for refrigerator
JPS6023766A (en) Quick refrigerator for refrigerator
JPS60218568A (en) Refrigerator
KR980003348A (en) Cooling cycle control method of the refrigerator using a 2-cooled evaporator-3 way valve
JPS62172164A (en) Operation controller for refrigerator
JPS6082768A (en) Refrigerator with rapid refrigerator
JPS60256774A (en) Rapid refrigerator for refrigerator
JPH05240556A (en) Refrigerator
JPS6255589B2 (en)
JPS60251372A (en) Quick refrigerator for refrigerator
JPH0694978B2 (en) refrigerator
KR980003347A (en) Control Method of Cooling Cycle of Regenerative 2 Evaporator Direct Type Refrigerator
JPS62186182A (en) Controller for refrigerator
JPS5855654A (en) Refrigerator