JPS6024062B2 - Flange sealed quartz tube - Google Patents

Flange sealed quartz tube

Info

Publication number
JPS6024062B2
JPS6024062B2 JP20584081A JP20584081A JPS6024062B2 JP S6024062 B2 JPS6024062 B2 JP S6024062B2 JP 20584081 A JP20584081 A JP 20584081A JP 20584081 A JP20584081 A JP 20584081A JP S6024062 B2 JPS6024062 B2 JP S6024062B2
Authority
JP
Japan
Prior art keywords
tube
quartz tube
quartz
glass
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20584081A
Other languages
Japanese (ja)
Other versions
JPS58110446A (en
Inventor
幸次 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASO DENZAI KOGYO KK
Original Assignee
KAWASO DENZAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASO DENZAI KOGYO KK filed Critical KAWASO DENZAI KOGYO KK
Priority to JP20584081A priority Critical patent/JPS6024062B2/en
Publication of JPS58110446A publication Critical patent/JPS58110446A/en
Publication of JPS6024062B2 publication Critical patent/JPS6024062B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】 本発明は、石英管や中実石英管などの所定位置に金属フ
ランジを気密に封着した金属預器等への直俵溶封着を可
能にしたフランジ封着石英管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a flange-sealed quartz tube that enables direct welding and sealing to a metal container, etc., in which a metal flange is hermetically sealed at a predetermined position of a quartz tube or solid quartz tube. It is related to pipes.

従来、高温容器内温度測定用熱電対の保護用として石英
管が使用されていたが、高温高圧容器内の温度測定の場
合は、石英管が高温高圧容器内に挿入される部分の気密
が問題となる。
Conventionally, quartz tubes have been used to protect thermocouples used to measure temperatures inside high-temperature containers, but when measuring temperatures inside high-temperature, high-pressure containers, airtightness at the part where the quartz tube is inserted into the high-temperature, high-pressure container is an issue. becomes.

挿入部を樹脂等でシールドすることは、熱による焼損の
ため不可能である。
It is impossible to shield the insertion portion with resin or the like because of burnout caused by heat.

また、耐火セメント等では、容器のヒートサイクル等に
より亀裂や剥離等を生じ、完全なシールドをすることは
困難である。
Furthermore, fireproof cement or the like may crack or peel due to the heat cycle of the container, making it difficult to provide a complete shield.

また、最近、情報伝達に使用される光フアィバは光を閉
じ込め伝搬させるため、屈折率の大きなコア部とそれよ
り屈折率の小さいクラッド部からなる二層構造が採られ
ており、コアークラッド境界面で全反射を繰り返しなが
ら伝わるステップ型や、隆方向の屈折率分布に応じて連
続的に経路を変えながら伝わるグレーデッド型などの多
モード光フアィバや、コア径を小さくして、伝搬するモ
ードを制限し、単一のモードだけを伝搬するようにした
単一モード光フアィバなどがあるが、これらには、低損
失の石英ガラスが主として使用されている。
In addition, recently, optical fibers used for information transmission have adopted a two-layer structure consisting of a core with a high refractive index and a cladding with a lower refractive index in order to confine and propagate light. Multi-mode optical fibers include step-type optical fibers that propagate while repeating total internal reflection, graded-type optical fibers that propagate while changing the path continuously according to the refractive index distribution in the ridge direction, and multi-mode optical fibers with a small core diameter to reduce the propagating mode. There are single-mode optical fibers that allow only a single mode to propagate, but low-loss silica glass is mainly used in these fibers.

ところが、例えば密閉高温高圧容器内の情報を取出す場
合などにおいて、石英系光フアィバを使用する場合に密
閉高温高圧容器壁の貫通部分の気密性を保持することが
問題であった。
However, when using a quartz-based optical fiber, for example, when extracting information inside a sealed high-temperature, high-pressure container, there is a problem in maintaining the airtightness of the penetrating portion of the wall of the sealed high-temperature, high-pressure container.

高温のため、樹脂によるシールドは不可であり、無機シ
ールド剤などによるシールドも、ヒ−トサィクルにシー
ルドが耐えることが困難である。
Due to the high temperature, it is impossible to shield with resin, and even with shields using inorganic shielding agents, it is difficult for the shield to withstand heat cycles.

また宇宙関係器材や原子力関係器材などのように、特に
高度な気密を要求する場合は、樹脂シールドでは樹脂自
体に気密限度があり、一定の気密差圧を超えた場合は、
気密性を保つことは不可能である。従って、高温高圧条
件下や、特に高い気密性を要求される場合は、熱電対の
保護管や、光フアィバなどに使用される石英管や、石英
中実管には、金属フランジを溶封着し、この金属フラン
ジを高温高圧容器や気密容器等に銀ろう付け等により溶
接すれば、高温高圧あるいは超高気密条件を満足する気
密性を付与することができる。しかし、この場合石英管
に金属フランジ例えばコバールを溶封着することは、両
者の熱膨張係数差が大きいため、従釆困難とされていた
。即ち、石英ガラスの熱血彰張係数は5×10‐7/℃
であるのに対し、例えばガラスの気密封着体として、広
く使用されている、コバールと棚桂酸ガラスは、コバー
ル(Fe−Nj−Co)の熱膨張係数が45〜51×1
0‐7/℃、これに封着される、棚桂酸ガラスの熱膨張
係数が38〜53×10‐7/℃で、両者の熱膨張係数
差は小さく問題ないが、石英ガラスとは熱膨張係数の差
が大きすぎるため、溶封着の際、亀裂等を生じて、石英
に例えばコバールの金属フランジを溶封着することや、
石英管を耐熱高気密に金属容器を貫通せしめて溶封着す
ることは困難であった。
In addition, when a particularly high degree of airtightness is required, such as space-related equipment or nuclear power-related equipment, the resin itself has an airtightness limit for resin shields, and if a certain airtight differential pressure is exceeded,
It is impossible to maintain airtightness. Therefore, under high-temperature, high-pressure conditions or when particularly high airtightness is required, metal flanges are melt-sealed to quartz tubes used for thermocouple protection tubes, optical fibers, and solid quartz tubes. However, if this metal flange is welded to a high-temperature, high-pressure container, an airtight container, etc. by silver brazing or the like, airtightness that satisfies high-temperature, high-pressure or ultra-high airtightness conditions can be imparted. However, in this case, it has been difficult to weld and seal a metal flange, such as Kovar, to a quartz tube because of the large difference in coefficient of thermal expansion between the two. In other words, the hot-blood tension coefficient of quartz glass is 5 x 10-7/°C.
On the other hand, Kovar (Fe-Nj-Co) has a thermal expansion coefficient of 45 to 51×1, which is widely used as an airtight seal for glass.
0-7/℃, and the thermal expansion coefficient of the shelf silicate glass sealed to this is 38 to 53 x 10-7/℃, and the difference in thermal expansion coefficient between the two is small and there is no problem, but quartz glass has a thermal expansion coefficient of 38 to 53 x 10-7/℃. Because the difference in expansion coefficient is too large, cracks may occur during melt-sealing, making it difficult to melt-seal, for example, a Kovar metal flange to quartz.
It has been difficult to weld and seal a quartz tube through a metal container in a heat-resistant and airtight manner.

本発明は、このように従釆石英ガラスに金属フランジを
溶封着することは困難とされていたものを可能としたも
ので、第1図、第2図に示すように、例えばコバール等
の一方を細くしたガラス封着用の金属フランジ管2の細
管側に溶封着された棚桂酸ガラス等の封着ガラス裁管3
と石英教管1との間に、両裁管間の熱膨張係数の勾配を
順次緩和する、それぞれ異なる熱膨張係数を有する一定
長さの複数個のガラス裁管4を介在せしめて、一体に溶
封着してなる石英裁管封着フランジ部Aを、石英管Bの
所定位置外側に、石英管Bがその中心部に位置するよう
、その石英裁管1の端部6により、溶封着一体にした構
造のフランジ封着石英管である。
The present invention has made it possible to fuse and seal metal flanges to fused quartz glass, which was considered difficult. A sealed glass cut tube 3 made of shelf silicate glass or the like is melt-sealed to the narrow tube side of a metal flange tube 2 for glass sealing with one side narrowed.
A plurality of glass cut tubes 4 having a constant length each having a different coefficient of thermal expansion are interposed between the two tubes and the quartz tube 1 to sequentially reduce the gradient of the coefficient of thermal expansion between the two tubes. The fused quartz tube sealing flange portion A is melt-sealed at a predetermined position outside of the quartz tube B using the end 6 of the quartz tube 1 so that the quartz tube B is located in the center. This is a flange-sealed quartz tube with an integrated structure.

なお、複数個のガラス裁管4a,4b・・・・・・4n
は、石英裁管1(熱膨張係数5×10‐7/℃)と封着
ガラス裁管3(例えば棚桂酸ガラスの熱膨張係数斑〜5
3xlo−7ノ℃)の間の熱膨張係数の勾配を緩和する
ため、例えばガラス裁管4aは10×10−7ノ。
In addition, a plurality of glass cutting tubes 4a, 4b...4n
are the quartz cut tube 1 (thermal expansion coefficient 5 × 10-7/℃) and the sealed glass cut tube 3 (for example, the thermal expansion coefficient unevenness of shelf cirate glass ~ 5
In order to alleviate the gradient of the thermal expansion coefficient between 3xlo-7°C), for example, the glass cutting tube 4a has a thermal expansion coefficient of 10x10-7°C.

〇 4bは17×10−7ノ。〇・・・‐‐・4nは3
5×10‐’/℃等と段階的に両者間の熱膨張係数が順
次移行するように、それぞれ異った熱膨ヒ張係数を有す
る一定の長さのガラス裁管を、次々に溶封着したもので
ある。また、4a,4b……4nと異つた所定の熱膨張
係数を有するガラスは、熱膨張係数の異るガラス素材を
適宜配合して作ることが可能である。また、石英裁管1
の端部6を石英管Bに溶封着するのは、石英裁管封着フ
ランジ部Aと石英管Bとの間をスベーサ等で保持して、
石英裁管1の端部6をバーナで加熱溶着すればよい。
〇 4b is 17 x 10-7. 〇・・・--・4n is 3
Cut glass tubes of a certain length, each having a different coefficient of thermal expansion, are melt-sealed one after another so that the coefficient of thermal expansion between the two changes in stages, such as 5 x 10-'/℃. This is what I wore. Further, glasses having predetermined coefficients of thermal expansion different from 4a, 4b, . . . 4n can be made by suitably blending glass materials having different coefficients of thermal expansion. In addition, quartz tube 1
The end portion 6 of the quartz tube B is melt-sealed to the quartz tube B by holding the space between the quartz cut tube sealing flange portion A and the quartz tube B with a spacer or the like.
The end portion 6 of the quartz cut tube 1 may be heated and welded with a burner.

なお、第3図にしめすように、予め石英管Bと石英裁管
封着フランジ部Aの石英裁管1とガラス裁管4の部分と
の間隙に耐熱無機緩衝材7、例えばセラミックファイバ
アのバルク状、ベーパ状、プランケット状、あるいはフ
ェルト状等のものを介在させておけば、石英裁管1の端
部6を石英管Bに溶封着する際に、スべ−サ等で石英教
管封着フランジ部Aを保持する必要もなく、また、使用
に際しても、耐熱無機緩衝材7で石英裁管封着フランジ
部Aを保持するので、強度的に強く、また、封着した端
部6にかかる衝撃を緩和することができる。
As shown in FIG. 3, a heat-resistant inorganic buffer material 7, for example, a ceramic fiber material, is applied in advance to the gap between the quartz tube B and the quartz tube 1 and glass tube 4 portion of the quartz tube sealing flange portion A. If a bulk, vapor, plunket, or felt material is interposed, the quartz can be removed with a smoother or the like when the end 6 of the cut quartz tube 1 is melt-sealed to the quartz tube B. There is no need to hold the sealing flange part A of the teaching tube, and since the quartz tube sealing flange part A is held with the heat-resistant inorganic buffer material 7 during use, it is strong and the sealed end The impact applied to the portion 6 can be alleviated.

次に石英管Bは、熱電対等の保護管に使用される中空管
や、光フアィバなどに使用されるコア部、クラッド部か
らなる中実管、あるいは通常の石英樺等にも同様に石英
裁管封着、フランジ部Aを溶封着して使用することがで
きる。
Next, quartz tube B can be used as a hollow tube used for protection tubes such as thermocouples, a solid tube consisting of a core part and a cladding part used for optical fibers, or ordinary quartz birch. It can be used by sealing the cut tube or by melting and sealing the flange portion A.

本発明によるフランジ封着石英管を使用するには、高温
高圧容器や、高い気密性を要する容器の挿入孔に本発明
のフランジ封着石英管を挿入し、ガラス封着用の金属フ
ランジ管2と金属容器とを、銀ろう付または半田付すれ
ばよい。
To use the flange-sealed quartz tube of the present invention, the flange-sealed quartz tube of the present invention is inserted into the insertion hole of a high-temperature, high-pressure container or a container that requires high airtightness, and the flange-sealed quartz tube of the present invention is inserted into the metal flange tube 2 for glass sealing. The metal container may be silver-brazed or soldered.

本発明のフランジ封着石英管は、上託したように、各接
合部は、総て、ガラス同志または封着金属と封着ガラス
で熔封着してあるため、気密度は高くリーク量も、質量
分析計形ヘリウムリークデテク夕で1×10‐2Tor
r′−1/s以下であり、超気密容器や、高温高圧容器
等への使用が可能である。
As stated above, the flange-sealed quartz tube of the present invention has high airtightness and low leakage because each joint is sealed with glass or with a metal and a glass. , 1 x 10-2 Tor with mass spectrometer type helium leak detection
r'-1/s or less, and can be used in ultra-airtight containers, high-temperature, high-pressure containers, etc.

更に、石英管Bとガラス封着用の金属フランジ管2との
間に熱膨張係数の勾配を順次緩和する、それぞれ熱膨咳
張係数が異なる一定長さのガラス裁管4を介在させ一体
化させているので、ヒートサイクルにも良く耐える等、
多くの特徴を有するもので、従来石英管へ金属フランジ
を溶封着することは困難とされていたものを、可能とし
たものである。更に、本発明のフランジ封着石英管は、
金属容器に高温気密条件下で使用できるよう、通常銀ろ
う付けされるが、この場合ガラス封着用の金属フランジ
管2は相当高温となり金属容器の熱応力も受けるが、コ
バール等の極力熱膨張係数がガラスの熱膨ヒ張係数に近
い金属を、薄く二段にしてガラス裁管4への熱影響を極
力少なくした金属フランジ管2と、複数の熱膨張係数が
順次異なる一定長さのガラス管を一体にしたガラス裁管
4、ならびに石英裁管1により、熱応力を次々に減少せ
しめる構造としているため、各部に熱異状を生ずること
なく、金属フランジ管2により金属容器へのろう付けを
可能容易にするとともに、使用中の金属容器からの熱応
力も、金属フランジ管2、ガラス教管4、石英裁管1と
次々に緩和して各部に異状を生ずることなく、更に石英
裁管1の端部6により石英管Bに小面積で溶封着して、
溶封着時ならびに使用時の石英管Bへの熱応力や溶封着
歪の影響を少なくしているので、石英管Bが光フアィバ
の場合においても、その機能を損なうことがない等、石
英管Bの金属容器へのろう付け封着、並びに高温環境下
での使用を可能にする等、多くの特徴を有するものであ
る。
Furthermore, a glass cut tube 4 having a fixed length having different thermal expansion and cough coefficients is interposed between the quartz tube B and the metal flange tube 2 for sealing the glass to gradually reduce the gradient of the thermal expansion coefficient. Because of this, it can withstand heat cycles well, etc.
It has many features and has made it possible to weld and seal a metal flange to a quartz tube, which was previously considered difficult. Furthermore, the flange-sealed quartz tube of the present invention has
Metal containers are usually soldered with silver so that they can be used under high-temperature airtight conditions, but in this case, the metal flange tube 2 for glass sealing becomes quite high temperature and is also subject to the thermal stress of the metal container, but the thermal expansion coefficient of Kovar etc. The metal flange tube 2 is made of metal whose thermal expansion coefficient is close to that of glass and is made in two thin layers to minimize the effect of heat on the glass cutting tube 4, and the glass tube of a certain length has a plurality of sequentially different thermal expansion coefficients. The glass cut tube 4 and the quartz cut tube 1 have a structure that successively reduces thermal stress, so the metal flange tube 2 can be brazed to a metal container without causing thermal abnormalities in each part. In addition, the thermal stress from the metal container during use is relieved one after another in the metal flange tube 2, the glass teaching tube 4, and the cut quartz tube 1, without causing any abnormality in each part. The end portion 6 is melt-sealed in a small area to the quartz tube B.
Since the influence of thermal stress and melting strain on the quartz tube B during welding and use is reduced, even if the quartz tube B is an optical fiber, its function will not be impaired. It has many features, such as enabling the tube B to be soldered and sealed to a metal container and to be used in a high-temperature environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のフランジ部の説明用断面図、第2図
、第3図は本発明のフランジ封着石英管の説明断面図。 1は石英裁管、2はガラス封着用の金属フランジ管、3
は封着ガラス裁管、4は異なる熱膨張係数を有する複数
個のガラス裁管で、4a,4b・・・・・・4nはその
各々のガラス裁管、5は石英管Bと石英裁管封着フラン
ジ部Aとの間隙、6は石英裁管の端部、7は耐熱無機緩
衝材、Aは石英裁管封着フランジ部、Bは石英管。第1
図 第2図 第3図
FIG. 1 is an explanatory cross-sectional view of a flange portion of the present invention, and FIGS. 2 and 3 are explanatory cross-sectional views of a flange-sealed quartz tube of the present invention. 1 is a quartz cut pipe, 2 is a metal flange pipe for glass sealing, 3
4 is a sealed glass tube, 4 is a plurality of glass tubes having different coefficients of thermal expansion, 4a, 4b...4n are each of the glass tubes, and 5 is a quartz tube B and a quartz tube. The gap between the sealing flange part A and 6 is the end of the quartz tube, 7 is the heat-resistant inorganic buffer material, A is the quartz tube sealing flange part, and B is the quartz tube. 1st
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 一方を細くしたガラス封着用の金属フランジ管の細
管側に封着された封着ガラス裁管と石英裁管との間に、
両裁管間の熱膨張係数の勾配を順次緩和するそれぞれ異
なる熱膨張係数を有する複数個のガラス裁管を一体に溶
着してなる石英裁管封着フランジ部を、石英管または中
実石英管の所定位置外側に、石英管または中実石英管や
その中心部に位置するよう、その石英裁管の端部により
、溶封着一体化した、金属容器への直接溶封着をできる
ようにしたことを特徴とするフランジ封着石英管。 2 一方を細くしたガラス封着用の金属フランジ管の細
管側に封着された封着ガラス裁管と石英裁管との間に、
両裁管間の熱膨張係数の勾配を順次緩和するそれぞれ異
なる熱膨張係数を有する複数個のガラス裁管を一体に溶
着してなる石英裁管封着フランジ部を、石英管または中
実石英管の所定位置外側に、石英管または中実石英管が
その中心部に位置するように、ガラス裁管部分に耐熱無
機緩衝材を介在せしめて、その石英裁管の端部により溶
封着一体化した、金属容器への直接溶封着をできるよう
にしたことを特徴とするフランジ封着石英管。
[Scope of Claims] 1. Between a sealed glass tube and a quartz tube that are sealed on the thin tube side of a metal flange tube for glass sealing, one of which is thin,
A quartz cut tube sealing flange made by welding together a plurality of glass cut tubes each having a different coefficient of thermal expansion to sequentially reduce the gradient of the thermal expansion coefficient between the two cut tubes, is attached to a quartz tube or a solid quartz tube. A quartz tube or a solid quartz tube or a solid quartz tube is placed at a predetermined position on the outside, and the end of the cut quartz tube is integrated with the end of the quartz tube to allow direct welding to the metal container. A flange-sealed quartz tube characterized by: 2. Between the sealed glass cut tube and the quartz cut tube that are sealed on the thin tube side of the metal flange tube for glass sealing with one side narrowed,
A quartz cut tube sealing flange made by welding together a plurality of glass cut tubes each having a different coefficient of thermal expansion to sequentially reduce the gradient of the thermal expansion coefficient between the two cut tubes, is attached to a quartz tube or a solid quartz tube. A heat-resistant inorganic buffer material is interposed in the cut glass tube part so that the quartz tube or solid quartz tube is located at the center of the tube, and the ends of the cut quartz tube are integrated by welding. A flange-sealed quartz tube characterized in that it can be directly melt-sealed to a metal container.
JP20584081A 1981-12-19 1981-12-19 Flange sealed quartz tube Expired JPS6024062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20584081A JPS6024062B2 (en) 1981-12-19 1981-12-19 Flange sealed quartz tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20584081A JPS6024062B2 (en) 1981-12-19 1981-12-19 Flange sealed quartz tube

Publications (2)

Publication Number Publication Date
JPS58110446A JPS58110446A (en) 1983-07-01
JPS6024062B2 true JPS6024062B2 (en) 1985-06-11

Family

ID=16513578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20584081A Expired JPS6024062B2 (en) 1981-12-19 1981-12-19 Flange sealed quartz tube

Country Status (1)

Country Link
JP (1) JPS6024062B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193503A (en) * 1982-04-07 1983-11-11 Mitsubishi Electric Corp Penetration part of optical fiber cable
JPH0328143A (en) * 1989-06-26 1991-02-06 Narumi China Corp Crystalline glass bonded structure and its production

Also Published As

Publication number Publication date
JPS58110446A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
US5177806A (en) Optical fiber feedthrough
US9248615B2 (en) Compact fiber optic sensors
US5745626A (en) Method for and encapsulation of an optical fiber
JP3396422B2 (en) Optical fiber connection method and connection device
US5568585A (en) Low-temperature hermetic sealing of optical fiber components
US9138948B2 (en) Suspended and compact fiber optic sensors
US9574950B2 (en) Grating-based sensor
US7306382B2 (en) Mechanical splice optical fiber connector
GB2191873A (en) Fibre-optic light guide which is resistant to high temperatures in its end-face region
JP2000039535A (en) Optical fiber sleeve
AU774273B2 (en) Polarization-maintaining optical fiber and polarization- maintaining optical fiber component
JP2703300B2 (en) Optical fiber penetration assembly with rigid structure
US5337387A (en) Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components
JPS6024062B2 (en) Flange sealed quartz tube
EP0595973B1 (en) Optical coupler housing
JPH07504767A (en) fiber optic attenuator
CN115435923B (en) Optical fiber sensing head and temperature sensor
JPH06281838A (en) Protecting cover for single-mode directional coupler
JPS63110402A (en) Image fiber
JPS6114489B2 (en)
JPH0381717A (en) Fiberscope
JPH03242605A (en) Hermetic sealing structure of optical fiber introducing part
CN212515129U (en) Single-mode high-temperature optical waveguide sensing head and distributed optical fiber sensing system thereof
US20020131713A1 (en) Tapered fiber holder
JPH0221563B2 (en)