JPS60240371A - Method of welding turbo-rotor shaft - Google Patents

Method of welding turbo-rotor shaft

Info

Publication number
JPS60240371A
JPS60240371A JP9720884A JP9720884A JPS60240371A JP S60240371 A JPS60240371 A JP S60240371A JP 9720884 A JP9720884 A JP 9720884A JP 9720884 A JP9720884 A JP 9720884A JP S60240371 A JPS60240371 A JP S60240371A
Authority
JP
Japan
Prior art keywords
shaft
lower electrode
welding
turbine
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9720884A
Other languages
Japanese (ja)
Inventor
Masami Ishii
石井 正巳
Jiyunichi Mita
三多 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP9720884A priority Critical patent/JPS60240371A/en
Publication of JPS60240371A publication Critical patent/JPS60240371A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes

Abstract

PURPOSE:To weld a turbo-rotor shaft without causing wear of the lower electrode and deformation of the rotor shaft by immersing the turbine rotor in molten alloy of low melting point held in the lower electrode, and applying current and pressure to the turbine shaft. CONSTITUTION:In a welding method of a turbo-rotor shaft that holds the turbine shaft 4 in the upper electrode 5 and holds the turbine rotor 1 in the lower electrode 6, contacts and presses respective welding faces 4a, 1a, applies current through the two electrodes 5, 6, and makes welding at the weld zone 3 generating heat by resistance, a low melting point alloy 8 that melts at temperature below about 80 deg.C is put in above-mentioned lower electrode 6. This is heated and melted through a power source 9 for heating provided with an insulator 10, and above-mentioned turbine rotor 1 is immersed therein. Then, current is applied and welding is performed. Thus, a sufficient energizing area is secured between the turbine rotor having blades of complicated shape and the lower electrode 6, and deformation and wear of the shaft 1b of the turbine rotor 1, the inner face 6c of the lower electrode 6 etc. is prevented, and welding of the turbo-rotor shaft can be made easily.

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は自動車エンジンに装着され、超高速回転にて作
動する、耐熱合金にて製造したタービン・ロータとター
ビン軸との溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method for welding a turbine rotor manufactured from a heat-resistant alloy and a turbine shaft, which is installed in an automobile engine and operates at ultra-high speed rotation.

〔従来技術〕[Prior art]

本発明に係る従来技術としては、特願昭58−2256
7号「ターボ・ロータ軸の溶接方法」の明細書に、第1
〜第3図に示すように、耐熱鋼よりなるタービン°軸4
と、耐熱合金よりな)るタービンロータ1とを溶接部3
にて溶接する場合にユタービン軸4の溶接面4aに傾斜
角を有するリング形状の凸部を4bとし、タービンロー
タ1のi接面である平面1aとを接合して、タービン軸
4とタービンロータlとを加圧しながらコンデンサー式
抵抗溶接にて溶接する旨記載されている。
As a prior art related to the present invention, Japanese Patent Application No. 58-2256
In the specification of No. 7 "Turbo rotor shaft welding method", No. 1
~As shown in Figure 3, the turbine shaft 4 is made of heat-resistant steel.
and a turbine rotor 1 made of a heat-resistant alloy at a welded part 3.
In the case of welding, a ring-shaped convex part 4b having an inclination angle is formed on the welding surface 4a of the turbine shaft 4, and the flat surface 1a which is the i-tangential surface of the turbine rotor 1 is joined. It is stated that welding is performed by condenser resistance welding while pressurizing the parts.

〔従来技術の問題点及びその技術的分析〕この従来のタ
ービン軸とタービンロータとの溶接方法においては、タ
ービンロータは複雑形状なゝ羽根部11a、llb、−
・−及び軸部1a、1bよりなり、軸部1bが円筒形状
の下電極の内面6cに接触して通電することになるが、
溶接時に電流7が軸部1bを流れる場合に、軸部1bの
軸径が小さく、従って面積が少ないためにこの部分も異
常に発熱することになる。このため、軸1bにおいて通
電面積を多くする必要があるが、タービンロータの周辺
部は複雑形状の羽根11a、11bで形成されているた
めに、下電極6と羽根11とを確実に接触させても、通
電面積7を大きくすることはできないという問題点があ
る。
[Problems with the prior art and technical analysis thereof] In this conventional welding method for welding the turbine shaft and the turbine rotor, the turbine rotor has complex-shaped blade portions 11a, llb, -
・- and shaft portions 1a and 1b, and the shaft portion 1b contacts the inner surface 6c of the cylindrical lower electrode to conduct electricity,
When the current 7 flows through the shaft portion 1b during welding, this portion also generates abnormal heat because the shaft diameter of the shaft portion 1b is small and therefore the area is small. For this reason, it is necessary to increase the current-carrying area in the shaft 1b, but since the peripheral part of the turbine rotor is formed of complex-shaped blades 11a and 11b, it is necessary to ensure that the lower electrode 6 and the blades 11 are in contact with each other. However, there is a problem in that the current-carrying area 7 cannot be increased.

〔技術的課題〕[Technical issues]

そこで、本発明は複雑形状な羽根を有するタービンロー
タと、下電極との間に通電面積を充分に確保して抵抗溶
接することを、その技術的課題とするものである。
Therefore, the technical object of the present invention is to perform resistance welding while ensuring a sufficient current-carrying area between a turbine rotor having blades having a complicated shape and a lower electrode.

〔技術的手段及びその作用〕[Technical means and their effects]

上記技術的課題を解決するために講じた技術的手段は、
円筒形状の下電極内に約80℃以下で溶融可能な低融点
合金を溶融し、その中にワークを浸漬して通電、加圧し
て抵抗発熱により、前記タービン軸のリング状プロジエ
クショーン部とタービンロータとを溶接するものである
The technical measures taken to solve the above technical problems are:
A low melting point alloy that can be melted at about 80°C or less is melted in the cylindrical lower electrode, and the workpiece is immersed in the melt and energized and pressurized to generate resistance heat, thereby forming the ring-shaped projection part of the turbine shaft. The turbine rotor is welded to the turbine rotor.

前記の溶接方法は、円筒形状の下電極内に低融点合金と
複雑形状をした羽根を有するタービンロータを浸漬して
、導通的に一体とし、従って通電面積が非常に多くなり
、従来のような軸端部の異常な加熱は無く、タービン軸
とタービンロータとの接合部のみが電流により加熱され
、確実に溶接できるものである。
In the above-mentioned welding method, a turbine rotor having a low melting point alloy and complex-shaped blades is immersed in a cylindrical lower electrode to conductively integrate the rotor, which results in a very large current-carrying area, which is different from conventional welding. There is no abnormal heating of the shaft end, and only the joint between the turbine shaft and the turbine rotor is heated by the current, allowing reliable welding.

〔本発明によって生じた特有の効果〕[Special effects produced by the present invention]

本発明は、次の特有の効果を生じる。すなわち、(1)
タービンロータのようなワークがどんな複雑な形状でも
、円筒形状の下電極内に挿入できる形状であれば、確実
に溶接が可能である。
The present invention produces the following unique effects. That is, (1)
No matter how complicated the shape of the workpiece, such as a turbine rotor, it can be reliably welded as long as it can be inserted into the cylindrical lower electrode.

(2)下電極と、ワークとの接触部が広くなるために、
従来方法のような軸部と接触するところの下電極の一部
分が摩耗するということはなく、コスト的に有利である
(2) Because the contact area between the lower electrode and the workpiece becomes wider,
Unlike the conventional method, the part of the lower electrode that comes into contact with the shaft does not wear out, which is advantageous in terms of cost.

(3)従来構造では軸部端面が加熱により一部変形する
場合がしばしば発生したが、本構造においては、軸の変
形はまったくない。
(3) In the conventional structure, the shaft end face often partially deforms due to heating, but in the present structure, the shaft does not deform at all.

(4)耐熱合金よりなるタービンロータと低融点合金は
濡れ性が悪いために低融点合金内に浸漬後、取り上げて
も、合金の41着はまったく無く、連続生産のライン上
において実施出来るものである。
(4) Turbine rotors made of heat-resistant alloys and low-melting point alloys have poor wettability, so even when they are immersed in a low-melting point alloy and then picked up, there is no 41 drop of the alloy, which can be carried out on a continuous production line. be.

〔実施例〕〔Example〕

以下、上記技術的手段の具体例を示す実施例について説
明する。
Examples illustrating specific examples of the above technical means will be described below.

上電極側のタービン軸の溶接構造については第1図〜第
3図に示すものと同一で、下電極側については第4図〜
第6図により説明する。
The welding structure of the turbine shaft on the upper electrode side is the same as that shown in Figures 1 to 3, and the welding structure of the turbine shaft on the lower electrode side is the same as that shown in Figures 4 to 3.
This will be explained with reference to FIG.

6は下電極、8は低融点合金で、はぼ80°C以下で溶
融するもので、ビスマス(Bi)44.2%。
6 is a lower electrode, and 8 is a low melting point alloy that melts at approximately 80°C or lower, and is made of 44.2% bismuth (Bi).

鉛(Pcl) 24.8%、インジューム(In)18
.5%、錫(Sn)12.5%、その他よりなる合金で
ある。
Lead (Pcl) 24.8%, Indium (In) 18
.. 5%, tin (Sn) 12.5%, and others.

9は加熱用電源、10は絶縁体、12はセラミックより
なる当板である。
9 is a heating power source, 10 is an insulator, and 12 is a backing plate made of ceramic.

以−Fの構造において、円筒形状の下電極6内に低融点
合金8を入れ約60〜80℃に加熱することにより、溶
融後、タービンロータ1を浸漬せしめて、タービン軸4
の端面4bとタービンロータの平面1aを接触し、上電
極5により加圧して通電する。この場合、電流7は第5
図に示すように、タービンロータ1及び低融点合金8を
通じて下電極6に通電しその範囲もAで示す広範囲な部
分を通電することができる。
In the structure shown below, the low melting point alloy 8 is placed in the cylindrical lower electrode 6 and heated to about 60 to 80°C. After melting, the turbine rotor 1 is immersed and the turbine shaft 4 is heated.
The end surface 4b of the turbine rotor is brought into contact with the flat surface 1a of the turbine rotor, and the upper electrode 5 pressurizes and energizes. In this case, the current 7 is the fifth
As shown in the figure, the lower electrode 6 can be energized through the turbine rotor 1 and the low melting point alloy 8, and can be energized over a wide range indicated by A.

第6図に示すセラミック当板12を下電極6の中央部に
固着すれば、タービンロータ1が通電の場合加圧されて
も、タービンロータの軸1bには通電しないために、軸
1bの変形はまったく無いものである。
If the ceramic backing plate 12 shown in FIG. 6 is fixed to the center of the lower electrode 6, even if the turbine rotor 1 is energized and pressurized, the shaft 1b of the turbine rotor will not be energized, resulting in deformation of the shaft 1b. is completely non-existent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はターボ・ロータ軸の完成品の斜視図であり、第
2図は本発明に係る従来方法の説明図であり、第3図は
第2図の電流の流れを示す説明図である。 第4図は本実施例の要部の断面図であり、第5図は第4
図の電流の流れを示す説明図であり、第6図は他の実施
例の説明図である。 1・・・タービンロータ、3・・・溶接部、4・・・タ
ービン軸、5・・・上電極、6・・・下電極、8・・・
低融点合金、12・・・セラミック板 第3図 第5図 第4図 2 第6図
FIG. 1 is a perspective view of a completed turbo rotor shaft, FIG. 2 is an explanatory diagram of the conventional method according to the present invention, and FIG. 3 is an explanatory diagram showing the current flow in FIG. 2. . FIG. 4 is a sectional view of the main parts of this embodiment, and FIG.
FIG. 6 is an explanatory diagram showing the flow of current in the figure, and FIG. 6 is an explanatory diagram of another embodiment. DESCRIPTION OF SYMBOLS 1... Turbine rotor, 3... Welding part, 4... Turbine shaft, 5... Upper electrode, 6... Lower electrode, 8...
Low melting point alloy, 12... Ceramic plate Figure 3 Figure 5 Figure 4 Figure 2 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)上電極にタービン軸を、下電極にタービンロータ
を保持して、前記タービン軸とタービンロータとを溶接
するターボ・ロータ軸の溶接方法において、前記下電極
内に溶融した低融点合金を保持し、前記タービンロータ
を低融点合金内に浸漬して、通電、加圧して抵抗発熱に
より、前記タービン軸とタービンロータとを溶接する、
ターボ・ロータ軸の溶接方法。
(1) In a turbo rotor shaft welding method in which the turbine shaft is held in the upper electrode and the turbine rotor is held in the lower electrode, and the turbine shaft and the turbine rotor are welded, a low melting point alloy is melted in the lower electrode. holding the turbine rotor, immersing the turbine rotor in a low melting point alloy, applying electricity and applying pressure to weld the turbine shaft and the turbine rotor by resistance heat generation;
How to weld the turbo rotor shaft.
(2)前記下電極の中央部にセラミック板を固着した、
下電極を使用して溶接する、特許請求の範囲第1項に示
す、ターボ・ロータ軸の溶接方法。
(2) a ceramic plate is fixed to the center of the lower electrode;
A method of welding a turbo rotor shaft according to claim 1, which welds using a lower electrode.
JP9720884A 1984-05-14 1984-05-14 Method of welding turbo-rotor shaft Pending JPS60240371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9720884A JPS60240371A (en) 1984-05-14 1984-05-14 Method of welding turbo-rotor shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9720884A JPS60240371A (en) 1984-05-14 1984-05-14 Method of welding turbo-rotor shaft

Publications (1)

Publication Number Publication Date
JPS60240371A true JPS60240371A (en) 1985-11-29

Family

ID=14186200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9720884A Pending JPS60240371A (en) 1984-05-14 1984-05-14 Method of welding turbo-rotor shaft

Country Status (1)

Country Link
JP (1) JPS60240371A (en)

Similar Documents

Publication Publication Date Title
CN104588858A (en) Resistance spot welding steel and aluminum workpieces using electrode weld face cover
JP2014217892A (en) Joining process, joined article, and process of fabricating joined article
US7192324B2 (en) Method for producing a spark plug electrode
US9061363B2 (en) Brazed joining with electrical deposition
US20190363328A1 (en) Robust Reaction Metallurgical Joining
JP2001126845A (en) Method of manufacturing spark plug for internal combustion engine
JPS60240371A (en) Method of welding turbo-rotor shaft
JPS6238802B2 (en)
JP4733391B2 (en) Method for forming good contact surface on cathode support bar and support bar
JP2707699B2 (en) Method of joining rotor and shaft
JP3434210B2 (en) Treatment method of thermal spray coating
JPH1128576A (en) Spatter generation prevention method in electric resistance welding
JP4521756B2 (en) Spot welding electrode
KR200199434Y1 (en) Electrode device for resistance welding
JP3016030B2 (en) Electrode manufacturing method
CN105014216A (en) Method for improving contact state at initial stage of small-scale resistance spot welding of hyperelastic beryllium bronze
JPS6249639A (en) Connection system
JP3000706U (en) Electrode disk for seam welding
JPS6012293A (en) Welding method of short circuiting ring for rotor of electric rotary machine
JPH067958A (en) Welding method for aluminum alloy material and different material
JPH0221913B2 (en)
JPS5813482A (en) Resistance welding method for sintered alloy material
JPS58184064A (en) Brazing of metallic member
JPH03128179A (en) Resistance welding method using tungsten electrode
JPS6028106B2 (en) Manufacturing method for electrode plates for lead-acid batteries