JPS6024014A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS6024014A
JPS6024014A JP58130956A JP13095683A JPS6024014A JP S6024014 A JPS6024014 A JP S6024014A JP 58130956 A JP58130956 A JP 58130956A JP 13095683 A JP13095683 A JP 13095683A JP S6024014 A JPS6024014 A JP S6024014A
Authority
JP
Japan
Prior art keywords
measured
output
distance
reflected light
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58130956A
Other languages
Japanese (ja)
Inventor
Hideo Kusakabe
秀雄 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58130956A priority Critical patent/JPS6024014A/en
Publication of JPS6024014A publication Critical patent/JPS6024014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automatic Focus Adjustment (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable high precision detection even with respect to an object to be measured whose reflectance varies greatly, by controlling two sets of analogue signals so as to make their difference zero without use of any divider. CONSTITUTION:Light reflected from an object to be measured 6 is detected by a position sensor 7. An object lens 3 has its main face in the same plane with reference plane 2, and has the focal length of (h). Two sets of outputs i1 and i2 as detected by the sensor 7 are supplied to an amplifier 10 and a variable gain amplifier 11, respectively. The outputs A1 and A2 from the amplifiers 10 and 11 are supplied to the subtractor 12. A subtracted output D from the subtractor 12 is inputted to an integrater 14 through a switch 13. The integrater 14 integrates the output D and supplies its output I to a driving control circuit 18. A lens barrel 1 is raised and lowered by the circuit 18, and the light emitted by the light source 4 and reflected from the object to be measured 6 varies its position on the sensor 7. Such a loop is repeated until the output D of the subtractor 12 is made zero through the amplifiers 10 and 11.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は被測定物と基準面とを一定距離に制御する自動
距離合わせ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an automatic distance adjustment device that controls a distance between an object to be measured and a reference plane to be a constant distance.

[従来技術とその問題点] 近時、半導体ウェーハやマスク等の試料に微細パターン
を形成する技術として、光露光、X線露光、電子ビーム
露光、その他各種の露光法が開発されているが、このよ
うな分野では試料(被測定物)と対物レンズ主面(基準
面)との距離を高精度に定める必要がある。被測定物と
基桑面とを一定距離に制御してレンズの焦点合わせを行
うには従来被測定物に斜めから光を当て、その反射光の
位置を2相のアナログ信号を発生するポジションセンサ
等で検出している。そして、上記2絹のアナログ信号を
加算・減算すると共K、除算器を用いて加算出力で減算
出力を正規化し、反射光の位置、すなわち被測定物と基
準面との距離を検出するようにしていた。
[Prior art and its problems] Recently, light exposure, X-ray exposure, electron beam exposure, and various other exposure methods have been developed as technologies for forming fine patterns on samples such as semiconductor wafers and masks. In such fields, it is necessary to determine the distance between the sample (object to be measured) and the main surface (reference surface) of the objective lens with high precision. In order to focus the lens by controlling the distance between the object to be measured and the substrate surface at a constant distance, a conventional position sensor is used that shines light onto the object from an angle and generates a two-phase analog signal based on the position of the reflected light. It is detected by etc. Then, by adding and subtracting the above two analog signals, the subtracted output is normalized by the addition output using a divider, and the position of the reflected light, that is, the distance between the object to be measured and the reference surface is detected. was.

しかしながら、この種の手法にあっては次のような問題
があった。すなわち、被測定物から反射した反射光の強
さが変化した場合、その検出位置の精度は除算器の精度
によシ大きく影響される。
However, this type of method has the following problems. That is, when the intensity of the reflected light reflected from the object to be measured changes, the accuracy of the detected position is greatly affected by the accuracy of the divider.

除算器は非直線部を利用して構成されているため温度や
構成部品等の影響を受け易く、その精度を上げることは
極めて困難である。このため、従来被測定物と基準面と
の距離を高精度に定めることはできなかった。
Since the divider is constructed using a non-linear section, it is easily affected by temperature, component parts, etc., and it is extremely difficult to improve its accuracy. For this reason, conventionally it has not been possible to determine the distance between the object to be measured and the reference plane with high precision.

[発明の目的] 本発明の目的は、除算器を用いることなく被測定物と基
準面との距離を検出することができ、上記距離を高精度
に制御することのできる自動距離合わせ装置を提供する
ことにある。
[Object of the Invention] An object of the present invention is to provide an automatic distance adjustment device that can detect the distance between an object to be measured and a reference surface without using a divider, and can control the distance with high precision. It's about doing.

[発明の概要] 本発明の骨子は、被測定物に斜めに光を当て、その反射
光をポジションセンサ等の検出器で検出して、被測定物
と基準面との距離が所望値と一致した場合に検出出力が
零となるように可変ゲインアンプを調整し、上記距離の
ずれを検出出力の零からの差でめ、この差が零となるよ
う駆動回路をコントロール−し、前記距離を所望値に合
わせるようKしたことにある。
[Summary of the Invention] The gist of the present invention is to shine light obliquely onto an object to be measured, and detect the reflected light with a detector such as a position sensor, so that the distance between the object to be measured and a reference plane matches a desired value. Adjust the variable gain amplifier so that the detection output becomes zero when The reason is that K was adjusted to match the desired value.

すなわち、本発明は被測定物と基準面との距離を一定距
離に合わせる自動距離合わせ装置において、上記被測定
物に斜めから光を当てる光照射手段と、前記基準面と一
対的に移動するよう設けられ前記被測定物からの反射光
を該反射光の位置に応じた2組のアナログ信号として検
出する反射光検出手段と、この反射光検出手段によシ得
られた2組の検出出力をそれぞれ増幅すると共に少なく
とも一方は増幅度を可変可能にして増幅する増幅手段と
、この増幅手段によシ得られた2組の出力の各対の差を
それぞれ演算する減算手段と、この減算手段による減算
出力が零になるよう前記被測定物或いは基準面を移動し
これらの距離を可変する移動手段とを設け、前記被測定
物と基準面との距離が一定距離にあるときに前記第1の
減算手段による減算出力が零となるよう予め前記増幅手
段による増幅度を設定しておくようにしたものである・
) [発明の効果] 本発明によれば、除算器を用いることなく被測定物と基
準面との距離を検出することができ、これにより上記距
離を高精度に制御することができる。さらに、2紹のア
ナログ信号の差を零にコントロールするため、反射率の
大きく変化する被測定物に対しても検出精度が低下しな
い等の効果を奏する。
That is, the present invention provides an automatic distance adjustment device that adjusts the distance between an object to be measured and a reference surface to a constant distance, and includes a light irradiation means that irradiates the object to be measured obliquely, and a light irradiation means that moves in pair with the reference surface. a reflected light detection means for detecting the reflected light from the object to be measured as two sets of analog signals according to the position of the reflected light; and two sets of detection outputs obtained by the reflected light detection means. an amplification means for amplifying each of the two outputs and making at least one variable the degree of amplification; a subtraction means for calculating the difference between each pair of outputs obtained by the amplification means; a moving means for moving the object to be measured or the reference surface and varying the distance thereof so that the subtraction output becomes zero, and when the distance between the object to be measured and the reference surface is a constant distance, the first The degree of amplification by the amplification means is set in advance so that the subtraction output by the subtraction means becomes zero.
) [Effects of the Invention] According to the present invention, the distance between the object to be measured and the reference plane can be detected without using a divider, and thereby the distance can be controlled with high precision. Furthermore, since the difference between the two analog signals is controlled to zero, the detection accuracy does not deteriorate even for objects to be measured whose reflectance changes greatly.

[発明の実施例」 第1図は本発明の一実施例を示す概略構成図である。図
中、1は鏡筒1で、この鏡筒l下面(基準面)2に、対
物レンズ3が取着けである。4はLFiDからなる光源
である。光源4の光はスリット5を介して被測定物6に
照射される0この光照射により被測定物6から反射した
光はポジションセンサ7にて検出される。ポジションセ
ンサ7は光の入射位置に応した2組のアナログ信号を出
力するもので、前記光源4から被測定物6への光の入射
方向と平行に前記光学鏡筒1に取着けである。
[Embodiment of the Invention] FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention. In the figure, 1 is a lens barrel 1, and an objective lens 3 is attached to the lower surface (reference surface) 2 of this lens barrel l. 4 is a light source made of LFiD. The light from the light source 4 is irradiated onto the object to be measured 6 through the slit 5. The light reflected from the object to be measured 6 due to this light irradiation is detected by the position sensor 7. The position sensor 7 outputs two sets of analog signals corresponding to the incident position of light, and is attached to the optical lens barrel 1 in parallel to the direction of incidence of light from the light source 4 to the object to be measured 6.

図中8は光学鏡talを土工方向に一移動せしめるため
の駆動制御回路である。前記対物レンズ3の主面は基準
面2と同一面内にあり、このレンズ3の焦点距離をhと
する。
8 in the figure is a drive control circuit for moving the optical mirror tal in the earthwork direction. The main surface of the objective lens 3 is in the same plane as the reference plane 2, and the focal length of this lens 3 is h.

前記ポジションセンサ7で検出された2組の検出出力人
!、A2は演算増幅器10 aおよびRlo aの抵抗
10bからなる増幅器】0および演算増幅器11 g及
びRu aの可変抵抗11 bからなる可変利得11に
それぞれ供給される。増幅器10を介して増幅された出
力B1は減算器12の一方の入力端に供給される。同様
に可変利得増幅器12を介し、増幅された出力A2は減
算器12の他方の入力端に供給される。前記減算器12
0減算出力pはスイッチ13を通って積分器140入力
抵抗14 a (Rx4a )に入力される。スイッチ
15はOFFされており、積分量14な減算器12の出
力りを積分し、その出力■を駆動制御回路8に供給する
Two sets of detection output people detected by the position sensor 7! , A2 are respectively supplied to an amplifier 10 consisting of an operational amplifier 10a and a resistor 10b of Rloa, and a variable gain 11 consisting of an operational amplifier 11g and a variable resistor 11b of Rua. The output B1 amplified via the amplifier 10 is supplied to one input terminal of the subtracter 12. Similarly, the amplified output A2 is supplied to the other input terminal of the subtracter 12 via the variable gain amplifier 12. The subtractor 12
The zero subtraction output p is inputted to the integrator 140 input resistor 14a (Rx4a) through the switch 13. The switch 15 is OFF and integrates the output of the subtracter 12 which is the integral amount 14, and supplies the output (2) to the drive control circuit 8.

鏡筒1は駆動回路によ如上下し、光源4よす被測定物6
から反射した反射光の位置がボジシカンセンサ7上で変
化する。増幅器】0、可変利得増幅器1】を介し、減算
器】2の出力りが、零になるまで上記のループを繰返え
す0 被測定物6と基準面2との距離りの初期設定は次の様処
する。
The lens barrel 1 is moved up and down by a drive circuit, and the light source 4 and the object to be measured 6
The position of the reflected light reflected from the object changes on the physical sensor 7. The above loop is repeated until the output of the subtractor]2 becomes zero via the amplifier]0 and the variable gain amplifier [1]0.The initial setting of the distance between the object to be measured 6 and the reference plane 2 is as follows. It's like that.

スイッチ13を接地し、スイッチ15を抵抗14b。The switch 13 is grounded, and the switch 15 is connected to the resistor 14b.

14C側にする。可変電源14 aを調整し、積分器1
4の出力により、駆動回路8を動かし、被測定物6と基
準面2との距離をhに設定する。被測定物6から反射し
た反射光の位置のポジションセンサ出力を増幅器]0、
可変利得増幅器11で増幅し、減算器12の出力りが零
になる様に可変利得増幅器11の利得を調整する。可変
電源14 d、可変利得増幅器11の調整後、スイッチ
13を減算器12の出力側に、スイッチ15を抵抗14
 a側に戻し、被測定物6と基準面2との距離りの初期
設定を終了する。
Set it to the 14C side. Adjust the variable power supply 14 a, and integrator 1
4, the drive circuit 8 is moved to set the distance between the object to be measured 6 and the reference plane 2 to h. Amplifier]0, which outputs the position sensor output at the position of the reflected light reflected from the object to be measured 6;
The variable gain amplifier 11 amplifies the signal, and the gain of the variable gain amplifier 11 is adjusted so that the output of the subtracter 12 becomes zero. After adjusting the variable power supply 14d and the variable gain amplifier 11, the switch 13 is connected to the output side of the subtracter 12, and the switch 15 is connected to the resistor 14.
Return to side a, and the initial setting of the distance between the object to be measured 6 and the reference plane 2 is completed.

第2図に於いて、いま被測定物6と基準面2との距離が
△hだけ変化したとする。被測定物6からの反射光がポ
ジションセンサ7上で移動する距離Δノは被測定物6に
入射する光の入射角をθとすれば、 △7= 、6h− COSθ ポジションセンサ7の出力電流11.12は、ここで量
は、ボジシ旨ンセンサ7の全電流、Lはポジションセン
サ7の検出有効長、lは△h移動前のポジションセンサ
7のスポット位置である。
In FIG. 2, it is assumed that the distance between the object to be measured 6 and the reference plane 2 has changed by Δh. The distance Δ that the reflected light from the object to be measured 6 moves on the position sensor 7 is as follows, assuming that the angle of incidence of the light incident on the object to be measured 6 is θ, △7= , 6h- COS θ Output current of the position sensor 7 11.12, where the amount is the total current of the position sensor 7, L is the detection effective length of the position sensor 7, and l is the spot position of the position sensor 7 before the Δh movement.

増幅器10、可変利得増幅器11の各々の出力AI、A
2は、 AI ==−11’ R10a A2ニーi2 ・R1,8 減算器12の出力りは、 D ”A2 ” = ’1”10a ’2R11aL−
A l −凰几1゜a−−1R11aは上IC’初期設定により
零に1、 L 調整されているから、Dは。
Outputs AI and A of the amplifier 10 and variable gain amplifier 11
2 is AI ==-11' R10a A2 knee i2 ・R1,8 The output of the subtractor 12 is D "A2" = '1'10a '2R11aL-
Since A l -凰几1゜a--1R11a is adjusted to zero by the upper IC' initial setting, D is.

減算器】2の出力りは積分器14によ沙積分され、積分
出力■け、 △lが零になる様にする。
The output of the subtractor 2 is integrated by the integrator 14, and the integral output is made so that △l becomes zero.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図は
本発明の詳細な説明するだめの模式図であるO 1・・・鏡筒、 2・・・基準面、 3・・・レンズ。 4・・・LED (光源)、 5・・・スリット、6・
・・被測定物、 7・・・ポジションセンサ、8・・・
駆動制御回路、 10・・・増幅器、1】・・・可変利
得増幅器、 12・・・減算器、13・・・スイッチ、
 14・・・積分器、 15・・・スイッチ。 (7317)弁理士 則 近 憲 佑(ほか1名)7
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining the present invention in detail. ··lens. 4...LED (light source), 5...Slit, 6...
...Object to be measured, 7...Position sensor, 8...
Drive control circuit, 10... Amplifier, 1]... Variable gain amplifier, 12... Subtractor, 13... Switch,
14... Integrator, 15... Switch. (7317) Patent attorney Kensuke Chika (and 1 other person) 7

Claims (1)

【特許請求の範囲】[Claims] 被測定物と基働面との距離を一定に合わせる自動距離合
わせ装置において、上記被測定物忙斜めから光を尚てる
光照射手段と、上記基準面と一体的に移動するように設
けられ、前記被測定物からの反射光を該反射光の位置に
応じた2組の信号として検出する反射光検出手段と、こ
の反射光検出手段により得られた2組の検出出力をそれ
ぞれ増幅するとともに少なくとも一方は増幅度を可変可
能忙して増幅する増幅手段と、2組の増幅出力の差を演
算する減算手段と、この減算手段の出力を積分する積分
手段と、この積分手段の出力で前記被測定物と基準面と
の距離を制御する制御手段と、前記被測定物と基準面と
の初期設定距離を前記積分手段の初期値によシ設定する
初期値設定手段と、この初期設定距離での前記反射光検
出手段の出力を前記増幅手段f(入力し、2絹の増幅器
のうち前記増幅度の可変可能な増幅器の増幅度を調整し
て前記減算手段の出力が零になるようにする増幅度調整
手段とにより初期焦点合わせを行なうことを特徴とする
自動焦点合わせ装置。
An automatic distance adjusting device that adjusts the distance between the object to be measured and the reference surface to a constant value, comprising: a light irradiation means for emitting light from an oblique angle to the object to be measured; a reflected light detection means for detecting the reflected light from the object to be measured as two sets of signals according to the position of the reflected light, and amplifying each of the two sets of detection outputs obtained by the reflected light detection means, and at least On the one hand, there is an amplification means for amplifying with a variable amplification degree, a subtraction means for calculating the difference between two sets of amplified outputs, an integration means for integrating the output of the subtraction means, and an output of the integration means for the measurement target. a control means for controlling the distance between the object and the reference plane; an initial value setting means for setting the initially set distance between the object to be measured and the reference plane to the initial value of the integrating means; The output of the reflected light detection means is input to the amplification means (f), and the amplification degree of the variable amplification factor of the two amplifiers is adjusted so that the output of the subtraction means becomes zero. An automatic focusing device characterized in that initial focusing is performed by a degree adjustment means.
JP58130956A 1983-07-20 1983-07-20 Automatic focusing device Pending JPS6024014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130956A JPS6024014A (en) 1983-07-20 1983-07-20 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130956A JPS6024014A (en) 1983-07-20 1983-07-20 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS6024014A true JPS6024014A (en) 1985-02-06

Family

ID=15046562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130956A Pending JPS6024014A (en) 1983-07-20 1983-07-20 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS6024014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152937U (en) * 1986-03-18 1987-09-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152937U (en) * 1986-03-18 1987-09-28
JPH0427782Y2 (en) * 1986-03-18 1992-07-03

Similar Documents

Publication Publication Date Title
US4589773A (en) Position detecting system
JPS61183928A (en) Projection optical device
JPH06167456A (en) Calibration method of scanner and generation apparatus of prescribed scattered-light amplitude
JPS58119642A (en) Automatic electron beam focusing device
JP3036081B2 (en) Electron beam drawing apparatus and method, and sample surface height measuring apparatus thereof
JPS6024014A (en) Automatic focusing device
JPS62195504A (en) Surface position detecting device
JP2507370B2 (en) Sample plane position measuring device
JPS5630724A (en) Inspecting device of substrate surface
JPS5992529A (en) Automatic distance matching device
JPS60147606A (en) Thickness measuring device
US20030012091A1 (en) Apparatus and method for focusing light beam and exposure method
JP3974670B2 (en) Optical displacement measuring device
JPS60227992A (en) Device for accurately focussing laser beam
JPS6316686B2 (en)
JPS6246802B2 (en)
JPH01274022A (en) Light quantity adjustor
JPH0330415A (en) Electron beam lithography device
JPH01184825A (en) Electron beam patterning device
KR970004476B1 (en) Measurement apparatus of wafer position in altgner
JP3283085B2 (en) Laser beam control method
US3315075A (en) Infrared detector testing system comprising scanning the detector surface with a point-source of radiation
JPH0652699B2 (en) Exposure equipment
JP3241991B2 (en) Rangefinder
JPH08130172A (en) Electron beam lithography apparatus