JPS60240019A - Power breaker - Google Patents

Power breaker

Info

Publication number
JPS60240019A
JPS60240019A JP9455984A JP9455984A JPS60240019A JP S60240019 A JPS60240019 A JP S60240019A JP 9455984 A JP9455984 A JP 9455984A JP 9455984 A JP9455984 A JP 9455984A JP S60240019 A JPS60240019 A JP S60240019A
Authority
JP
Japan
Prior art keywords
current
section
voltage
carrying
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9455984A
Other languages
Japanese (ja)
Inventor
稲葉 次紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP9455984A priority Critical patent/JPS60240019A/en
Publication of JPS60240019A publication Critical patent/JPS60240019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電力用遮断器、特に高電圧用直流遮断器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a power circuit breaker, particularly a high voltage DC circuit breaker.

特に高電圧回路における遮断は交流に比べて容易ではな
い。
In particular, breaking high voltage circuits is not easy compared to alternating current circuits.

そこで遮断能力を持たせる一方策として、第1図に示す
ような遮断方式が提案されている。この方式は通電回路
(1)に直列に接続された通電断路部A、例えばカス遮
断器(2)と並列に高電圧発生部B例えばコンデンサの
ような蓄電作用を有する素子(3)を接続して、以下に
説明する要領により通電回路(1)の遮断を行うもので
ある。
Therefore, as a measure to provide a blocking ability, a blocking method as shown in FIG. 1 has been proposed. In this method, a high-voltage generating section B, such as an element (3) having a power storage function such as a capacitor, is connected in parallel to a current-carrying disconnection section A, such as a cass breaker (2), which is connected in series to a current-carrying circuit (1). Then, the energized circuit (1) is cut off in the manner described below.

即ち開極指令Sによ1)通電断路部Aが、第2図の時刻
t。において開極し始めると、電極(2)間にアークが
発生し、アーク電圧は時間の経過と共に大となる電極間
隔の増大により、第2図(d)のように時間と共に増大
する。すると高電圧発生部Bのコンデンサ(3)には、
第2図(0)に示すようにアーク電圧の〔時間的増加率
(dv/clt)x静電容量値〕に等しい電流■3が第
]−図中に示すように流れ、通電回路(1)の電流は通
電断路部Aから高電圧発生部Bに転流を開始する。この
ため電極(2)を流れる電流へは第2図(b)のように
次第に減少する。時刻t1において高電圧発生部Bを流
れる電流−が回路電流工(第11図参照)に達すると、
第2図(b)のように電極(2)に流れる電流へは零と
なり、電極(2)間の発生アークは消滅して電極(2)
間の絶縁耐力は回復する。
That is, in response to the opening command S, 1) the energization/disconnection section A is activated at time t in FIG. When the electrodes (2) begin to open, an arc occurs between the electrodes (2), and the arc voltage increases over time as the electrode spacing increases over time, as shown in FIG. 2(d). Then, the capacitor (3) of high voltage generating section B has
As shown in Figure 2 (0), a current 3 equal to [temporal increase rate (dv/clt) x capacitance value] of the arc voltage flows as shown in the figure, and the energizing circuit (1 ) starts commutation from the energizing/disconnecting section A to the high voltage generating section B. Therefore, the current flowing through the electrode (2) gradually decreases as shown in FIG. 2(b). When the current - flowing through the high voltage generating section B reaches the circuit current circuit (see Fig. 11) at time t1,
As shown in Figure 2 (b), the current flowing through electrode (2) becomes zero, the arc generated between electrodes (2) disappears, and the current flows between electrodes (2).
The dielectric strength between the two is restored.

一方この間高電圧発生部Bのコンデンサ(3)は、転流
電流へにより蓄電し、時刻t2において蓄電圧が第2図
(d)の回路電圧vsに達すると、転流電流■8従って
回路電流■は、第2図(c)(a)のように零となって
回路(1)は遮断される。
Meanwhile, during this period, the capacitor (3) of the high voltage generating section B stores electricity due to the commutated current, and when the stored voltage reaches the circuit voltage vs shown in FIG. 2(d) at time t2, the commutated current (2) becomes zero as shown in FIGS. 2(c) and (a), and the circuit (1) is cut off.

(従来技術の問題点) ところでこの従来方式によって確実な遮断を行うために
は、高電圧発生部Bのコンデンサ(3)の静電容量とし
て(回路電流■/アーク電圧の時間的増加率dv/d、
t )以上のものを必要とし、その容量値が大きいもの
程遮断に好都合である。しかし一般に高電圧用のコンデ
ンサは高価であるため、遮断器の価額の上昇の抑制など
から、静電容量値をできる限り小さく抑えことが望まれ
る。これを実現するためには、例えば通電断路部Aの電
極(2)の開離速度を速くして、」−記アーク電圧の時
間的増加率dv/d、tを増せばよい。しかし使用する
通電断路部Aの形式によって定まる 自ずからなる制限
がある。
(Problems with the prior art) By the way, in order to ensure reliable disconnection using this conventional method, the capacitance of the capacitor (3) of the high voltage generating section B must be calculated as (circuit current ■/temporal increase rate of arc voltage dv/ d,
t ) or more, and the larger the capacitance value, the more convenient it is for interrupting. However, since high-voltage capacitors are generally expensive, it is desirable to keep the capacitance value as low as possible in order to suppress increases in the price of circuit breakers. In order to achieve this, for example, the opening speed of the electrode (2) of the current carrying/disconnecting section A may be increased to increase the temporal increase rate dv/d,t of the arc voltage. However, there are inherent limitations determined by the type of energizing/disconnecting section A used.

また別な方法として例えばアークに外部磁界を作用させ
たり、更にはアークに液化状態にある6弗化硫黄(SF
6)などの絶縁媒体を吹付け、これらによりアークに擾
乱を与えて、アーク電圧を瞬間的に変化させることも考
えられるが、これらの実現のためにはかなり複雑な付属
装置が必要とされるため、遮断器の価額の増大など招き
易い。
Another method is to apply an external magnetic field to the arc, or to apply liquefied sulfur hexafluoride (SF) to the arc.
It is also possible to spray an insulating medium such as 6) and use these to disturb the arc and change the arc voltage instantaneously, but this would require fairly complex accessory equipment. Therefore, the cost of the circuit breaker tends to increase.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段および作用)本発明は次
の着想、即ちアーク電圧を従来のままとしても、コンデ
ンサに印加される電圧を急激3− に変化させれば、アーク電圧を急激に変化させると同等
の作用を得ることができ、これによって小さな静電容量
で大きな電流を通電断路部からコンデンサに転流させ得
ることを着想して成されたものであって、その達成のた
め次に説明する手段をとることを特徴とするものである
(Means and effects for solving the problem) The present invention is based on the following idea: Even if the arc voltage remains unchanged, if the voltage applied to the capacitor is suddenly changed to 3-, the arc voltage can be suddenly reduced. This was done based on the idea that the same effect could be obtained by changing the capacitance, and that a large current could be commutated from the current disconnecting section to the capacitor with a small capacitance.To achieve this, the following steps were taken. It is characterized by taking the measures explained in the following.

即ち第3図に示す一実施例回路図(第1図と同一符号は
同等部分を示す)のように、高電圧発生部Bのコンデン
サ(3)と直列に、特定の動作電圧を越える電圧が印加
されたときにのみ、急激に通電する機能をもつ截断通電
部D、例えばギャップ(4)を接続し、このギャップ(
4)を通電断路部Aの電極(2)の開離が始まったとき
現われる電圧により、コンデンサ(3)を介して通電さ
せることを特徴とするものである。
That is, as shown in the circuit diagram of one embodiment shown in Fig. 3 (same symbols as in Fig. 1 indicate equivalent parts), a voltage exceeding a specific operating voltage is connected in series with the capacitor (3) of the high voltage generating section B. Connect a cut-off energizing part D, for example, a gap (4), which has the function of suddenly energizing only when a voltage is applied, and this gap (
4) The present invention is characterized in that current is applied through the capacitor (3) by the voltage that appears when the electrode (2) of the current-carrying/disconnecting section A begins to open.

このようにすれば、第4図の時刻t。における電極(2
)の開極にもとづくアーク電圧が、時刻t工。
In this way, time t in FIG. electrode (2
) is the arc voltage based on the opening of the pole at time t.

においてギャップ(4)の動作電圧■□。以上となって
通電が行われたとき、コンデンサ(3)の端子電圧は急
激に変化する。このため第4図(b)に示すように、 
4− 電極(2)を流れる電流■4は截断的に零となり、第4
図(clに示すようにコンデンサ(3)の回路に瞬時に
転流される。そしてこの転流電流によりコンデンサ(3
)は蓄電し、その端子電圧が第4図(d)に示すように
上昇して、時刻t2において回路電圧■8に達すると、
第4図(0)に示すようにコンデンサ(3)の電流■3
 従って回路電流■は遮断される。
The operating voltage of the gap (4) at ■□. When the current is applied in the above state, the terminal voltage of the capacitor (3) changes rapidly. Therefore, as shown in Figure 4(b),
4- The current flowing through the electrode (2) 4 cuts off to zero, and the fourth
As shown in the figure (cl), the current is instantaneously commutated to the circuit of the capacitor (3).
) stores electricity, and its terminal voltage rises as shown in Figure 4(d) and reaches circuit voltage ■8 at time t2.
As shown in Figure 4 (0), the current of capacitor (3) ■3
Therefore, the circuit current ■ is cut off.

(発明の効果) 以」二のように本発明では、コンデンサ(3)に印加さ
れる電圧が截断的に変化するため、電圧の変化を 率がアーク7、牢常的に印加する場合に比べて格段に大
きくなる。従って小さな静電容量のコンデンサ(3)に
より、大きな電流を瞬時に転流することが可能となる。
(Effects of the Invention) As described in 2 below, in the present invention, since the voltage applied to the capacitor (3) changes abruptly, the change in voltage is caused by an arc of 7, compared to the case where it is continuously applied. becomes significantly larger. Therefore, it is possible to instantaneously commutate a large current using a capacitor (3) having a small capacitance.

以上本発明を一実施例について説明したが、ギャップ(
4)の代I)にツェナーダイオードや、サイリスタな用
いることもできる。また回路の電磁または静電エネルギ
ーが大きい場合には、第3図中に点線によって図示する
ように、ギャップ(4)とコンデンサ(3)の直列回路
と並列にエネルギー吸収部E、例えば酸化亜鉛素子など
の非直線抵抗器を接続すればよい。
The present invention has been described above with reference to one embodiment, but the gap (
Instead of 4), a Zener diode or a thyristor can also be used for I). If the electromagnetic or electrostatic energy of the circuit is large, an energy absorbing part E, for example a zinc oxide element, is connected in parallel to the series circuit of the gap (4) and the capacitor (3), as shown by the dotted line in FIG. You can connect a non-linear resistor such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来形遮断器の回路図、第2図はその動作を説
明するための遮断器の電流と端子電圧の時間特性図、第
5図は本発明の一実施例回路図、第4図はその動作を説
明するための遮断器の電流と端子電圧の時間特性図であ
る。 A・・・・通電断路部、 B・・・・高電圧発生部、S
・・・・開極指令、 (1)・・・・回路、 (2)・
・・・電極、(3)・・・・コンデンサ、 D・・・・
裁断通電部、(4)・・・・ギャップ、 E・・・・エ
ネルギー吸収部。 特許出願人 財団法人 電力中央研究所代理人弁理士 
大 塚 学 外1名 7−
Fig. 1 is a circuit diagram of a conventional circuit breaker, Fig. 2 is a time characteristic diagram of current and terminal voltage of the breaker to explain its operation, Fig. 5 is a circuit diagram of an embodiment of the present invention, and Fig. 4 is a circuit diagram of a conventional circuit breaker. The figure is a time characteristic diagram of current and terminal voltage of the circuit breaker to explain its operation. A: Current carrying/disconnecting section, B: High voltage generating section, S
...Opening command, (1)...Circuit, (2)...
...Electrode, (3)...Capacitor, D...
Cutting current carrying part, (4)...gap, E...energy absorption part. Patent applicant: Patent attorney representing the Central Research Institute of Electric Power Industry
Otsuka 1 off-campus person 7-

Claims (1)

【特許請求の範囲】[Claims] 通電断路部と並列にコンデンサからなる高電圧発生部を
接続して、上記通電断路部の開極によるアーク電圧によ
り、通電断路部の流通電流を上記高電圧発生部に転流さ
せて、そのコンデンサに転流電流を遮断しうる大きさを
もつ回路電圧と、逆極性の蓄電電圧を発生させて遮断を
行うようにした電力用遮断器において、上記高電圧発生
部と直列に上記通電断路部の端子電圧が、特定値具」二
に達したとき急激に導通するギャップのような截断通電
部を設けて、上記通電断路部の電流を高電圧発生部に裁
断的かつ瞬時に転流させることを特徴とする電力用遮断
器。
A high voltage generation section consisting of a capacitor is connected in parallel with the current carrying disconnection section, and the arc voltage caused by the opening of the current carrying disconnection section causes the flowing current of the current carrying disconnection section to be commutated to the high voltage generating section, and the capacitor is In a power circuit breaker which performs interruption by generating a circuit voltage having a magnitude capable of interrupting commutation current and a stored voltage of opposite polarity, the above-mentioned energizing disconnection section is connected in series with the above-mentioned high voltage generation section. A cut-off current-carrying section such as a gap that suddenly becomes conductive when the terminal voltage reaches a specified value is provided, and the current in the current-carrying disconnection section is selectively and instantaneously diverted to the high-voltage generating section. Features of power circuit breakers.
JP9455984A 1984-05-14 1984-05-14 Power breaker Pending JPS60240019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9455984A JPS60240019A (en) 1984-05-14 1984-05-14 Power breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9455984A JPS60240019A (en) 1984-05-14 1984-05-14 Power breaker

Publications (1)

Publication Number Publication Date
JPS60240019A true JPS60240019A (en) 1985-11-28

Family

ID=14113679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9455984A Pending JPS60240019A (en) 1984-05-14 1984-05-14 Power breaker

Country Status (1)

Country Link
JP (1) JPS60240019A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496437A (en) * 1972-03-21 1974-01-21
JPS4921646A (en) * 1972-06-22 1974-02-26
JPS5342377A (en) * 1976-09-30 1978-04-17 Tokyo Shibaura Electric Co Dc breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496437A (en) * 1972-03-21 1974-01-21
JPS4921646A (en) * 1972-06-22 1974-02-26
JPS5342377A (en) * 1976-09-30 1978-04-17 Tokyo Shibaura Electric Co Dc breaker

Similar Documents

Publication Publication Date Title
KR101569195B1 (en) DC circuit breaker using magnetic field
US5379014A (en) Vacuum circuit breaker
US3401303A (en) Circuit closing and interrupting apparatus
JPS61153905A (en) Arc extinguisher
US3868550A (en) Circuit breaker
US3260894A (en) Protective means for circuit interrupting devices
US3539775A (en) Double-make contact switching apparatus with improved alternating current arc suppression means
KR20050044542A (en) Circuit arrangement for the reliable switching of electrical circuits
JPS60240019A (en) Power breaker
US3743884A (en) Overvoltage protector
US3617807A (en) Current-limiting switch employing low-temperature resistor
US3431466A (en) Arc-suppressing circuit for switching devices in alternating current circuit
JPS5944807B2 (en) current limiting switch
JPH02281526A (en) Electronic quick breaking circuit for electromgnetic contactor
JPH0212367B2 (en)
JPH09233833A (en) Ac/dc converter
JPH11265644A (en) Switching device
JPH056723A (en) Switch current reducing circuit for disconnector
JPS62113326A (en) Dc circuit breaker
JPH0346934B2 (en)
JPH11146555A (en) Superconducting current limiter
US3436700A (en) Parallel assisted circuit interrupting device
SU550713A1 (en) Device for transformer neutral grounding
SU1120416A1 (en) Multipole circuit breaker with arcless commutation
RU2211527C2 (en) Electrical machine field suppression device