JPS60239717A - Display medium - Google Patents

Display medium

Info

Publication number
JPS60239717A
JPS60239717A JP59095582A JP9558284A JPS60239717A JP S60239717 A JPS60239717 A JP S60239717A JP 59095582 A JP59095582 A JP 59095582A JP 9558284 A JP9558284 A JP 9558284A JP S60239717 A JPS60239717 A JP S60239717A
Authority
JP
Japan
Prior art keywords
molecule
film
molecules
group
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59095582A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Yukio Nishimura
征生 西村
Takeshi Eguchi
健 江口
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59095582A priority Critical patent/JPS60239717A/en
Publication of JPS60239717A publication Critical patent/JPS60239717A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain a high-density display medium for which a chemical change or physical change is utilized by forming the monomolecular film or built-up monomolecular layer film of the clathrate complex which consists of the host molecule having a hydrophilic section, hydrophobic section and inclusion section within the molecule and the guest molecule included in the host molecule and of which the complex forming ratio is not substantially an equal molar ratio on a carrier. CONSTITUTION:The molecules which have the hydrophilic section, hydrophobic section and at least one inclusion complex with the other kind molecules in the suitable positions within the molecule and can form the inclusion complex having a molar ratio substantially unequal to the molar ratio of the other kind molecules are widely usable as the host molecule. The constituting elements which can form the hydrophilic section and hydrophobic section within the molecule are representatively exemplified by various hydrophilic groups, hydrophobic groups, etc. which are generally and widely known. The section which can form the inclusion complex with the other kind molecules is formed by introduction of a hydroxyl group, carbonyl group, carboxyl group, ester group, amino group, nitrile group, thioalcohol group, imino group, etc.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、包接錯体の単分子膜、乃至単分子層累積膜の
化学変化若しくは物理変化を利用して表示を行なう表示
媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a display medium that performs display using chemical or physical changes in a monomolecular film or a cumulative monomolecular layer of an inclusion complex.

(2)背景技術 従来、有機化合物を表示層として用いる表示媒体として
は、例えば酸化還元反応によって発′色する有機化合物
(エレクトロクロミック材料)や蛍光性有機化合物等を
利用したものなどが知られている。
(2) Background Art Conventionally, display media using organic compounds as display layers include those using organic compounds that develop color through redox reactions (electrochromic materials), fluorescent organic compounds, etc. There is.

エレクトロクロミンク材料を用いた表示媒体は、いくつ
かの型のものが提案されている(例えば特開昭48−7
1380号公報、同50−32858号公報、同50−
63950号公報、及び同50−136000号公報参
照)。これら従来のものは、いずれもエレクトロクロミ
ック材料としてビオロゲンの誘導体を用い、これを適当
な電解液中に溶解せしめて発色表示層とし、電圧印加に
より発色を行なう、いわゆる有機EC(エレクトロクロ
ミー7り)表示素子に関するものである。この際の発色
パターンは、有機EC素子を形成している電極の形状に
従ったものである。しかしながら、上述の有機EC素子
にあっては、エレクトロクロミック材料は、電解液中に
溶解しているため自由度が大きく応答性(電圧印加後の
発色若しくは消色にかかる時間)に劣り、高密度発色表
示素子とはなり得ないものであった。又、電極上に析出
した着色物質が、再び溶媒(電解液)に溶けだすため、
メモリ一時間が短かく、可逆性(発色→消色のプロセス
)に劣るものであった。かかる従来例の欠点を解消する
ためには、上述のエレクトロクロミック材料が表示素子
を構成するパターン状電極上に高度の秩序性を持って付
着していることが必要である。
Several types of display media using electrochromic materials have been proposed (for example, Japanese Patent Application Laid-Open No. 1986-7
No. 1380, No. 50-32858, No. 50-
63950 and 50-136000). All of these conventional methods use a viologen derivative as an electrochromic material, dissolve it in an appropriate electrolytic solution to form a color display layer, and develop a color by applying a voltage. ) relates to display elements. The coloring pattern at this time follows the shape of the electrodes forming the organic EC element. However, in the above-mentioned organic EC device, the electrochromic material has a large degree of freedom because it is dissolved in the electrolyte, has poor responsiveness (time required for color development or decolorization after voltage application), and has a high density. This could not be used as a color display element. In addition, the colored substances deposited on the electrodes begin to dissolve into the solvent (electrolyte) again,
The memory time was short, and the reversibility (color development → color erasure process) was poor. In order to eliminate such drawbacks of the conventional examples, it is necessary that the electrochromic material described above be deposited with a high degree of order on the patterned electrodes constituting the display element.

又、蛍光性有機化合物を用いた発光表示素子としても、
いくつかの型のものが提案されている(例えば特開昭5
2−35587号公報及び同58−172891公報参
照)。これら従来のものはいずれもエレクトロルミネッ
センスを示す化合物を発光表示層とし、電圧印加により
発光を行なういわゆるEL(エレクトロルミネッセンス
)発光表示素子に関するものである。特に特開昭52−
35587号公報に開示された素子はアントラセン、ピ
レンまたはべりレンの適当な位置に親水性基および疎水
性基を導入した誘導体の単分子膜またはその累積膜を電
極板上に形成し、次いで第二の電極をかかる薄膜に沈着
させることにより構成されている。この際、高解像度の
表示素子を得るには膜内の発光性分子の分子分布が高い
秩序性を保持することが望ましいが、上記のアントラセ
ン等の誘導体では単分子膜又はその累積膜を高い秩序性
をもって製造するためには注意深い複雑な操作が要求さ
れるという欠点があった。また、上記単分子膜またはそ
の累積膜の構成分子であるアントラセン等の誘導体を合
成するに当っても、相当複雑な操作を要求される( T
h1n 5olid Film 99巻 71 頁〜7
8頁 1983年)という欠点があった。
Also, as a light emitting display element using fluorescent organic compounds,
Several types have been proposed (for example, Japanese Patent Application Laid-open No. 5
2-35587 and 58-172891). All of these conventional devices relate to so-called EL (electroluminescent) light emitting display elements, which use a compound exhibiting electroluminescence as a light emitting display layer and emit light upon application of a voltage. Especially JP-A-52-
In the device disclosed in Japanese Patent No. 35587, a monomolecular film or a cumulative film thereof of a derivative of anthracene, pyrene, or perylene into which hydrophilic groups and hydrophobic groups are introduced at appropriate positions is formed on an electrode plate, and then a second film is formed on the electrode plate. electrodes are deposited on such a thin film. At this time, in order to obtain a high-resolution display element, it is desirable that the molecular distribution of the luminescent molecules in the film maintains a high degree of order, but with derivatives such as the above-mentioned anthracene, a monomolecular film or a cumulative film thereof is highly ordered. It has the disadvantage that careful and complicated operations are required to produce it with good quality. In addition, considerably complicated operations are required to synthesize derivatives such as anthracene, which are constituent molecules of the monolayer or its cumulative film (T
h1n 5olid Film Volume 99 Page 71-7
8 pages 1983).

かかる従来例の欠点を解消し、1)各種の機能性膜を比
較的簡単に作製する方法、2)その際、機能性分子の持
つ各種機能が、薄膜化した場合に於いても、損失若しく
は低下されることなく発現する様に膜化する方法、更に
は、3)上記の薄膜化に於いて、特別な操作を行うこと
なしに、膜構成分子が膜面内方向に対して、高度の秩序
構造を持って配向される方法を種々検討した結果、本発
明を成すに至った。又、かかる成膜法を用いて、高感度
、高解像度の表示媒体を、安易にかつ高品質に提供でき
るに至った。
We have solved the drawbacks of such conventional examples by providing 1) a method for producing various functional films relatively easily, and 2) a method that eliminates the loss or loss of various functions possessed by functional molecules even when the film is made thin. 3) A method for forming a film in such a way that the film can be expressed without being degraded; As a result of various studies on methods for orientation with an ordered structure, the present invention was accomplished. Moreover, by using such a film forming method, it has become possible to easily provide a high-sensitivity, high-resolution display medium with high quality.

(3)発明の開示 本発明の目的は、光、熱、電気、磁気等の外因による分
子単位での化学変化若しくは物理変化を利用した高密度
表示媒体を提供することにある。
(3) Disclosure of the Invention An object of the present invention is to provide a high-density display medium that utilizes chemical or physical changes in molecular units caused by external factors such as light, heat, electricity, and magnetism.

また、この様な分子単位での高密度表示を行うのに際し
て重要な因子となる媒体面内での分子配向に関して、従
来例よりも秀逸な媒体を提供することにある。更には、
上述表示媒体を製造するに当って、比較的簡単な操作変
更により、様々な性質を有する媒体を提供することにあ
る。
Another object of the present invention is to provide a medium that is superior to conventional examples in terms of molecular orientation within the plane of the medium, which is an important factor when performing high-density display on a molecular basis. Furthermore,
In manufacturing the above-mentioned display medium, it is an object of the present invention to provide a medium having various properties through relatively simple operational changes.

本発明の上記目的は、以下の本発明によって達成される
The above objects of the present invention are achieved by the present invention as follows.

その分子内に親水性部位、疎水性部位及び他分子との包
接が可能な部位(包接部位)を有する分子(ホスト分子
)と該ホスト分子に包接される別種の分子(ゲスト分子
)とからなる包接錯体の単分子膜又は単分子層累積膜を
担体上に形成して成る表示層を備え、該包接錯体のホス
ト分子とゲスト分子の錯体形成比が実質的に等モル比で
ないことを特徴とする表示媒体。
A molecule (host molecule) that has a hydrophilic site, a hydrophobic site, and a site that can be included with other molecules (inclusion site) within the molecule, and a different type of molecule that is included in the host molecule (guest molecule) comprising a display layer formed by forming a monomolecular film or a monomolecular layer cumulative film of an inclusion complex on a carrier, wherein the complex formation ratio of the host molecule and the guest molecule of the inclusion complex is substantially equimolar. A display medium characterized by:

本発明の表示層を構成する物質は、分子内に親水性部位
、疎水性部位及び他分子との包接が可能な部位を少なく
共1ケ所有する分子(これをホスト分子と呼ぶ)と該ホ
スト分子に包接される別種の分子(これをゲスト分子と
呼ぶ)の二種の分子からなる。かかるホスト分子とゲス
ト分子とからなる包接錯体の単分子膜、乃至単分子層累
積膜を担体上に形成することにより、本発明の表示媒体
が形成される。但し、該包接錯体のホスト分子とゲスト
分子の錯体形成比が実質的に等モル比でなく、又、上述
二種類の分子の内、どちらか一方、若しくは、両方が、
光、熱、電気、磁気等の外因により化学変化若しくは物
理変化を起こすことが必要である。即ち、本発明に於け
る表示媒体は。
The substance constituting the display layer of the present invention is a molecule that has at least one hydrophilic site, one hydrophobic site, and at least one site that can be included with other molecules (this is called a host molecule). It consists of two types of molecules: a different type of molecule (called a guest molecule) that is included in a host molecule. The display medium of the present invention is formed by forming a monomolecular film or a monomolecular layer cumulative film of an inclusion complex consisting of such a host molecule and a guest molecule on a carrier. However, the complex formation ratio between the host molecule and the guest molecule of the inclusion complex is not substantially equimolar, and one or both of the above two types of molecules are
It is necessary to cause a chemical or physical change by an external cause such as light, heat, electricity, or magnetism. That is, the display medium in the present invention is.

前述の化学変化や物理変化を利用して、光表示、熱的表
示、電気的表示、磁気的表示等を行なう。
Optical display, thermal display, electrical display, magnetic display, etc. are performed by utilizing the aforementioned chemical and physical changes.

本発明に用いられるホスト分子としては、上述の如く、
分子内の適当な位置に親水性部位、疎水性部位波、び少
なく共1ケ所の他種分子との包接錯体を形成可能な部位
を有し、且つ他種分子と実質的に等モル比でない包接錯
体を形成する分子であれば広く使用することができる0
分子内に親木性部位や疎水性部位を形成し得る構成要素
としては、一般に広く知られている各種の親木基や疎水
基等が代表的なものとして挙げられる。他種分子との包
接錯体を形成し得る部位は、水酸基、カルボニル基、カ
ルボキシル基、エステル基、アミン基、ニトリル基、チ
オアルコール基、イミノ基等の導入によって形成される
。このようなホスト分子を、一般式(Ia)〜(Ib)
で示される水酸基を持つホスト分子を例として、以下に
具体的に説明する。
As the host molecules used in the present invention, as mentioned above,
It has a hydrophilic site, a hydrophobic site wave, and at least one site capable of forming an inclusion complex with other species molecules at appropriate positions within the molecule, and has a substantially equimolar ratio with the other species molecules. It can be widely used as long as the molecules form inclusion complexes that are not 0.
Typical constituent elements capable of forming a lignophilic site or a hydrophobic site within a molecule include various widely known lignophilic groups and hydrophobic groups. A site capable of forming an inclusion complex with other species of molecules is formed by introducing a hydroxyl group, a carbonyl group, a carboxyl group, an ester group, an amine group, a nitrile group, a thioalcohol group, an imino group, or the like. Such host molecules are represented by general formulas (Ia) to (Ib)
A specific explanation will be given below using a host molecule having a hydroxyl group represented by as an example.

x 1 R1−C−C=C−C; c−c−R2(Ia)1 0HOH H (ココテ、X=HまたはC6H5である。)すなわち、
分子内に親水性部位および疎水性部位を有するとは、例
えば上式に於いてR□部及びR2部の何れか一方に親水
性部位が存在し、他方に疎水性部位が存在するか、R1
部及びR2部が前部以外の残りの部との関係に於いて共
に親水性、若しくは疎水性を示すことを言う。R1部及
び、R2部の構造に関して、疎水性部位を導入する場合
には特に炭素原子数5〜30の長鎖アルキル基が、又親
水性部位を導入する場合には特に炭素原子数1〜30の
脂肪酸が望ましい。
x 1 R1-C-C=C-C; c-c-R2(Ia)1 0HOH H (Kokote, X=H or C6H5.) That is,
Having a hydrophilic site and a hydrophobic site in the molecule means, for example, in the above formula, a hydrophilic site exists in either the R□ part or the R2 part, and a hydrophobic part exists in the other part, or R1
This means that the R2 portion and the R2 portion both exhibit hydrophilicity or hydrophobicity in relation to the remaining portions other than the front portion. Regarding the structure of the R1 part and the R2 part, when introducing a hydrophobic part, a long chain alkyl group having 5 to 30 carbon atoms is used, and when introducing a hydrophilic part, a long chain alkyl group having 1 to 30 carbon atoms is used. fatty acids are desirable.

本発明に於けるホスト分子を更に具体的に示せば、例え
ば以下に列挙するようなゲスト分子と(’1:2)錯体
を形成するジアセチレンジオール誘導体(No、1−r
b、8. No、lO〜No、15)やハイドロキノン
誘導体(No、7〜NQ、!1.11k11.18〜N
o、18)等が利用し得るものとして挙げられる。尚、
以下の例における m、nは4正の整数を、Zは、−C
H3または−COOHを、phは、 −C,R5を示す
ものとする。
More specifically, the host molecule in the present invention is a diacetylene diol derivative (No, 1-r
b, 8. No, lO~No, 15) and hydroquinone derivatives (No, 7~NQ, !1.11k11.18~N
o, 18) etc. can be used. still,
In the following example, m and n are 4 positive integers, and Z is -C
In H3 or -COOH, ph indicates -C, R5.

〔ジアセチレンジオール誘導体の例〕[Example of diacetylene diol derivative]

盃 1 0H0H 60≧m十n≧9.n≧0 應2 0H0H 30≧m+n≧9.n≧O 6 0H0H 30≧m十n≧5.n≧1 /l64 0H’ 0H 30≧m+n≧5.n≧1 /P65 0H0H 30≧m+n≧5zn≧0 &6 0H0H 30≧m+n≧5.n≧0 〔ハイドロキノン誘導体の例〕 扁7 60≧m +’n≧16.n≧D 8 30≧m十n≧9.n≧1 屋9 60≧m+n≧9.n≧0 −〔ジアセチレンジオール鰐導体の例〕況10 0H0H 60≧ n≧3 11 0H0H 60≧ n≧3 扁12 0H0H 60≧ n≧1 扁 16 60 ≧ n ≧ 1 /IFA 14 60≧ n≧ 1 屋 15 60≧ n≧ 1 工ハイドロキノン誘導体の例〕 616 H 17 H 30≧ n ≧1 18 H 以上挙げた化合物はホスト分子に長鎖アルキル基や長鎖
カルボン酸等を置換させて親木性や疎水性を導入した点
を除けばそれ自体既知の化合物であり、又、長鎖アルキ
ル基等で修飾されていないホスト分子が、種々のゲスト
分子と結晶性の包接錯体を形成する点に関しても、日本
化学会誌間、2238頁−242頁(1983年)に述
べられている。
Cup 1 0H0H 60≧m10n≧9. n≧0 應2 0H0H 30≧m+n≧9. n≧O 6 0H0H 30≧m10n≧5. n≧1 /l64 0H' 0H 30≧m+n≧5. n≧1 /P65 0H0H 30≧m+n≧5zn≧0 &6 0H0H 30≧m+n≧5. n≧0 [Example of hydroquinone derivative] 7 60≧m +'n≧16. n≧D 8 30≧m10n≧9. n≧1 ya9 60≧m+n≧9. n≧0 - [Example of diacetylene diol crocodile conductor] Situation 10 0H0H 60≧ n≧3 11 0H0H 60≧ n≧3 Flat 12 0H0H 60≧ n≧1 Flat 16 60 ≧ n ≧ 1 /IFA 14 60≧ n ≧ 1 Ya 15 60 ≧ n ≧ 1 Examples of engineered hydroquinone derivatives] 616 H 17 H 30 ≧ n ≧ 1 18 H The above-mentioned compounds have a long-chain alkyl group, a long-chain carboxylic acid, etc. substituted in the host molecule to obtain wood-loving properties. It is a known compound in itself, except for the fact that it has introduced hydrophobicity, and it is also a known compound in that the host molecule, which is not modified with a long-chain alkyl group, forms crystalline inclusion complexes with various guest molecules. Also described in Journal of the Chemical Society of Japan, pp. 2238-242 (1983).

これらホスト分子と包接錯体を作り得るゲスト分子とし
ては、一般に、ホスト分子と強い水素結合を形成し得る
分子が望ましい。従って、先に述べた如く、ホスト分子
が包接部位として水酸基を有する場合には、ゲスト分子
として、アルデヒド、ケトン、アミン、スルフオキシド
等を挙げることができる。また、ゲスト分子としては他
に、各種ハロゲン化合物、或いはπ−電子系化合物、即
ちアルケン、アルキン、及びアレーン等を選ぶ事もでき
る。何れにせよ、形成される包接錯体が所望の表示機能
を示す構造を有する分子が選ばれる。
As guest molecules that can form inclusion complexes with these host molecules, molecules that can form strong hydrogen bonds with the host molecules are generally desirable. Therefore, as mentioned above, when the host molecule has a hydroxyl group as an inclusion site, examples of the guest molecule include aldehydes, ketones, amines, sulfoxides, and the like. In addition, various halogen compounds or π-electron compounds such as alkenes, alkynes, and arenes can also be selected as guest molecules. In any case, a molecule is selected in which the inclusion complex formed has a structure that exhibits the desired display function.

そのようなゲスト分子を具体的に示せば、ビオ9ゲン(
No、1111)、テトラチオフルバレン(No、20
)等の酸化還元反応によって発色を示す分子や崩、21
〜N0.29に例示するような酸化還元反応によって発
光する多環芳香族炭化水素等が利用し得るものとして挙
げられる。
Specifically, such a guest molecule is Bio9gen (
No. 1111), tetrathiofulvalene (No. 20
) and other molecules that develop color through redox reactions, 21
Possible examples include polycyclic aromatic hydrocarbons that emit light through redox reactions, as exemplified by No. 0.29.

ぬ19 (ここで、R= −cas tたは−C,H,,X″″
;Br−eCI−、I−またはcxo; ) 磁2O N[L21 N[L22 IIL23 このようなホスト分子およびゲスト分子から成る包接錯
体の単分子膜または単分子層累積膜を作成する方法とし
ては、例えば1.Langmuirらの開発したラング
ミュア・プロジェット法CLB法)を用いる。ラングミ
ュア・プロジェット法は、例えば分子内に親木基と疎水
基を有する構造の分子において、両者のバランス(両親
媒性のバランス)が適度に保たれているとき、分子は水
面上で親木基を下に向けて単分子0層になることを利用
して単分子膜または単分子層の累積膜を作成する方法で
ある。水面上の単分子層は二次元系の特徴をもつ。分子
がまばらに散開しているときは、一分子当り面積Aと表
面圧■との間に二次元理想気体の式、 nA= kT が成り立ち、°“気体膜゛となる。ここに、kはボルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり二次元固体の“凝縮膜(または
固体膜)”になる、凝縮膜はガラス基板などの種々の材
質や形状を有する担体の表面へ一層ずつ移すことができ
る。この方法を用いて、本発明のゲスト分子を包接する
ホスト分子の単分子膜(これを単錯体分子膜と呼ぶこと
にする)、若しくは単錯体分子層累積膜の具体的な製法
としては、例えば以下に示すA−Hの5法を挙げること
ができる。
Nu19 (where R= -cas t or -C, H,,X''''
;Br-eCI-, I- or cxo; ) Magneto2O N[L21 N[L22 IIL23 As a method for creating a monolayer film or a monolayer cumulative film of an inclusion complex consisting of such a host molecule and a guest molecule, , for example 1. The Langmuir-Prodgett method (CLB method) developed by Langmuir et al. The Langmuir-Prodgett method is based on the Langmuir-Prodgett method. For example, when a molecule has a parent tree group and a hydrophobic group in its molecule, and the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule will react to the parent tree on the water surface. This is a method for creating a monomolecular film or a cumulative film of monomolecular layers by utilizing the fact that the group faces downward to form a zero monomolecular layer. A monolayer on the water surface has the characteristics of a two-dimensional system. When the molecules are sparsely dispersed, the two-dimensional ideal gas equation, nA = kT, holds between the area per molecule A and the surface pressure ■, resulting in a "gas film". Here, k is Boltzmann's constant, T, is the absolute temperature.If A is made sufficiently small, the intermolecular interaction will become stronger, resulting in a two-dimensional solid "condensed film (or solid film)."Condensed films can be made of various materials and shapes, such as glass substrates. By using this method, a monomolecular film (hereinafter referred to as a monocomplex molecular film) of host molecules including the guest molecules of the present invention or a monocomplex film can be transferred layer by layer to the surface of a carrier having As a specific method for manufacturing the molecular layer stack film, for example, the following five methods A to H can be mentioned.

[A] 目的とする包接錯体のホスト分子とゲスト分子
とを溶剤に溶解し、これを水相上に展開させて包接錯体
を膜状に析出させる。この場合、ホスト分子の構造がN
o、1−No、9に示したような分子の両端に親木性部
位(カルボキシル基)と疎水性部位(アルキル基)を併
有するものであれば、水相上に析出する包接錯体はゲス
ト分子の親水性および疎水性のいかんにかかわらず、ホ
スト分子の親水性部位を水相に向けた状態で水相上に展
開する。一方、ホスト分子がNo、10− No、18
に示した構造をとる場合、分子の両端が疎水性部位のみ
で構成されるZ=−CH3では、水相上に析出する包接
錯体は、ゲスト分子の親水性部位を水相に向けた第3図
に示すような状態で水相上に展開する。
[A] The host molecule and guest molecule of the intended inclusion complex are dissolved in a solvent, and this is spread on an aqueous phase to precipitate the inclusion complex in the form of a film. In this case, the structure of the host molecule is N
o, 1-No., If the molecule has both a lignophilic site (carboxyl group) and a hydrophobic site (alkyl group) at both ends as shown in 9, the inclusion complex that precipitates on the aqueous phase is Regardless of the hydrophilicity or hydrophobicity of the guest molecule, it is developed on the aqueous phase with the hydrophilic site of the host molecule facing the aqueous phase. On the other hand, the host molecules are No, 10- No, 18
In the case of the structure shown in Z=-CH3, where both ends of the molecule are composed of only hydrophobic sites, the inclusion complex precipitated on the aqueous phase is formed by directing the hydrophilic site of the guest molecule toward the aqueous phase. Develop on the water phase in the state shown in Figure 3.

又、分子の両端が親木性部位のみで構成されるZ=−C
OOHでは水相上に形成される包接錯体は、ホスト分子
の親水性部位を水相に向けた第4図に示すような状態で
水相上に展開する。
In addition, Z=-C where both ends of the molecule are composed of only lignophilic sites
In OOH, the inclusion complex formed on the aqueous phase develops on the aqueous phase in a state as shown in FIG. 4, with the hydrophilic site of the host molecule facing the aqueous phase.

次にこの析出物が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)を設けて展開面積を制限
して膜物質の集合状態を制御し、その集合状態に比例し
た表面圧■を得る。この仕切板を動かし、展開面積を縮
少して膜物質の集合状態を制御し、表面圧を徐々に上昇
させ、累積膜の製造に適する5表面圧■を設定すること
ができる。この表面圧を維持しながら静かに清浄な担体
を垂直に上下させることにより単鎖体分子膜が担体上に
移しとられる。単錯体分子膜は以上で製造されるが、単
鎖体分子層累積膜は前記の操作を繰り返すことにより所
望の累積度の単錯体分子層累積膜が形成される。
Next, to prevent this precipitate from freely diffusing on the aqueous phase and spreading too much, a partition plate (or float) is installed to limit the area of development and control the state of aggregation of the membrane material, and Obtain surface pressure ■. By moving this partition plate, the developed area can be reduced to control the state of aggregation of the film material, and the surface pressure can be gradually increased to set the surface pressure (5) suitable for producing a cumulative film. By gently raising and lowering the clean carrier vertically while maintaining this surface pressure, the single chain molecular film is transferred onto the carrier. A single complex molecular layer film is produced in the above manner, but a single complex molecular layer cumulative film having a desired degree of accumulation is formed by repeating the above operations.

単錯体分子層を担体上に移すには、上述した垂直浸せき
法の他、水平付着法、回転円筒法などの方法による。水
平付着法は担体を水面に水平に接触させて移しとる方法
で、回転円筒法は、円筒型の担体を水面上を回転させて
単鎖体分子層を担体表面に移しとる方法である。前述し
た垂直浸せき法では、表面が親水性である担体を水面を
横切る方向に水中から引き上げるとホスト分子の親木基
が担体側に向いた単錯体分子層が担体上に形成される。
In order to transfer the monocomplex molecular layer onto the carrier, in addition to the above-mentioned vertical dipping method, a method such as a horizontal deposition method or a rotating cylinder method can be used. The horizontal adhesion method is a method in which the carrier is transferred by bringing it into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface to transfer a single-chain molecular layer onto the surface of the carrier. In the vertical immersion method described above, when a carrier with a hydrophilic surface is lifted out of water in a direction transverse to the water surface, a monocomplex molecule layer is formed on the carrier with the host molecules of the host molecules facing toward the carrier.

前述のように担体を上下させると、各行程ごとに1枚ず
つ単錯体分千層が積み重なっていく、成膜分子の向きが
引上げ行程と浸せき行程で逆になるので、この方法によ
ると各層間はホスト分子の親木基と親木基、ホスト分子
の疎水基と疎水基が向かい合うY型膜が形成される。そ
れに対し、水平付着法は、担体を水面に水平に接触させ
て移しとる方法で、ホスト分子の疎水基が担体側に向い
た単錯体分子層が担体上に形成される。この方法では、
累積しても、成膜分子の向きの交代はなく全ての層にお
いて、疎水基が担体側に向いたX型膜が形成される。反
対に全ての層において親木基が担体側に向いた累積膜は
X型膜と呼ばれる。
As mentioned above, when the carrier is moved up and down, 1,000 layers of single complexes are stacked up one at a time in each process.The direction of the film-forming molecules is reversed between the pulling process and the dipping process, so this method In this case, a Y-shaped film is formed in which the parent wood groups of the host molecules face each other, and the hydrophobic groups of the host molecules face each other. On the other hand, the horizontal adhesion method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and a monocomplex molecular layer with the hydrophobic groups of the host molecules facing the carrier is formed on the carrier. in this way,
Even when accumulated, there is no change in the direction of the film-forming molecules, and an X-type film is formed in which the hydrophobic groups face the carrier side in all layers. On the other hand, a cumulative film in which the parent tree groups in all layers face the carrier side is called an X-type film.

回転円筒法は、円筒型の担体を水面上を回転させて単分
子層を担体表面に移しとる方法である。
The rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface to transfer a monomolecular layer onto the carrier surface.

単分子層を担体上に移す方法は、これらに限定されるわ
けではなく、大面積担体を用いる時には、担体ロールか
ら水相中に担体を押し出していく方法などもとり得る。
The method of transferring the monomolecular layer onto the carrier is not limited to these methods, and when a large-area carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used.

また、前述した親木基、疎水基の担体への向きは原則で
あり、担体の表面処理等によって変えることもできる。
Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the carrier is a general rule, and can be changed by surface treatment of the carrier.

以上の成膜過程に於いて膜物質の面内方向の配向性制御
は従来、主として表面圧の制御に依って成されていた訳
であるが、膜物質が全稈単純な構造の化合物、例えば直
鎖脂肪酸等の場合を除き、高い秩序性を得ることは極め
て困難であった。然るに本発明に於いては、包接錯体を
膜物質に用いるので、高い秩序性を持つ膜を比較的簡単
に得ることができる。即ち、水相上に包接錯体が膜状に
析出した時点で、水素結合やファン・デル争ワールス力
等に因ってホスト分子−ゲスト分子間、ホスト分子−ホ
スト分子間、ゲスト分子−ゲスト分子間の立体的配置は
固定され、各ホスト分子及びゲスト分子は結晶格子的秩
序性を持って配列する。又、ゲスト分子のみが機能性を
持つ場合には、このゲスト分子への化学的修飾、即ち、
疎水基や親木基の導入を行わないので、膜化に伴う機能
の低下は生じない。
In the above film-forming process, the in-plane orientation control of the film material has conventionally been achieved mainly by controlling the surface pressure. Except in the case of straight-chain fatty acids, it has been extremely difficult to obtain high orderliness. However, in the present invention, since an inclusion complex is used as a membrane material, a highly ordered membrane can be obtained relatively easily. That is, when the inclusion complex precipitates in a film form on the aqueous phase, hydrogen bonds, van der Waals forces, etc. cause bonds between host molecules and guest molecules, between host molecules and host molecules, and between guest molecules and guest molecules. The steric configuration between molecules is fixed, and each host molecule and guest molecule are arranged with crystal lattice order. In addition, when only the guest molecule has functionality, chemical modification to this guest molecule, i.e.,
Since no hydrophobic groups or parent wood groups are introduced, there is no reduction in functionality due to film formation.

[B]水溶性を示すゲスト分子を水相に溶解させる。次
にホスト分子を溶剤に溶解せしめてこれを水相上に展開
させる。この時同時にホスト分子−ゲスト分子間で包接
錯体形成が行われて膜状に析出する。ホスト分子とゲス
ト分子の組み合すせ及び以下の成膜操作については[A
]に示した方法に順する。
[B] A water-soluble guest molecule is dissolved in the aqueous phase. Next, host molecules are dissolved in a solvent and spread on the aqueous phase. At the same time, an inclusion complex is formed between the host molecule and the guest molecule, and the mixture is deposited in the form of a film. Regarding the combination of host molecules and guest molecules and the following film-forming operations, refer to [A
] Follow the method shown in .

[C]水溶性を示すゲスト分子を水相に溶解させる。次
に、目的とする包接錯体のホスト分子とゲスト分子とを
溶剤に溶解し、これを水相上に展開させて包接錯体を膜
状に析出させる。ポスト分子とゲスト分子の組み合わせ
及び以下の成膜操作については[A]に示した方法に順
する。
[C] A water-soluble guest molecule is dissolved in the aqueous phase. Next, the host molecules and guest molecules of the intended inclusion complex are dissolved in a solvent, and this is spread on the aqueous phase to precipitate the inclusion complex in the form of a film. The combination of post molecules and guest molecules and the following film forming operations follow the method shown in [A].

[D]ホスト分子を溶剤に溶解しこれを水相中に展開さ
せる。その後、密閉系の装置を用いて気相側、即ち装置
内の空間をゲスト分子ガス雰囲気とする。この時、同時
に気相側のゲスト分子を包接し、包接錯体が膜状に析出
する。この方法はゲスト分子が低沸点で気化し易い性質
を持つ化合物、例えばアセトン等の場合、特に有効であ
る。ポスト分子とゲスト分子の組み合わせ及び以下の成
膜操作については[A]に示した方法に順する。
[D] Dissolve the host molecule in a solvent and develop it in the aqueous phase. Thereafter, using a closed system device, the gas phase side, that is, the space inside the device, is made into a guest molecule gas atmosphere. At this time, the guest molecules on the gas phase side are simultaneously included, and an inclusion complex is precipitated in the form of a film. This method is particularly effective when the guest molecule is a compound with a low boiling point and easily vaporized, such as acetone. The combination of post molecules and guest molecules and the following film forming operations follow the method shown in [A].

[E]v、閉基の装置を用いて気相側、即ち装置内の空
間をゲスト分子ガス雰囲気とする0次に目的とする包接
錯体のホスト分子とゲスト分子とを溶剤に溶解し、これ
を水相上に展開させて包接錯体を膜状に析出させる。ホ
スト分子とゲスト分子の組み合わせ及び以下の成膜操作
については、[A]に示した方法に順する。
[E]v, Using a closed group device, the gas phase side, that is, the space inside the device, is made into a guest molecule gas atmosphere, and the host molecules and guest molecules of the zero-order target inclusion complex are dissolved in a solvent, This is developed on an aqueous phase to precipitate the inclusion complex in the form of a film. The combination of host molecules and guest molecules and the following film forming operations follow the method shown in [A].

そのような表示媒体の具体例を第1図〜第2図に示し、
図面も参照しながら本発明を更に詳しく説明する。
Specific examples of such display media are shown in FIGS.
The present invention will be explained in more detail with reference to the drawings.

第1図は、ゲスト分子の酸化還元反応による発色を利用
した表示媒体の例である。
FIG. 1 is an example of a display medium that utilizes color development due to the redox reaction of guest molecules.

例えばホスト分子として前述のジアセチレンジボール誘
導体を用い、これをNo、1. No、2等のゲスト分
子と組み合わせ、包接錯体を形成する。これら分子から
成る単錯体分子膜、乃至単鎖体分子層累積膜を電極20
を有する担体5、本例では平板状等の基板に形成し、表
示層とする。担体5上に電極20を形成せずに、電極と
なり得る担体を用いてもよい、この膜を覆う形で、電解
液6を注入したセル8を形成する。更に、上述電極(表
示電極)20とは、電気的に絶縁されている電極(対向
電極)21をセル8との一部に設け、表示媒体を形成す
る。電極21は、担体5の一部に設けてもよい。
For example, using the aforementioned diacetylene dibol derivative as a host molecule, No. 1. In combination with guest molecules such as No. 2, etc., an inclusion complex is formed. A single complex molecular film or a single chain molecular layer cumulative film composed of these molecules is used as an electrode 20.
In this example, a carrier 5 having the following structure is formed on a flat substrate or the like, and is used as a display layer. Instead of forming the electrode 20 on the carrier 5, a carrier that can serve as an electrode may be used.A cell 8 is formed in which the electrolytic solution 6 is injected to cover this film. Furthermore, an electrode (counter electrode) 21 that is electrically insulated from the above-mentioned electrode (display electrode) 20 is provided in a part of the cell 8 to form a display medium. The electrode 21 may be provided on a part of the carrier 5.

なお、担体5及びセル8の両方若しくは何れか一方を透
明な材料(ガラス等)で形成し、又これら透明部品に接
着している電極を透明電極にする必要がある。こうして
形成された表示媒体に表示電極20を陰極、対向電極2
1を陽極にして直流電圧を印加すると例えばゲスト分子
がビオロゲン(No、111)の場合には式CH)に従
って還元され発色する。
Note that it is necessary that both or one of the carrier 5 and the cell 8 be formed of a transparent material (such as glass), and that the electrodes bonded to these transparent parts be transparent electrodes. In the thus formed display medium, a display electrode 20 is used as a cathode, and a counter electrode 2 is used as a cathode.
When a DC voltage is applied using No. 1 as an anode, for example, when the guest molecule is viologen (No. 111), it is reduced according to the formula CH) and develops color.

無色 酸化型 電圧印加 逆電圧印加 紫乃至青色 従って表示電極20をパターン状に形成しておけば、パ
ターン状に発色が可能である。消色するには逆電圧の直
流電圧を印加する。膜厚は100〜500八が特に望ま
しい。
Colorless oxidation type voltage application Reverse voltage application Violet to blue Therefore, if the display electrode 20 is formed in a pattern, it is possible to develop color in a pattern. To erase the color, apply a reverse DC voltage. The film thickness is particularly preferably from 100 to 500 mm.

第2図は、ゲスト分子の酸化還元反応による発光を利用
した表示媒体の例である。
FIG. 2 is an example of a display medium that utilizes light emission caused by a redox reaction of guest molecules.

例えばホスト分子として前述のジアセチレンジオール誘
導体を用い、これをNo、21〜No、29等のエレク
トロルミネッセンスを示すゲスト分子を組み合わせて包
接錯体を形成する。これら分子から成る単鎖体分子膜、
乃至単錯体分子層累積膜を電極となり得る担体9、本例
では平板状等の基板に形成し表示層とする。成膜後、膜
側を別の電極板19で覆う。これら2枚の電極板の内、
少なぐ共一方を透明電極とする。こうして形成された記
録媒体に通電させると陰極側でゲスト分子は還元され発
光する。
For example, the aforementioned diacetylene diol derivative is used as a host molecule, and this is combined with guest molecules exhibiting electroluminescence such as No. 21 to No. 29 to form an inclusion complex. A single chain molecular film consisting of these molecules,
A cumulative film of monocomplex molecular layers is formed on a carrier 9 that can serve as an electrode, in this example a flat substrate or the like, and used as a display layer. After film formation, the film side is covered with another electrode plate 19. Of these two electrode plates,
Both sides are transparent electrodes. When the recording medium thus formed is energized, the guest molecules are reduced on the cathode side and emit light.

従って何れか一方の電極をパターン状に形成しておいて
電圧印加すれば、パターン状に発光し、表示が可能であ
る。
Therefore, if one of the electrodes is formed in a pattern and a voltage is applied, light is emitted in a pattern and display is possible.

以上の表示媒体に於いて膜厚は特に3000〜1000
0Aが好ましい。
In the above display media, the film thickness is particularly between 3000 and 1000.
0A is preferred.

以上述べた、本発明における単鎖体分子膜または単分子
層累積膜を形成する担体は特に限定されないが、担体表
面に界面活性物質が付着していると、単鎖体分子層を水
面から移しとる時に、単錯体分子膜が乱れ良好な単錯体
分子膜または単錯体分子層累積膜ができないので担体表
面が清浄なものを使用する必要がある。使用することの
できる担体の例としては、ガラス、アルミニウムなどの
金属、プラスチック、セラミックなどが挙げられる。
The carrier that forms the single-chain molecular film or monomolecular layer cumulative film in the present invention is not particularly limited, but if a surfactant is attached to the surface of the carrier, the single-chain molecular layer will be transferred from the water surface. When taking the carrier, it is necessary to use a carrier with a clean surface because the single complex molecular film is disturbed and a good single complex molecular film or single complex molecular layer cumulative film cannot be formed. Examples of carriers that can be used include glass, metals such as aluminum, plastics, ceramics, and the like.

担体上の単錯体分子膜または単鎖体分子層累積膜は、十
分に強く固定されており担体からの剥離、剥落を生じる
ことはほとんどないが、接着力を強化する目的で担体と
単錯体分子膜または単錯体分子層累積膜の間に接着層を
設けることもできる。ざらに単錯体分子層形成条件例え
ば水相の水素イオン濃度、イオン種、水温、担体上げ下
げ速度あるいは表面圧の選択等によっても付着力を強化
することができる。
A single complex molecule film or a cumulative film of single chain molecular layers on a carrier is sufficiently strongly fixed and hardly peels off or peels off from the carrier. An adhesive layer can also be provided between the membranes or the stack of single complex molecular layers. The adhesion force can also be strengthened by selecting the conditions for forming a monocomplex molecular layer, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier, or the surface pressure.

単分子膜または単分子層累積膜の上に保護膜を設けるこ
とは、単分子膜または単分子層累積膜の化学的安定性を
向上させるためには、好ましいことであるが、成膜分子
の選択によって保護膜は設けても設けなくてもよい。以
下に本発明の実施例を示して更に具体的に説明する。尚
、以下の例におけるNo、81〜No、84の化合物は
、第1表に示す。
Providing a protective film on a monomolecular film or a monomolecular layer stack is preferable in order to improve the chemical stability of the monomolecular film or monolayer stack; Depending on selection, a protective film may or may not be provided. EXAMPLES The present invention will be explained in more detail by showing examples below. In addition, compounds No. 81 to No. 84 in the following examples are shown in Table 1.

実施例1 第1図に示した表示媒体を作成し、表示を行った。Example 1 The display medium shown in FIG. 1 was created and displayed.

ホスト分子としてNo、81〜No、[14の何れかを
用い、これとメチルビオロゲンを1:2の割合でクロロ
ホルムに溶かした後、pH8,5で塩化カドミウム濃度
4 X 10′4mol/lの水相上に展開させた。溶
媒のクロロホルムを蒸発除去した後、表面圧を高めて3
5dynes/amとし、包接錯体を膜状に析出させた
。その後、表面圧を一定に保ちながら透明電極(表示電
極)20を有するガラス基板5を水面を横切る方向に静
かに上下させ(上下速度2cm/win)、単鎖体分子
膜乃至単鎖体分子層累積膜を基板5上に移し取り、線膜
から成る表示層を形成した。その後、表示電極20を取
り囲む形で、対向電極21を金で作成し、更にこれらの
電極を覆う形で、電解液(KBrの0.3+*ol/I
水溶液)6を封入したセル8をガラス板で形成し表示媒
体とした。
Using any of No. 81 to No. 14 as the host molecule, dissolve this and methyl viologen in chloroform at a ratio of 1:2, and then add water with a cadmium chloride concentration of 4 x 10'4 mol/l at pH 8.5. It was expanded to Aigami. After the solvent chloroform was removed by evaporation, the surface pressure was increased and the
5 dynes/am, and the inclusion complex was deposited in the form of a film. Thereafter, while keeping the surface pressure constant, the glass substrate 5 having the transparent electrode (display electrode) 20 is gently moved up and down in the direction across the water surface (up and down speed 2 cm/win) to form a single-chain molecular film or a single-chain molecular layer. The accumulated film was transferred onto the substrate 5 to form a display layer consisting of a linear film. Thereafter, a counter electrode 21 is made of gold to surround the display electrode 20, and an electrolytic solution (0.3+*ol/I of KBr) is then formed to cover these electrodes.
A cell 8 containing an aqueous solution 6 was formed of a glass plate and used as a display medium.

該表示媒体に表示電極20を陰極として0.8Vの直流
電圧を印加したところ、表示電極20の形状に応じてそ
の部分のみが青色に発色した。特に5層以上21層以下
の累積膜を有する表示媒体において良好な発色が認めら
れた。逆電圧を印加すると消色した。この発色→消色の
プロセスの表示寿命は少なく共5000回以上であった
When a DC voltage of 0.8 V was applied to the display medium using the display electrode 20 as a cathode, only that portion developed a blue color depending on the shape of the display electrode 20. Particularly good color development was observed in display media having a cumulative film of 5 to 21 layers. The color disappeared when a reverse voltage was applied. The display life of this process of coloring → decoloring was at least 5,000 times or more.

電極パターンを種々のパターンにして上記同様の表示媒
体を作成したところ、どの場合にも高密度な画像が高解
像度で得られた。
When display media similar to the above were created using various electrode patterns, high-density images with high resolution were obtained in all cases.

実施例2 第2図に示した表示媒体を作成し、表示を行った。Example 2 The display medium shown in FIG. 2 was created and displayed.

ホスト分子としてNo、81〜No、64の何れかを用
い、これとアントラセン間、22をl:2の割合でクロ
ロホルムに溶かした後、pH8,5で塩化カドミウム濃
度、4 X 10′4mol/Iの水相上に展開させた
。溶媒のクロロホルムを蒸発除去した後、表面圧を高め
て30dynes/cmとし、包接錯体を膜状に析出さ
せた。その後表面圧を一定に保ちながら、透明電極たる
ネサガラス基板9を水面を横切る方向に静かに上下させ
(上下速度0.?c+s/win)単錯体分子膜を基板
9上に移し取り、単鎖体分子膜及び9、 till、 
51.101.201.401層に累積した単錯体分子
層累積膜を作成して表示層とした。これらの膜偏に厚さ
 300八で、もう一方の電極を構成するアルミニウム
10を蒸着せしめ表示媒体とした。
Using any of No. 81 to No. 64 as a host molecule, dissolve this and anthracene and 22 in chloroform at a ratio of 1:2, and then adjust the concentration of cadmium chloride to 4 x 10'4 mol/I at pH 8.5. was developed on the aqueous phase. After the solvent chloroform was removed by evaporation, the surface pressure was increased to 30 dynes/cm to precipitate the inclusion complex in the form of a film. After that, while keeping the surface pressure constant, the Nesa glass substrate 9, which is a transparent electrode, is gently moved up and down in the direction across the water surface (vertical speed 0.?c+s/win), and the single complex molecular film is transferred onto the substrate 9, and the single chain Molecular membrane and 9, till,
A cumulative film of single complex molecular layers accumulated in 51.101.201.401 layers was prepared and used as a display layer. Aluminum 10, which constitutes the other electrode, was deposited on these films to a thickness of 300 mm to form a display medium.

45Vの直流又は交流を印加すると、通電時のみ該表示
層に青色の発光が認められた。特に101層以上の累積
膜を有する表示媒体に於いて、強い発光が認められた。
When 45 V of direct current or alternating current was applied, blue light emission was observed in the display layer only when the current was applied. In particular, strong light emission was observed in display media having a cumulative film of 101 layers or more.

電極パターンを種々のパターンにして上記同様の表示媒
体を作成したところ、どの場合にも高密度な画像が高解
像度で得られた。
When display media similar to the above were created using various electrode patterns, high-density images with high resolution were obtained in all cases.

以上に説明した如く、本発明によって、高密度で高解像
力を有する表示媒体を低コストで提供することが可能と
なった。
As explained above, the present invention makes it possible to provide a display medium with high density and high resolution at low cost.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図は、本発明に係る表示媒体の実施例を説
明する縦断面図、第3図〜第4図は本発明に係る包接錯
体の水相上に於ける状態を説明する説明図である。 1−一一ホスト分子 2−一−ゲスト分子3−−−親水
性部位 5−m−基板 4−−−長鎖アルキル部位 9.1!9,20.21−−一電極 7−−−リード線
6−−−電解液 8−m−セル 10.11−−一包接部位 12.13−一一被包接部位 18−m−親木性部位 14−m−長鎖脂肪酸部位 15−m−疎水性部位 16−−−水相 特許出願人 キャノン株式会社 ! 第1図 第2図 (b) 第3図 (b) 第4図
Figures 1 to 2 are longitudinal sectional views illustrating examples of the display medium according to the present invention, and Figures 3 to 4 illustrate the state of the inclusion complex according to the present invention on an aqueous phase. FIG. 1-11 host molecule 2-1-guest molecule 3---hydrophilic site 5-m-substrate 4---long-chain alkyl site 9.1!9,20.21--one electrode 7---lead Line 6---Electrolyte 8-m-Cell 10.11--1 Inclusion site 12.13-11 Inclusion site 18-m-Lyophilous site 14-m-Long chain fatty acid site 15-m -Hydrophobic site 16---Aqueous phase patent applicant Canon Corporation! Figure 1 Figure 2 (b) Figure 3 (b) Figure 4

Claims (1)

【特許請求の範囲】[Claims] その分子内に親水性部位、疎水性部位及び包接部位を有
するホスト分子と該ホスト分子に包接されるゲスト分子
とからなる包接錯体の単分子膜又は単分子層累積膜を担
体上に形成して成る表示層を備え、該包接錯体のホスト
分子とゲスト分子の錯体形成比が実質的に等モル比でな
いことを特徴とする表示媒体。
A monomolecular film or a stacked monomolecular layer film of an inclusion complex consisting of a host molecule having a hydrophilic site, a hydrophobic site, and an inclusion site within the molecule and a guest molecule included in the host molecule is placed on a carrier. 1. A display medium comprising a display layer formed by forming an inclusion complex, wherein the complex formation ratio of host molecules and guest molecules of the inclusion complex is not substantially equimolar.
JP59095582A 1984-05-15 1984-05-15 Display medium Pending JPS60239717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095582A JPS60239717A (en) 1984-05-15 1984-05-15 Display medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095582A JPS60239717A (en) 1984-05-15 1984-05-15 Display medium

Publications (1)

Publication Number Publication Date
JPS60239717A true JPS60239717A (en) 1985-11-28

Family

ID=14141580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095582A Pending JPS60239717A (en) 1984-05-15 1984-05-15 Display medium

Country Status (1)

Country Link
JP (1) JPS60239717A (en)

Similar Documents

Publication Publication Date Title
US4693915A (en) Film forming method, recording medium formed thereby and recording method therewith
JPS60239717A (en) Display medium
US4734338A (en) Electroluminescent device
JPH0452934B2 (en)
JPS60239716A (en) Display medium
JPS60239715A (en) Display medium
US4773742A (en) Display method with fatly acid ester host molecule
JP2593814B2 (en) EL element driving method
US4647518A (en) Light-emitting display component and method for light-emitting display using the same
JPS60239712A (en) Display medium
JPS60240786A (en) Display medium
JPH0135329B2 (en)
JPH0148524B2 (en)
Lu et al. LB films formed from arachidic acid monolayers on an aqueous solution of a ruthenium (II) complex
JPH07183081A (en) Driving method for electroluminescent element
JPH0458615B2 (en)
JPS60223888A (en) Luminescent display element
JPS61163339A (en) Optical recording method
JPS60241927A (en) Film forming method
JPS60239283A (en) Recording method
JPS61156118A (en) Recording medium
JPS61156117A (en) Recording medium
JPS6147784A (en) El element
JPS60239282A (en) Recording medium
Reese Self-assembled monolayers of organosulfur compounds on gold incorporating terminal conjugated arenes, redox active probes, and oligonucleotides