JPS60239443A - Production of bis(8-aminooctyl)amine - Google Patents

Production of bis(8-aminooctyl)amine

Info

Publication number
JPS60239443A
JPS60239443A JP59094566A JP9456684A JPS60239443A JP S60239443 A JPS60239443 A JP S60239443A JP 59094566 A JP59094566 A JP 59094566A JP 9456684 A JP9456684 A JP 9456684A JP S60239443 A JPS60239443 A JP S60239443A
Authority
JP
Japan
Prior art keywords
reaction
suberonitrile
catalyst
bot
omda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59094566A
Other languages
Japanese (ja)
Other versions
JPS6311346B2 (en
Inventor
Atsushi Shimizu
敦 清水
Kazunori Yamataka
山高 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59094566A priority Critical patent/JPS60239443A/en
Publication of JPS60239443A publication Critical patent/JPS60239443A/en
Publication of JPS6311346B2 publication Critical patent/JPS6311346B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:Suberonitrile and octamethylenediamine are mixed and treated with hydrogen in the presence of a catalyst by no use of a solvent to give the titled compound readily through a 1-step process at low temperatures in a shortened time without formation of industrial wastes. CONSTITUTION:Suberonitrile only or a mixture thereof with octamethylenediamine is used as a starting material to effect hydrogenative dimerization in the presence of a Raney type catalyst at 80-200 deg.C, preferably 100-150 deg.C to give the objective compound. The Raney catalyst is preferably Raney nickel and the amount is 1-40wt%, preferably 1-20wt%. The hydrogen pressure in the reaction is 10-100kg/cm<2>G, preferably 20-50kg/cm<2>G.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スベロニトリル(以下8BNと略記する)単
独あるいはオクタメチレンジアミン(以下OMDAと略
記する)と8BNの混合物をビス(B−アミノオクチル
)アミン(以下BOT 、!:表記する)に転化させる
方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to converting suberonitrile (hereinafter abbreviated as 8BN) alone or a mixture of octamethylene diamine (hereinafter abbreviated as OMDA) and 8BN into bis(B-aminooctyl). It relates to a method of converting into amine (hereinafter referred to as BOT, !).

〔従来の技術〕 1 従来BOTを得る方法としては、特開1855−923
4Bが挙けられる。この方法では、OMDAを硝酸塩(
あるいは他の強酸の塩)とし、加熱によシ脱アンモニア
を行い三量化してBOTを得ている。
[Prior art] 1 A conventional method for obtaining BOT is disclosed in Japanese Patent Application Laid-open No. 1855-923.
4B is mentioned. In this method, OMDA is converted to nitrate (
or other strong acid salts), deammoniated by heating and trimerized to obtain BOT.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

該従来方法では、三量化反応を行なうためには、温度が
200℃以上必要であシ、且つ反応時間もその温度で5
時間以上必要であり、さらに生成し九BOTの硝酸塩(
あるいは他の強酸の塩)を水酸化ナトリウムによシ処理
してアミンを遊離させるための工程が必要になる。また
その時に多量の廃液(NaNOs水溶液)を生ずる。通
常OMDAは8BNの水素添加反応よシ製造するので、
8BNを出発原料とした場合、BOTを得るには工程が
長くなる。
In this conventional method, in order to carry out the trimerization reaction, a temperature of 200°C or higher is required, and the reaction time is also 50°C at that temperature.
It takes more than an hour to produce 9 BOT of nitrate (
or other strong acid salts) with sodium hydroxide to liberate the amine. Also, at this time, a large amount of waste liquid (NaNOs aqueous solution) is generated. Normally, OMDA is produced by hydrogenation reaction of 8BN.
When 8BN is used as a starting material, the process to obtain BOT is long.

この様な点で該従来方法は、工業的に実施する場合必ず
しも有利であるとは言えない。
In this respect, the conventional method cannot necessarily be said to be advantageous when implemented industrially.

本発明者らは、上記の様な従来方法がもつ欠点を克服し
、BOTを低温、短時間で製造し、しかも産業廃棄物を
多量に排出せずに、さらには8BNよシ一工程でBOT
を製造する方法を開発すべく鋭意研究を重ねた結果、8
NB単独、またはOMDAと8BNの混合物が無溶媒で
ラネー型触媒と水素の存在下において容易にBOTに転
化し、上記問題点を解決しうろことを見い出しこの知見
に基づいて本発明を完成するに至った。
The present inventors have overcome the drawbacks of the conventional methods as described above, manufactured BOT at low temperatures in a short time, and without discharging large amounts of industrial waste.
As a result of intensive research to develop a method for manufacturing 8
We have discovered that NB alone or a mixture of OMDA and 8BN can be easily converted to BOT in the presence of a Raney catalyst and hydrogen without a solvent, thereby solving the above problems, and based on this knowledge, we have completed the present invention. It's arrived.

〔問題点を解決するための手段および作用〕(本発明は
、8BN単独、または、OMDAと8BNの混合物を、
溶媒を使用することなくラネー型触媒と水素ガスの存在
下で加熱し、8BNの水素添加反応と、OMDAの三量
化反応を、一工程で行わせることを特徴とするBOTの
製法である。
[Means and effects for solving the problems] (The present invention provides 8BN alone or a mixture of OMDA and 8BN,
This is a BOT production method characterized by heating in the presence of a Raney catalyst and hydrogen gas without using a solvent to perform the hydrogenation reaction of 8BN and the trimerization reaction of OMDA in one step.

本発明においては、反応溶媒を用いないことが必須条件
である。通常ニトリルの水素添加反応では、エタノール
等の有機溶媒を用いるがこの時に副生物として少量のア
ミンニ量体あるいはポリマーが生成することが知られて
いる(特公昭55−2430)。
In the present invention, it is an essential condition that no reaction solvent is used. Normally, an organic solvent such as ethanol is used in the hydrogenation reaction of nitrile, but it is known that a small amount of amine dimer or polymer is produced as a by-product (Japanese Patent Publication No. 55-2430).

本発明の反応では無溶媒にすることによって三量化反応
を促進させている。
In the reaction of the present invention, the trimerization reaction is promoted by using no solvent.

本発明の反応では触媒としてラネー型触媒を用いる。そ
のなかでもラネーニッケル触媒(以下R−Niと略記す
る)及びラネーニッケル触媒(以下R−Ooと略記する
)が好ましく、それぞれ単独で用いてもまた混合して用
いてもよい。工業的には特にR−N iが好ましい。用
いる量はSBNとOMDA総重量に対して1〜40重量
%が好ましい。特に好ましくは1〜20%である。ちな
みに溶媒を用いてBOTを得ようと本発明者らが試みた
ところ、8BNに対し40重量%以上もの几−Niを必
要とした。
In the reaction of the present invention, a Raney type catalyst is used as a catalyst. Among these, Raney nickel catalyst (hereinafter abbreviated as R-Ni) and Raney nickel catalyst (hereinafter abbreviated as R-Oo) are preferred, and each may be used alone or in combination. Industrially, R-N i is particularly preferred. The amount used is preferably 1 to 40% by weight based on the total weight of SBN and OMDA. Particularly preferably 1 to 20%. Incidentally, when the present inventors attempted to obtain BOT using a solvent, it required 40% by weight or more of phosphorus-Ni based on 8BN.

該触媒は2〜3回程度の使用が可能であるが、再使用す
るに従い、水素添加活性および二量化活性社漸次減少す
る。触媒は量が多いとBOTの生成は早いがポリマーの
生成も増加しBOTの選択率が悪化する。
The catalyst can be used about 2 to 3 times, but as it is reused, its hydrogenation activity and dimerization activity gradually decrease. When the amount of catalyst is large, BOT is produced quickly, but polymer production also increases and the selectivity of BOT deteriorates.

水素圧力はlO〜100#/cm”(ゲージ圧)で行な
われるが操作上の点で20〜50 Jt910n甚ゲー
ジ圧)が特に好ましい。水素添加反応は圧力が高い程速
度が早い。しかし三量化反応においては、その速度は水
素圧力に依存せず任意の圧力を選択することが可能であ
る。水素の吸収速度は触媒の量にも依存し、触媒78B
N二0.4(重量比)の時は30分程度であシ、触媒/
8BN = o、、1 (重量比)の時2〜3時間であ
る。水素の吸収が終了した後は三量化反応が主に進行す
るので、この時点では窒素雰囲気下でもよい。水素の吸
収の終了は明瞭に確認できるので、水素添加反応の終了
を明確に知ることが可能である。このため、温度圧力等
の条件を操作することによシ、水素添加反応と三量化反
応を別々に調整し進行させることが可能である。
The hydrogen pressure is 10 to 100 #/cm" (gauge pressure), but 20 to 50 Jt/cm" (gauge pressure) is particularly preferred. The higher the pressure, the faster the hydrogenation reaction. However, trimerization In the reaction, the rate does not depend on the hydrogen pressure and can be selected at any pressure.The hydrogen absorption rate also depends on the amount of catalyst,
When N2 is 0.4 (weight ratio), it takes about 30 minutes.
When 8BN = o, 1 (weight ratio), it takes 2 to 3 hours. Since the trimerization reaction mainly proceeds after hydrogen absorption is completed, a nitrogen atmosphere may be used at this point. Since the end of hydrogen absorption can be clearly confirmed, it is possible to clearly know the end of the hydrogenation reaction. Therefore, by manipulating conditions such as temperature and pressure, it is possible to separately adjust and advance the hydrogenation reaction and the trimerization reaction.

反応終了時まで、温度圧力条件を変化させない場合は、
水素添加反応と三量化反応は並行する。
If the temperature and pressure conditions are not changed until the end of the reaction,
The hydrogenation reaction and trimerization reaction are parallel.

本発明において温度は80〜200℃であシ特にiまし
くは100〜150℃である。反応初期には温度を低く
保ち水素吸収が終了した時点で昇温を行えば、前半で水
素添加反応を行わせ後半で三量化反応を行なわせること
も可能である。
In the present invention, the temperature is 80 to 200°C, particularly preferably 100 to 150°C. By keeping the temperature low at the beginning of the reaction and raising the temperature when hydrogen absorption is completed, it is possible to carry out the hydrogenation reaction in the first half and the trimerization reaction in the second half.

本発明においては、SBNの水素添加反応はほぼ定量的
に進行し、OMDAが収率100%近く生成する。
In the present invention, the hydrogenation reaction of SBN proceeds almost quantitatively, and OMDA is produced at a yield of nearly 100%.

さらに逐次的にOMDAが脱アンモニアしてBOTとな
る。一般にR−Ni存在下では、逐次的にアミンの重合
反応が進行するが、本発明においてはBOTを収率よく
得るためにOMDAの転化率を調整している。転化率を
50%以下に抑えて反応を行わせることが好ましい。
Furthermore, OMDA is sequentially deammoniated to become BOT. Generally, in the presence of R-Ni, the polymerization reaction of amine proceeds sequentially, but in the present invention, the conversion rate of OMDA is adjusted in order to obtain BOT in good yield. It is preferable to carry out the reaction while suppressing the conversion rate to 50% or less.

本発明において、原料としては8BN単独あるいはOM
DAと88Nの混合物が用いられるが、特にOMDAと
8BNの混合物を用いることが好ましい。
In the present invention, the raw material is 8BN alone or OM
A mixture of DA and 88N is used, and it is particularly preferred to use a mixture of OMDA and 8BN.

8BN単独の場合でもBOTは収率よく得られるが、反
応開始′時点では、8BNの転化率が低(OMDAの量
が少なく、触媒が相対的に多い状態にあるのでOMDA
の重合反応も進行しやすい条件でちる。このためさらに
BOTの選択率をよくするためには、8BNに対してO
MDAを常にある程度の量共存させ、触媒に対するOM
DAの量を増加させることによシ重合反応の進行を抑え
る方法をとればよい。特に好ましい混合比ti OM−
D人78BN(重量比)が1以上である。
Even when 8BN is used alone, BOT can be obtained in good yield, but at the start of the reaction, the conversion rate of 8BN is low (because the amount of OMDA is small and the catalyst is relatively large, OMDA
The polymerization reaction of is also chilled under conditions that allow it to proceed easily. Therefore, in order to further improve the selection rate of BOT, it is necessary to
A certain amount of MDA is always coexisting, and OM for the catalyst is
What is necessary is to take a method of suppressing the progress of the polymerization reaction by increasing the amount of DA. Particularly preferred mixing ratio ti OM-
Person D's 78BN (weight ratio) is 1 or more.

本発明においてOMDAは、反応混合物から回収したも
のを用いることが可能であシ、OMDAをリサイクルさ
せることは、重合反応を抑え、BOTの選択率を高める
ことにもなるので、好ましい。そのために、本方式は、
−ζツチ方式のみならず、連続方式にも適用可能である
In the present invention, it is possible to use OMDA recovered from the reaction mixture, and recycling OMDA is preferable because it suppresses the polymerization reaction and increases the selectivity of BOT. To that end, this method
It is applicable not only to the −ζtsuchi method but also to the continuous method.

本発明において、R−Ni・および/またはR−O。In the present invention, R-Ni. and/or R-O.

を反応容器に仕込む時に、触媒と同量程度の水を同伴し
ているが、水の混入によっても本反応は何1 ら妨けら
れることはない。水素添加反応では同伴水を除去する操
作を通常行うが本反応では少量の同伴水を除去する操作
t−特に行う必要はない。
When the reaction mixture is charged into the reaction vessel, approximately the same amount of water as the catalyst is brought with it, but the reaction is not hindered in any way by the presence of water. In a hydrogenation reaction, an operation for removing entrained water is usually performed, but in this reaction, there is no particular need to carry out an operation for removing a small amount of entrained water.

〔発明の効果〕〔Effect of the invention〕

以上述べてきた様に、本発明によれば、SBNからBO
Tを一工程で製造可能であシ、工程の途中でOMDAを
単離する必要はない。また溶媒を使用しないので、溶媒
の除去回収工程が不要である。反る。必要ならば、反応
条件を操作することにより水素添加反応と、二量化反応
を別々に調整することも可能である。OMDAは反応は
性格上回収再使用が望ましいが、この操作は、工業プロ
セスとしても好ましい操作である。そして、BOTの水
酸化ナトリウムによる後挑理等の付随工程が不要であシ
、シたがって多量の産業廃棄物を生じない、触媒の同伴
水を除去する操作も不要であるので、設備は簡略化され
る。以上の点で本発明の方法は極めて優れ九BOTの工
業的製法である。
As described above, according to the present invention, from SBN to BO
T can be produced in one step, and there is no need to isolate OMDA during the process. Furthermore, since no solvent is used, a solvent removal and recovery process is not necessary. Warp. If necessary, it is also possible to separately adjust the hydrogenation reaction and the dimerization reaction by manipulating the reaction conditions. Although recovery and reuse of OMDA is desirable due to the nature of the reaction, this operation is also preferred as an industrial process. Additionally, there is no need for accompanying processes such as post-challenge using sodium hydroxide in BOT, and therefore no large amount of industrial waste is generated.There is no need to remove the water entrained in the catalyst, so the equipment is simple. be converted into In the above points, the method of the present invention is an extremely excellent industrial method for producing 9BOT.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例蓋 1tの8U831611オートクレーブにOMDA15
1.5f (1,052moL)、88N 149.8
 ? (1,101mot)、 R−Ni 16.Of
を仕込み水素圧力50般j2、温度140℃で3時間攪
拌した。温度は140℃で一定に保った。水素圧は20
#/備2になった時点で50kl/cm”に昇圧した。
Example OMDA15 in 8U831611 autoclave with 1t lid
1.5f (1,052mol), 88N 149.8
? (1,101mot), R-Ni 16. Of
was charged and stirred at a hydrogen pressure of 50° C. and a temperature of 140° C. for 3 hours. The temperature was kept constant at 140°C. Hydrogen pressure is 20
When the pressure reached #2, the pressure was increased to 50kl/cm''.

反応開始から3時間で水素の吸収が終了したので一度室
温までオートクレーブを冷却して、系内圧力を常圧にし
た後再び140℃に昇温して2.5 Hr攪拌した。そ
の後オートクレーブを冷却し、ltのメタノールで生成
物を完全に溶解させ、触媒をろ過して、BOTとOMD
Aの混合したメタノール溶液を得た。この溶液からメタ
ノールを除き、さらに減圧蒸留を行って沸点130’C
/20wHgでOMDA 194.2 f (1,34
9ゴ)、沸点180’C/3maHgでBOT 89.
5 f (0,330d)を得た。OMDAの転化率は
37%BOTの選択率は82%であった。
Hydrogen absorption was completed 3 hours after the start of the reaction, so the autoclave was once cooled to room temperature, the pressure inside the system was brought to normal pressure, and then the temperature was raised to 140° C. again and stirred for 2.5 hours. After that, the autoclave was cooled, the product was completely dissolved with lt methanol, the catalyst was filtered, and the BOT and OMD
A mixed methanol solution of A was obtained. After removing methanol from this solution, it was further distilled under reduced pressure to obtain a boiling point of 130'C.
OMDA 194.2 f (1,34
9go), boiling point 180'C/3maHg BOT 89.
5 f (0,330d) was obtained. The conversion rate of OMDA was 37%, and the selectivity of BOT was 82%.

実施例2〜6 表1の組成、条件で反応を行い表2の結果を得た。Examples 2-6 The reaction was carried out under the composition and conditions shown in Table 1, and the results shown in Table 2 were obtained.

なお次の計算式を用いた。The following calculation formula was used.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1、 スベロニトリル単独、または、オクタメチレンジ
アミンとスベロニトリルの混合物を溶媒をと 使用することなく、ラネー屋触へ水素ガスの存在下で加
熱し、スベロニトリルの水素添加反応と、オクタメチレ
ンジアミンの三量化反応を、一工程で行わせることを特
徴とするビス(8−アミノオクチル)アミンの製法 2.2ネー型触媒がラネーニッケル触媒およびラネーニ
ッケル触媒である特許請求の範囲第1項記載の方法 ふ オクタメチレンジアミンの転化率が50%以下であ
る特許請求の範囲第1項記載の方法4、 オクタメチレ
ンジアミンとスベロニトリルの混合比がスベロニトリル
をペースとして1以上である特許請求の範囲第1項記載
の方法五 オクタメチレンジアミンの一部が、反応系よ
シ回収されたオクタメチレンジアミンである特許請求の
範囲第1項記載の方法
[Claims] 1. Suberonitrile alone or a mixture of octamethylene diamine and suberonitrile is heated in the presence of hydrogen gas to a Raney reactor without using a solvent, and the hydrogenation reaction of suberonitrile and octamethylene diamine and suberonitrile are heated in the presence of hydrogen gas. 2. A method for producing bis(8-aminooctyl)amine, characterized in that the trimerization reaction of methylene diamine is carried out in one step. 2. Claim 1, wherein the Na-type catalyst is a Raney nickel catalyst and a Raney nickel catalyst. Method 4 according to claim 1, wherein the conversion rate of octamethylene diamine is 50% or less; Claim 1, wherein the mixing ratio of octamethylene diamine and suberonitrile is 1 or more with suberonitrile as a base. 5. The method according to claim 1, wherein a part of the octamethylene diamine is octamethylene diamine recovered from the reaction system.
JP59094566A 1984-05-14 1984-05-14 Production of bis(8-aminooctyl)amine Granted JPS60239443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59094566A JPS60239443A (en) 1984-05-14 1984-05-14 Production of bis(8-aminooctyl)amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59094566A JPS60239443A (en) 1984-05-14 1984-05-14 Production of bis(8-aminooctyl)amine

Publications (2)

Publication Number Publication Date
JPS60239443A true JPS60239443A (en) 1985-11-28
JPS6311346B2 JPS6311346B2 (en) 1988-03-14

Family

ID=14113864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59094566A Granted JPS60239443A (en) 1984-05-14 1984-05-14 Production of bis(8-aminooctyl)amine

Country Status (1)

Country Link
JP (1) JPS60239443A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864062A (en) * 1987-09-24 1989-09-05 Mitsubishi Gas Chemical Company, Inc. Process for producing dioctamethylene triamine
US6278016B1 (en) 1999-12-09 2001-08-21 Loyola University Of Chicago Methods for conversion of isoprene to prenyl alcohol and related compounds
JP2014503490A (en) * 2010-11-10 2014-02-13 ダウ グローバル テクノロジーズ エルエルシー Amino group transfer of nitrogen-containing compounds to high molecular weight polyalkyleneamines.
US9783486B2 (en) 2013-12-02 2017-10-10 Dow Global Technologies Llc Preparation of high molecular weight, branched, acyclic polyalkyleneamines and mixtures thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830044B2 (en) * 1987-09-24 1996-03-27 三菱瓦斯化学株式会社 Method for producing dioctamethylenetriamine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592348A (en) * 1979-01-06 1980-07-12 Dainippon Ink & Chem Inc Preparation of 1,17-diamino-9-azaheptadecane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592348A (en) * 1979-01-06 1980-07-12 Dainippon Ink & Chem Inc Preparation of 1,17-diamino-9-azaheptadecane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864062A (en) * 1987-09-24 1989-09-05 Mitsubishi Gas Chemical Company, Inc. Process for producing dioctamethylene triamine
US6278016B1 (en) 1999-12-09 2001-08-21 Loyola University Of Chicago Methods for conversion of isoprene to prenyl alcohol and related compounds
JP2014503490A (en) * 2010-11-10 2014-02-13 ダウ グローバル テクノロジーズ エルエルシー Amino group transfer of nitrogen-containing compounds to high molecular weight polyalkyleneamines.
US9783486B2 (en) 2013-12-02 2017-10-10 Dow Global Technologies Llc Preparation of high molecular weight, branched, acyclic polyalkyleneamines and mixtures thereof

Also Published As

Publication number Publication date
JPS6311346B2 (en) 1988-03-14

Similar Documents

Publication Publication Date Title
US2257814A (en) Preparation of omega-amino nitriles
US4482741A (en) Preparation of xylylenediamine
US3448118A (en) Preparation of n-substituted alpha-pyrrolidones
US2784191A (en) Process for the production of lactams
JPS60239443A (en) Production of bis(8-aminooctyl)amine
US3435074A (en) Process for producing nitrodiarylamines
JPH02132A (en) Preparation of 2-methylpentanediamine
TWI330633B (en) Method for producing dicarboxylic acid
JPS5925779B2 (en) Isomerization method for stereoisomeric alicyclic diamines
US2560950A (en) Production of o-cresol derivatives
US3187046A (en) Reduction of nitroolefins to amines
JPS60239442A (en) Production of bis(8-aminooactyl)amine
SU567398A3 (en) Method of preparation of 1,6-hexanediole
JPH05163213A (en) Production of 3-aminopropanol
JPS6131084B2 (en)
US3737462A (en) Method for the preparation of 1,2-diaminopropane
JPS61251659A (en) Production of 2-or 3-aminomethylpiperidine
US3481938A (en) Process for the preparation of piperidine
JPS62169751A (en) Production of 2-amino-1,3-propanediol
JPS59227862A (en) Preparation of dimethylhexamethylenimine
JPH06271511A (en) Production of 1,3-diaminopropane
JP3835841B2 (en) Method for producing tertiary amine having long-chain saturated aliphatic group
US3346637A (en) Process for the manufacture of 1, 2-diaminomethylcyclobutane
JPS5927334B2 (en) Method for producing 2-pyrrolidone
JP2764621B2 (en) Method for producing α- (3-aminophenyl) ethylamine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees