JPS60239437A - Production of trifluoroacetic acid and its chloride - Google Patents

Production of trifluoroacetic acid and its chloride

Info

Publication number
JPS60239437A
JPS60239437A JP9553984A JP9553984A JPS60239437A JP S60239437 A JPS60239437 A JP S60239437A JP 9553984 A JP9553984 A JP 9553984A JP 9553984 A JP9553984 A JP 9553984A JP S60239437 A JPS60239437 A JP S60239437A
Authority
JP
Japan
Prior art keywords
reaction
water
oxygen
dichloro
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9553984A
Other languages
Japanese (ja)
Inventor
Isao Goto
勲 後藤
So Yoneda
米田 創
Seisaku Kumai
清作 熊井
Toru Ueno
徹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9553984A priority Critical patent/JPS60239437A/en
Priority to EP85105653A priority patent/EP0163975B1/en
Priority to DE8585105653T priority patent/DE3564257D1/en
Publication of JPS60239437A publication Critical patent/JPS60239437A/en
Priority to US06/930,056 priority patent/US5041647A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The gas-phase reaction between CF3CHCl2, O2 and water is effected under such conditions as the feedstocks and the reaction products do not liquefy, using a completely mixing type reactor, as the feed stocks are continuously supplied and the products are continuously taken out, whereby the titled compound is obtained. CONSTITUTION:In the production of trifluoroacetic acid and its acid chloride by reaction between 1,1-dichloro-2,2,2-trifluoroethane, oxygen and water, their gas- phase reaction is effected under reaction conditions where the feed stocks and the products do not liquefy, using a completely mixing type reactor free from local heating, preferably an upright reactor provided with a stirrer and the starting materials are continuously fed and the products are continuously taken out to give trifluoroacetic acid and its acid chloride. The reaction temperature is preferably 260-320 deg.C and the pressure is 25-35kg/cm<2>. The oxygen is preferably fed 1-2mol per mol of CH2CHCl and water is 0.01-0.5mol.

Description

【発明の詳細な説明】 本発明は1.1−ジクロロ−2,2,2−トリフルオロ
エタン(以下R−123と略す。)、酸素、及び水を連
続的に反応せしめ、トリフルオロ酢酸(以下TFAと略
す、)及びトリフルオロ酢酸クロライド(以下TFAC
と略す。)を製造する方法に関する。
Detailed Description of the Invention The present invention involves continuously reacting 1,1-dichloro-2,2,2-trifluoroethane (hereinafter abbreviated as R-123), oxygen, and water to produce trifluoroacetic acid ( (hereinafter abbreviated as TFA) and trifluoroacetic acid chloride (hereinafter referred to as TFAC)
It is abbreviated as ).

TFACは、農医薬の製造原料として、又TFAは農医
薬の製造原料の他、反応溶媒としであるいはエステル化
触媒、縮合触媒等の各種触媒として有用な化合物である
。従来、これらの化合物を製造する方法には、酢酸フル
オライドの電解フッ素化によるTFAの製法(米国特許
第40228241 号明細書)、水銀塩の存在下1,
1.1− )リフルオロ−2,2,2−トリクロロエタ
ンと三酸化硫黄との反応によるTFACの製法(特許出
願公表間56−501Ei49号公報)あるいは0.1
重量%以下より少量の水を含むR−123を活性放射線
の存在丁番と酸素と反応させるTFAGの製法(特公昭
58−2441f1号公報)等が知られている。しかし
ながら、電解フッ素化においては中間生成物のトリフル
オロ酢酸フルオライドと水素の分離に経費がかかり、水
銀塩を用いる製法では、使用薬品が取り扱いにくく工業
的に不利であり、活性放射線を用いる方法では、副生ず
る微量のフッ酸により放射線源のガラスが失透し長期間
使用できなl、%など、従来の方法にはいくつかの欠点
が存在している。本出願人は、すでに、これら従来法の
欠点を解決した方法を提出している。すなわち、R−1
23を水の存在下に熱酸化し、TFA とTFACを製
造する方法である。(特開昭58−159440号公報
)本発明は、このような本出願人がすでに提出した方法
の改良に係るものであり、R−123の反応率、TFA
とTFACへの選択率さらには反応時間等を改善したも
のである。すなわち本発明は1.1−ジクロロ−2,2
,2−トリフルオワエタン、酸素、及び水を反応せしめ
トリフルオロ酢酸及びその酸クロライドを得る方法にお
いて、原料及び反応生成物が液化しない条件下でかつ、
局部過熱を生起しない完全混合型反応器により、原料供
給及び反応生成物取り出しを連続的に行ないながら気相
反応せしめることを特徴とするトリフルオロ酢酸及びそ
の酸クロライドの製造法に関するものである。
TFAC is a compound useful as a raw material for producing agricultural medicines, and TFA is a compound useful as a raw material for producing agricultural medicines, as a reaction solvent, or as various catalysts such as esterification catalysts and condensation catalysts. Conventionally, methods for producing these compounds include the production of TFA by electrolytic fluorination of acetic acid fluoride (U.S. Pat. No. 4,022,8241);
1.1-) Method for producing TFAC by reaction of refluoro-2,2,2-trichloroethane and sulfur trioxide (Patent Application Publication No. 56-501Ei49) or 0.1
A method for producing TFAG (Japanese Patent Publication No. 58-2441f1) is known, in which R-123 containing less than % by weight of water is reacted with a hinge in the presence of active radiation and oxygen. However, in electrolytic fluorination, separation of the intermediate product trifluoroacetic acid fluoride and hydrogen is expensive, in the production method using mercury salts, the chemicals used are difficult to handle and are industrially disadvantageous, and in the method using active radiation, There are several drawbacks to the conventional method, such as the glass of the radiation source being devitrified by a small amount of hydrofluoric acid produced as a by-product, making it unusable for a long period of time. The applicant has already proposed a method that overcomes the drawbacks of these conventional methods. That is, R-1
In this method, TFA and TFAC are produced by thermally oxidizing 23 in the presence of water. (Japanese Unexamined Patent Publication No. 58-159440) The present invention relates to an improvement of the method already submitted by the applicant, and improves the reaction rate of R-123, TFA
The selectivity to TFAC and the reaction time are improved. That is, the present invention provides 1,1-dichloro-2,2
, 2-trifluoroethane, oxygen, and water to obtain trifluoroacetic acid and its acid chloride, under conditions in which the raw materials and the reaction product do not liquefy, and
The present invention relates to a method for producing trifluoroacetic acid and its acid chloride, which is characterized by carrying out a gas phase reaction while continuously supplying raw materials and removing reaction products using a complete mixing type reactor that does not cause local overheating.

R−123、酸素−1及び水との気相反応は以下の通り
である。
The gas phase reaction with R-123, oxygen-1 and water is as follows.

2CF3 CHCl 2 + 02 + H20→CF
3COOH+ 0F3GOCI+ 3HCI 気相酸化反応においては、R−123の熱分解反応やこ
れに伴なう種々の副反応が起りやすく、HF等の生成も
考えられている。さらに、反応原料であるR−123中
にはR−123の異性体である分離困難なR−123a
すなわちCF2CICFHCIがR7123の製造過程
で混入し、多い場合には15wt%も含まれていること
さえある。従って、R−,123aの酸化反応によって
も以下のようにフッ酸や塩酸が生成する。
2CF3 CHCl 2 + 02 + H20→CF
3COOH+ 0F3GOCI+ 3HCI In the gas phase oxidation reaction, the thermal decomposition reaction of R-123 and various side reactions accompanying this are likely to occur, and the generation of HF and the like is also considered. Furthermore, R-123, which is a reaction raw material, contains R-123a, which is an isomer of R-123 and is difficult to separate.
That is, CF2CICFHCI is mixed in during the manufacturing process of R7123, and in some cases, it may even be contained in amounts as high as 15 wt%. Therefore, hydrofluoric acid and hydrochloric acid are also generated by the oxidation reaction of R-, 123a as shown below.

2CF2CIcFHc l + 02→ CF2CIG
OCI+ CF2C1tl:OF +oF+H1ll:
1 一方、R−123(通常前記のように微量の異性体R−
123aが含まれている)の酸化により、TFAやTF
ACを得ようとする場合には、水が触媒的に作用し、無
水の状態ではR−123の酸化反応が起りにくいことが
知られている。しかしながら、水の存在は、前述の副生
ずるフッ酸や塩酸による装置の腐食を高めることになる
。特にフッ酸においては、無水であってもかなり腐食性
が高く、特公昭5B−24418号公報に、見られる放
射線源をカバーするガラスは長期間の使用に耐えること
ができない。同公報ではR−123の液相酸化反応にお
いて副生ずるフッ酸によりガラスや石英光源がおかされ
る旨教示しているが、気相酸化反応においても同様であ
るという知見を本発明者等は得ている。
2CF2CIcFHc l + 02→ CF2CIG
OCI+ CF2C1tl:OF +oF+H1ll:
1 On the other hand, R-123 (usually a trace amount of isomer R- as mentioned above)
(contains 123a), TFA and TF
When attempting to obtain AC, water acts as a catalyst, and it is known that the oxidation reaction of R-123 is difficult to occur in an anhydrous state. However, the presence of water increases the corrosion of the equipment due to the above-mentioned by-product hydrofluoric acid and hydrochloric acid. In particular, hydrofluoric acid is highly corrosive even in anhydrous form, and the glass used to cover the radiation source, as described in Japanese Patent Publication No. 5B-24418, cannot withstand long-term use. Although the publication teaches that glass or quartz light sources are damaged by hydrofluoric acid produced as a by-product in the liquid phase oxidation reaction of R-123, the present inventors have obtained the knowledge that the same is true in the gas phase oxidation reaction. ing.

このように、水を触媒的に作用させるR−123の晶化
反応では、腐食に耐えないガラス材質を必要とする活性
放射線の使用は工業的には不可能である。水の存在量を
極めて少量に制限した気相酸化反応においても、反応過
程で水が液化することがあり、フッ酸による腐食は避け
られない。これに対し、本発明方法においては、活性放
射線を必要とせず、反応槽全体の材質をたとえばハステ
ロイ類とすることにより、腐食の危険を防止することが
でき、長期9間の工業的操作が可能である。又、腐食の
危険が少ないため水の存在量を最小限に抑制する必要が
なく、水を触媒的作用に必要な素置上に加えることによ
りTFAの選択率を上げることができる。
As described above, in the crystallization reaction of R-123 in which water acts as a catalyst, it is industrially impossible to use active radiation, which requires a glass material that does not resist corrosion. Even in gas phase oxidation reactions where the amount of water present is limited to an extremely small amount, water may liquefy during the reaction process, and corrosion by hydrofluoric acid is unavoidable. In contrast, the method of the present invention does not require active radiation, and by using Hastelloy as the material for the entire reaction tank, the risk of corrosion can be prevented, and industrial operation for a long period of 9 days is possible. It is. Furthermore, since there is little risk of corrosion, there is no need to minimize the amount of water present, and the selectivity of TFA can be increased by adding water to the substrate necessary for catalytic action.

本発明方法においては1通常加圧下に200°C以上の
高温で実施され、反応槽滞留時間も10分以内と極めて
速い反応である。従って、反応率を高め、又副反応を抑
制してTFA及びTFACの選択率を高めるためには、
反応物を均一に混合し、温度や濃度を均一化することが
重要である。R−123の酸化反応は、水を触媒とする
発熱反応である。従って、反応槽中には局部的な過熱が
生起し、熱分解反応等による副反応が起りやすく、TF
AやTFACへの選択率が低下する原因となり、避けな
ければならない。局部的な過熱に対しては、反応槽中に
第1図3のごとき攪拌機を備え、第1図1のごとき縦型
反応槽においては、1段あるいは上下数段にわたり撹拌
質を備え、例えば、50見の反応槽においては、毎分1
00回転以上好ましくは毎分150回転以上で攪拌させ
ることにより、熱の分散を有効にはかることができる。
In the method of the present invention, the reaction is usually carried out under pressure at a high temperature of 200° C. or higher, and the reaction time is extremely fast, with a reaction tank residence time of less than 10 minutes. Therefore, in order to increase the reaction rate and suppress side reactions to increase the selectivity of TFA and TFAC,
It is important to mix the reactants uniformly and to equalize the temperature and concentration. The oxidation reaction of R-123 is an exothermic reaction using water as a catalyst. Therefore, local overheating occurs in the reaction tank, and side reactions such as thermal decomposition reactions are likely to occur.
This causes a decrease in the selectivity to A and TFAC and must be avoided. To prevent local overheating, a stirrer as shown in FIG. 1 is provided in the reaction tank, and in a vertical reactor as shown in FIG. 1 per minute in a 50mm reactor
By stirring at a speed of 00 rpm or more, preferably 150 rpm or more, heat can be effectively dispersed.

反応槽中全体の温度レベルを均一に保つためには、第1
図2のごときジャケットを設け、外部熱媒体との熱交換
あるいは、反応原料、反応生成物間の熱交換等による方
法を採用すればよい。本発明の気相連続反応における反
応温度は、反応圧力的25〜35kg/ cn(を採用
すれば、250〜400℃好ましくは260〜320℃
の範囲から選定される。これ以下の温度では反応速度が
低下したり、反応が起らないこともあり、これ以上の温
度では熱分解反応等の副反応が起りやすいため好ましく
ない。
In order to maintain a uniform temperature level throughout the reaction tank, the first
A method such as providing a jacket as shown in FIG. 2 and exchanging heat with an external heat medium or between reaction raw materials and reaction products may be adopted. The reaction temperature in the gas phase continuous reaction of the present invention is 250 to 400°C, preferably 260 to 320°C, if a reaction pressure of 25 to 35 kg/cn is adopted.
selected from a range of If the temperature is lower than this, the reaction rate may decrease or the reaction may not occur, and if the temperature is higher than this, side reactions such as thermal decomposition reactions are likely to occur, which is not preferable.

本発明方法では完全混合型反応器を採用し、完全混合す
ることにより温度や濃度の均一化をはかることができる
。そのためには、前述の攪拌操作、熱交換操作の他反応
原料を第1図1のごとき縦型反応槽の下層部に供給し、
上層部から反応生成物を取り出す方法を採用することが
好ましい。又、第1図に示されているように、R−12
3の供給位置は、酸素や水の供給位置よりも上部にする
ことにより、R−123と酸素及び水との混合がより均
一となり、R−123の反応率や選択率の向上に役立つ
ものである。供給原料の混合が不完全であると未反応の
R−123が蓄積し、一度に大量の酸化反応が起り爆発
の危険性もあり、この点からも充分な混合操作は重要で
ある。R−123が未反応とならないためにR−123
に対する酸素の供給量は理論量以上とすることが好まし
く、又、爆発限界の問題から2倍モル以下程度とするこ
とが好ましい。従って、酸素の供給量はR−1231モ
ル当り0.5〜2モル好ましくは1〜2モルの範囲から
選定される。
In the method of the present invention, a complete mixing type reactor is used, and by completely mixing, temperature and concentration can be made uniform. To do this, in addition to the stirring operation and heat exchange operation described above, the reaction raw materials are supplied to the lower part of the vertical reaction tank as shown in Figure 1.
It is preferable to adopt a method in which the reaction product is taken out from the upper layer. Also, as shown in Figure 1, R-12
By setting the supply position in step 3 above the supply position of oxygen and water, the mixing of R-123 with oxygen and water becomes more uniform, which helps improve the reaction rate and selectivity of R-123. be. If the feedstocks are incompletely mixed, unreacted R-123 will accumulate, causing a large amount of oxidation reaction to occur at once, creating the risk of explosion. From this point of view as well, sufficient mixing is important. To prevent R-123 from becoming unreacted, R-123
The amount of oxygen supplied is preferably at least the theoretical amount, and from the perspective of explosion limits, is preferably about twice the mole or less. Therefore, the amount of oxygen supplied is selected from the range of 0.5 to 2 moles, preferably 1 to 2 moles, per mole of R-123.

゛本発明者等は、反応原料や反応生成物が反応槽中で微
量でも液化すると、液滴が反応槽壁に付着し、副生ずる
HClやl(F等の腐食性物質がその液滴中に溶解し、
反応槽壁を腐食し、好ましからざる結果を招くという知
見を得ている。反応槽壁が腐食する結果金属塩化物が生
成し、この塩化物は負触媒となって酸化反応を停止させ
ることさえあり、未反応のR−123が一度に酸化反応
し爆発の危険すら存在する。反応原料であるR−123
や副生するHCl、HFは常温で気体であり、本発明の
反応温度は300°C前後と高温ではあるが、反応圧力
は約20〜40kg/−と高圧を採用するため液化する
虞れがある。特に、常温で液体の水は、反応槽中で液化
しやすく必要以上の水の供給は避けなければならない。
゛The present inventors have discovered that when even a trace amount of reaction raw materials and reaction products liquefy in a reaction tank, droplets adhere to the wall of the reaction tank, and corrosive substances such as HCl and L(F), which are produced as by-products, are contained in the droplets. dissolved in
It has been found that this method corrodes the walls of the reactor, leading to undesirable results. As a result of corrosion of the reaction tank wall, metal chlorides are generated, and these chlorides act as negative catalysts and may even stop the oxidation reaction, and unreacted R-123 may oxidize at once, posing the risk of explosion. . R-123, a reaction raw material
The by-products HCl and HF are gases at room temperature, and although the reaction temperature of the present invention is high at around 300°C, there is a risk of liquefaction because the reaction pressure is high, about 20 to 40 kg/-. be. In particular, water that is liquid at room temperature tends to liquefy in the reaction tank, so it is necessary to avoid supplying more water than necessary.

R−123の酸化反応において、水は触媒としての作用
及びR−123の酸化により生成するトリフルオロ酸ク
ロライドを加水分解しトリフルオロ酢酸に変換する作用
があるものと考えられる。従って、水の供給量は触媒と
しての最小限必要な素置上であるとともに、液化して反
応槽壁に付着しないような素置下であることが好ましい
。通常は、R−1231モル当り0.01〜0.5モル
の範囲から選定するのがよい。反応槽中の原料や反応生
成物が微量でも液化しないように、又液化し始めたもの
が反応槽壁に付着する前に原料であれば酸化反応を完結
させ、反応生成物であれば撹拌下に同伴ガスにより分散
させ取り出すことが重要である。原料ガスの液化は、反
応槽へ供給する前に150〜200°C程度まで予熱す
ることで効果的に防止し得る。又、供給量が多く最も液
化の虞れがあるR−123については、第1図に示され
ているように、水や酸素よりも反応槽中上部に供給し、
又、攪拌機の羽根付近に供給し、よく分散させるととも
に酸化反応を完結するように供給することが好ましい。
In the oxidation reaction of R-123, water is thought to act as a catalyst and to hydrolyze trifluoroyl chloride produced by the oxidation of R-123 and convert it into trifluoroacetic acid. Therefore, it is preferable that the amount of water supplied is the minimum amount required for the catalyst, and at a level that does not liquefy and adhere to the walls of the reaction tank. Usually, it is preferable to select from the range of 0.01 to 0.5 mol per mol of R-1231. In order to prevent even the slightest amount of raw materials and reaction products in the reaction tank from liquefying, complete the oxidation reaction if the raw materials are raw materials and before the materials that have started to liquefy adhere to the walls of the reaction tank, and if they are reaction products, complete the oxidation reaction while stirring. It is important to disperse and extract the gas by entrained gas. Liquefaction of the raw material gas can be effectively prevented by preheating it to about 150 to 200°C before supplying it to the reaction tank. In addition, as for R-123, which is supplied in large quantities and is most likely to liquefy, as shown in Figure 1, it is supplied to the upper part of the reaction tank rather than water or oxygen.
Further, it is preferable to supply the mixture near the blades of the stirrer so that it is well dispersed and the oxidation reaction is completed.

R−123の酸化反応は、温度や濃度が均一化した本発
明のごとき完全混合状態においては、反1 地検中の気
体の滞留時間が2〜20分間となる連続式縦型単槽反応
装置を用いればよい。反応槽から取り出された反応生成
物(第1図4で示す)は蒸留操作により容易に目的化合
物のTFA及びTFACを得ることができる。TFAC
は容易に加水分解してTFAとなるがTFAのみを得よ
うとする時は第2図に示す2段の加水分解工程を採用す
ることにより、本発明により得られる反応生成物4を効
率的にすべてTFAとすることができる。以下、第2図
に示す加水分解工程を説明する。反応生成物4の組成は
主にTFA 、 TFAC1塩酸及び未反応の酸素であ
る。第2図に示す加水分解プロセスはすべて常温常圧操
作でよく、前記塩酸や酸素は気体状態で第1酢酸化塔1
1.第1分離槽12、導管16、第1冷却塔13.導管
18、第2酢酸化塔21、第2分離槽22、導管26、
第2冷却塔23を経て除害系29へ排出される。加水分
解すべきTFACも気体状態で前記塩酸等と同一の経路
を通過するが、第2冷却塔23を通過するまでにはすべ
て加水分解されTFA液に変換されている。導管30に
より加水分解のための水が塩酸等に同伴したTFAGに
対して過剰量連続的に供給され、第2分離槽22で加水
分解を受けTFA液に変換される。この変換されたTF
A液及び未反応の水は導管24及び25を経て循環され
る。導管24を経るものは第2冷却塔23へ導入し、第
2分離槽22で加水分解を受けず塩酸等に同伴する可能
性のある微量のTFACをTFA液中の水によりTFA
に変換した後、導管27を経て第2分離槽22へもどさ
れる。導管25を経るものは第2酢酸化塔21、へ導入
し、TFACの加水分解を行なって第2分離槽へもどさ
れる。このような循環操作を連続的に行なうことにより
、第2分離槽22中には約5重量%前後の水を含むT、
FA液が蓄積される。
The oxidation reaction of R-123 can be carried out in a completely mixed state as in the present invention, where the temperature and concentration are uniform. Just use it. The target compounds TFA and TFAC can be easily obtained by distilling the reaction product (shown in FIG. 1) taken out from the reaction tank. TFAC
is easily hydrolyzed to become TFA, but when it is desired to obtain only TFA, the reaction product 4 obtained by the present invention can be efficiently converted by adopting the two-stage hydrolysis step shown in Fig. 2. All can be TFA. The hydrolysis step shown in FIG. 2 will be explained below. The composition of reaction product 4 is mainly TFA, TFAC1 hydrochloric acid, and unreacted oxygen. The hydrolysis process shown in FIG.
1. First separation tank 12, conduit 16, first cooling tower 13. Conduit 18, second acetation tower 21, second separation tank 22, conduit 26,
It is discharged to the abatement system 29 via the second cooling tower 23. The TFAC to be hydrolyzed also passes through the same route as the hydrochloric acid and the like in a gaseous state, but by the time it passes through the second cooling tower 23, it has been completely hydrolyzed and converted into a TFA liquid. Water for hydrolysis is continuously supplied through the conduit 30 in an excess amount to the TFAG accompanying the hydrochloric acid, and is hydrolyzed in the second separation tank 22 and converted into a TFA liquid. This converted TF
Part A and unreacted water are circulated via conduits 24 and 25. The material that passes through the conduit 24 is introduced into the second cooling tower 23, and in the second separation tank 22, trace amounts of TFAC that are not hydrolyzed and may be accompanied by hydrochloric acid etc. are converted into TFA by water in the TFA liquid.
After being converted into , it is returned to the second separation tank 22 via the conduit 27. What passes through conduit 25 is introduced into second acetation column 21, where TFAC is hydrolyzed and returned to the second separation tank. By continuously performing such a circulation operation, the second separation tank 22 contains T containing about 5% by weight of water;
FA fluid accumulates.

第2分離槽22に満たされた微量の水を含むTFA液は
、断続的に第1分離槽12に移送される。
The TFA liquid containing a small amount of water filled in the second separation tank 22 is intermittently transferred to the first separation tank 12.

第1分離槽12中の微量の水を含むTFA液は、導管1
4及び15を経て循環される。導管14を経るものは第
1冷却塔13へ導入し、第1酢酸化塔11や第1分離槽
12で加水分解を受けず塩酸等に同伴するTFACをT
FA液中の水によりTFAに変換した後、導管17を経
て第1分離槽12へもどされる。
The TFA liquid containing a trace amount of water in the first separation tank 12 is transferred to the conduit 1
4 and 15. The TFAC that passes through the conduit 14 is introduced into the first cooling tower 13, and the TFAC that is not hydrolyzed in the first acetation tower 11 or the first separation tank 12 and is accompanied by hydrochloric acid etc.
After being converted to TFA by the water in the FA liquid, it is returned to the first separation tank 12 via a conduit 17.

導管15を経るものは第1酢酸化塔11へ導入し、反応
生成物4中のTFACの加水分解を行ない第1分離槽1
2へもどされる。このような、循環操作を連続的に行な
うことにより、第1分離槽12中には水分量が約0.0
1重量%前後となったTFA液が蓄積される。加水分解
を受けながったTFACは導管18を経て、第2酢酸化
塔21へ移送され、最終的には導管30から入る過剰量
の水によりすべてTFAに変換される。約0.01重量
%前後の水を含むTFA液を導管28より蒸留工程へ移
送した後、約5重量%前後の水を含むTFA液を第1分
離槽12へ移送し、第1分離槽12中の水分量が0.0
1重量%前後となるまで前述の循環操作をそれぞれ繰り
返せばよい。R−123の酸化反応により生成するTF
ACをすべてTFAに変換する場合には、このような2
段の加水分解工程が有利である。すなわち、TFACを
すべて変換できるとともに目的物TFA中の水分を11
00pp前後に減少させることができるからで、ある。
The material passing through the conduit 15 is introduced into the first acetation column 11, where TFAC in the reaction product 4 is hydrolyzed and transferred to the first separation tank 1.
Returned to 2. By continuously performing such a circulation operation, the amount of water in the first separation tank 12 is approximately 0.0.
TFA liquid having a concentration of around 1% by weight is accumulated. The TFAC that has undergone hydrolysis is transferred to the second acetation column 21 via conduit 18, and is finally completely converted into TFA by the excess amount of water that enters from conduit 30. After the TFA liquid containing about 0.01% by weight of water is transferred to the distillation process through the conduit 28, the TFA liquid containing about 5% by weight of water is transferred to the first separation tank 12. Water content inside is 0.0
The above-mentioned circulation operation may be repeated until the concentration becomes around 1% by weight. TF produced by the oxidation reaction of R-123
When converting all AC to TFA, such 2
A stage hydrolysis step is preferred. In other words, all of the TFAC can be converted and the water content in the target TFA can be reduced to 11%.
This is because it can be reduced to around 00pp.

TFACをすべてTFAに変換しようとする場合、過剰
量6水を加え一度に加水分解させることも考えられるが
、得られるTFA中には未反応の多量の水が混入I7、
分離操作に多大の労力を要する。TFAと水とは共沸組
成が存在し、苺留分離が容易でないからである。
When trying to convert all of TFAC to TFA, it is possible to add an excess amount of water and hydrolyze it all at once, but the resulting TFA may contain a large amount of unreacted water.
The separation operation requires a lot of effort. This is because TFA and water have an azeotropic composition, making it difficult to separate them by distillation.

以下本発明の実施例についてさらに具体的に説明する。Examples of the present invention will be described in more detail below.

実施例 第1図3のごkき上下2段の攪拌羽根を有する攪拌機及
び第1図2のごときシャケ・ノド型熱交換器を備えた第
1図1のごとき縦型反応槽50文中に、R−123、水
、及び酸素を連続的に供給し、反応を行なった。R−1
23の供給量を103n+ol/hrとした。R−12
3の反応槽中への供給位置は、反応生成物の取り出し位
置よりも下部であり、かつ水及び酸素の供給位置よりも
上部であった。これら反応原料は下部攪拌羽根付近へ供
給した。又、R−123及び水は予熱を行なった。
Example 1 A vertical reaction tank as shown in FIG. 1 was equipped with a stirrer having two stages of upper and lower stirring blades as shown in FIG. 3 and a salmon throat type heat exchanger as shown in FIG. R-123, water, and oxygen were continuously supplied to carry out the reaction. R-1
The supply amount of No. 23 was set to 103n+ol/hr. R-12
The position of supply into the reaction tank in No. 3 was below the position from which the reaction product was taken out, and above the position where water and oxygen were supplied. These reaction raw materials were supplied near the lower stirring blade. Further, R-123 and water were preheated.

反応条件、及びR−123の反応率、及びTFAとTF
ACの選択率を第1表に示す。反応率及び選択率は反応
生成物を19F−NMR及びガスクロマトグラフで分析
することによりめた。反応槽中の温度差は、上部攪拌羽
根中央部と下部攪拌羽根中央部付近における温度差をめ
た。
Reaction conditions, reaction rate of R-123, and TFA and TF
The selectivity of AC is shown in Table 1. The reaction rate and selectivity were determined by analyzing the reaction product by 19F-NMR and gas chromatography. The temperature difference in the reaction tank was determined by the temperature difference between the center of the upper stirring blade and the vicinity of the center of the lower stirring blade.

第 1 表 比較例1 機械的攪拌装置を備えた200c c容量のハスチク ロイC製のオートクレーブに10.5g (0,08J
モク ル)のR−123と水0.12g (0,0011モル
)を仕込み、290℃まで昇温した。その時の圧力は1
5kg/ co?であった。そこに酸素を加え30kg
/ cnまで加圧し、5分間保持した。その後、内容物
を液体窒素で冷却されたトラップに捕集し、更にそのト
ラップをドライアイス−エタノール浴に浸し未反応の酸
素と生成塩酸を除去した後、反応液な19F−NMR及
びガスマドグラフにより分析を行なった。その結果R−
123の反応率52X、TFAの選択率22%、丁FA
Cの選択率68%であった。
Table 1 Comparative Example 1 10.5 g (0.08 J
Mokuru) R-123 and 0.12 g (0,0011 mol) of water were charged, and the temperature was raised to 290°C. The pressure at that time is 1
5kg/co? Met. Add oxygen to it and it becomes 30 kg.
/cn and held for 5 minutes. After that, the contents were collected in a trap cooled with liquid nitrogen, and the trap was further immersed in a dry ice-ethanol bath to remove unreacted oxygen and generated hydrochloric acid, and the reaction liquid was analyzed by 19F-NMR and gas magnography. I did this. As a result, R-
Reaction rate of 123 52X, selectivity of TFA 22%, DingFA
The selectivity of C was 68%.

比較例2 く R−123の反応率を高めるべ声、保持時間を8分間と
する以外は、前記比較例1と同様に反応を行なった。そ
の結果、 R−123の反応率は53z。
Comparative Example 2 The reaction was carried out in the same manner as in Comparative Example 1, except that the reaction rate of R-123 was increased and the holding time was changed to 8 minutes. As a result, the reaction rate of R-123 was 53z.

TFAの選択率は20%、TFACの選択率は64%で
あった。すなわち、反応率はほとんど変化なく、逆に選
択率の低下が認められた。
The selectivity of TFA was 20% and that of TFAC was 64%. That is, there was almost no change in the reaction rate, and on the contrary, a decrease in selectivity was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はR−123、酸素、及び水の気相反応プロセス
の一態様を示すフローシート。第2図はTFACをTF
Aにするための加水分解工程の一態様を示すフローシー
ト。 1:連続式縦型単槽反応槽 11:第1酢酸化塔 12:第1分離槽 13:第1冷却塔
FIG. 1 is a flow sheet showing one embodiment of the gas phase reaction process of R-123, oxygen, and water. Figure 2 shows TFAC
Flow sheet showing one aspect of the hydrolysis process to obtain A. 1: Continuous vertical single tank reaction tank 11: First acetation tower 12: First separation tank 13: First cooling tower

Claims (1)

【特許請求の範囲】 1、 1.1−ジクロロ−2,2,2−トリフルオロエ
タン、酸素、及び水を反応せしめトリフルオロ酢酸及び
その酸クロライドを得る方法において、原料及び反応生
成物が液化しない条件下でかつ、局部加熱を生起しない
完全混合型反応器により、原料供給及び反応生成物取り
出しを連続的に行ないながら気相反応せしめることを特
徴とするトリフルオロ酢酸及びその酸クロライドの製造
法。 2、酸素の供給量が1.1−ジクロロ−2,2,2−)
リフルオロエタン1モル当り1〜2モルの範囲から選ば
れる特許請求の範囲第1項記載の製造法。 3、水の供給量が1.1−ジクロロ−2,2,2−)リ
フルオロエタン1モル当り0.O1〜0.5モルの範囲
から選ばれる特許請求の範囲第1項記載の製造法。 4、反応温度が260〜320°Cの範囲から選ばれる
特許請求の範囲第1項記載の製造法。 5、反応圧力が25〜35kg/ cwtの範囲から選
ばれる特許請求の範囲第1項記載の製造法。 8、 1.1−ジクロロ−2,2,2−hリフルオロエ
タン及び水を150〜200°Cに予熱した後反応せし
めることを特徴とする特許請求の範囲第1項記載の製造
法。 7、完全混合型反応器が、攪拌機を備えた縦型反応器で
ある特許請求の範囲第1項記載の製造法。 8、完全混合型反応器への1,1−ジクロロ−2,2,
2−トリフルオロエタンの供給位置が、反応生成物の取
り出し位置よりも下部であり、かつ酸素及び水の供給位
置よりも上部である特許請求の範囲第1項記載の製造法
。 !1. 1.1−ジクロロ−2,2,2−トリフルオロ
エタン、酸素、又は水の反応器中への供給位置が、攪拌
機の羽根付近である特許請求の範囲第7項記載の製造法
[Claims] A method for obtaining trifluoroacetic acid and its acid chloride by reacting 1, 1,1-dichloro-2,2,2-trifluoroethane, oxygen, and water, wherein the raw materials and the reaction product are liquefied. A method for producing trifluoroacetic acid and its acid chloride, which is characterized by carrying out a gas phase reaction while continuously supplying raw materials and taking out reaction products in a complete mixing type reactor that does not cause local heating and under conditions that do not cause local heating. . 2. The amount of oxygen supplied is 1,1-dichloro-2,2,2-)
The manufacturing method according to claim 1, wherein the amount is selected from the range of 1 to 2 mol per mol of refluoroethane. 3. The amount of water supplied is 1.0.0% per mole of 1-dichloro-2,2,2-)lifluoroethane The manufacturing method according to claim 1, wherein the amount of O is selected from the range of 1 to 0.5 mol. 4. The manufacturing method according to claim 1, wherein the reaction temperature is selected from the range of 260 to 320°C. 5. The production method according to claim 1, wherein the reaction pressure is selected from the range of 25 to 35 kg/cwt. 8. The manufacturing method according to claim 1, wherein the reaction is carried out after preheating 8,1,1-dichloro-2,2,2-h-trifluoroethane and water to 150 to 200°C. 7. The production method according to claim 1, wherein the complete mixing reactor is a vertical reactor equipped with a stirrer. 8. 1,1-dichloro-2,2, into a fully mixed reactor
2. The production method according to claim 1, wherein the 2-trifluoroethane supply position is below the reaction product take-off position and above the oxygen and water supply positions. ! 1. 1. The manufacturing method according to claim 7, wherein the supply position of 1-dichloro-2,2,2-trifluoroethane, oxygen, or water into the reactor is near the blades of a stirrer.
JP9553984A 1984-05-15 1984-05-15 Production of trifluoroacetic acid and its chloride Pending JPS60239437A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9553984A JPS60239437A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid and its chloride
EP85105653A EP0163975B1 (en) 1984-05-15 1985-05-08 Process for producing trifluoroacetic acid and trifluoroacetyl chloride
DE8585105653T DE3564257D1 (en) 1984-05-15 1985-05-08 Process for producing trifluoroacetic acid and trifluoroacetyl chloride
US06/930,056 US5041647A (en) 1984-05-15 1986-11-12 Process for producing trifluoroacetic acid and trifluoroacetyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9553984A JPS60239437A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid and its chloride

Publications (1)

Publication Number Publication Date
JPS60239437A true JPS60239437A (en) 1985-11-28

Family

ID=14140364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9553984A Pending JPS60239437A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid and its chloride

Country Status (1)

Country Link
JP (1) JPS60239437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526385A (en) * 1998-07-06 2002-08-20 ゾルファイ フルーオル ウント デリヴァーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Preparation of organic compounds with low fluoride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159440A (en) * 1982-03-18 1983-09-21 Asahi Glass Co Ltd Preparation of trifluoroacetic acid and trifluoroacetyl chloride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159440A (en) * 1982-03-18 1983-09-21 Asahi Glass Co Ltd Preparation of trifluoroacetic acid and trifluoroacetyl chloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526385A (en) * 1998-07-06 2002-08-20 ゾルファイ フルーオル ウント デリヴァーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Preparation of organic compounds with low fluoride

Similar Documents

Publication Publication Date Title
JP5803098B2 (en) Method for producing phosphorus pentafluoride
JPH022863B2 (en)
JP4363983B2 (en) Catalyst regeneration using elemental halogen
KR101284659B1 (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
US5041647A (en) Process for producing trifluoroacetic acid and trifluoroacetyl chloride
JPS5814418B2 (en) Production method of benzoyl chloride
JP3572619B2 (en) Method for producing difluoromethane
JPS60239437A (en) Production of trifluoroacetic acid and its chloride
EP0872468B1 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
EP0501501B1 (en) Method for the preparation of methyl chloride from carbon tetrachloride and methyl alcohol
JPH04500801A (en) Catalytic hydrogen fluoride treatment method for halogenated alkanes
CN1198731A (en) Process for producing 1,1,1,3,-pentafluoropropane
JP2579238B2 (en) Process for producing a mixture of 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoroethane by continuously reacting hydrogen fluoride and 1,1,1-trichloroethane in a liquid phase
JPS62108839A (en) Production of 3-fluorobenzoic acid compound
JP2523936B2 (en) Method for producing dicarbonyl fluoride
JPS611662A (en) Manufacture of (trifluoromethyl)pyridine
JPH1087524A (en) Synthesis of 1,1,1-trifluoroethane by fluorination of 1-chloro-1,1-difluoroethane
JP2794436B2 (en) Nitrosyl fluoride manufacturing method
US2475364A (en) Catalytic hydrolysis of unsaturated halides
JPS5835977B2 (en) Production method of pivalic acid chloride and aromatic carboxylic acid chloride
JP2826576B2 (en) Preparation of 2-chloroterephthaloyl chloride
JPS6251252B2 (en)
CA2024796C (en) Process for producing chlorosulfonyl isocyanate
JPS62181234A (en) Production of isophthaloyl dichloride
JPS6312049B2 (en)