JPS602382B2 - Manufacturing method of free-cutting nickel-chromium alloy - Google Patents

Manufacturing method of free-cutting nickel-chromium alloy

Info

Publication number
JPS602382B2
JPS602382B2 JP6070277A JP6070277A JPS602382B2 JP S602382 B2 JPS602382 B2 JP S602382B2 JP 6070277 A JP6070277 A JP 6070277A JP 6070277 A JP6070277 A JP 6070277A JP S602382 B2 JPS602382 B2 JP S602382B2
Authority
JP
Japan
Prior art keywords
nickel
chromium alloy
alloy
machinability
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6070277A
Other languages
Japanese (ja)
Other versions
JPS53144818A (en
Inventor
照治 関場
孝 久世
俊治 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6070277A priority Critical patent/JPS602382B2/en
Publication of JPS53144818A publication Critical patent/JPS53144818A/en
Publication of JPS602382B2 publication Critical patent/JPS602382B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は快削性を有するニッケルクロム合金の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a nickel-chromium alloy having free machinability.

銀を含有するニッケルクロム合金は歯科用、装身具およ
び薬品工業など広く用いられているが、この種合金の切
削性については従来あまり考察されておらず、したがっ
て切削性については十分なものが得られているとは云え
ない。
Nickel-chromium alloys containing silver are widely used in the dental, jewelry, and pharmaceutical industries, but the machinability of this type of alloy has not been considered much, and therefore sufficient machinability has not been obtained. I can't say that it is.

本発明者はこの点を研究した結果、銀が合金中に固溶す
ると切削性への効果が殆んどなくなることから銀粒子自
体を合金中に点在させる必要があること、さらにこの銀
粒子を所定大きさの球状形状にすれば切削性が一層向上
することを知った。
As a result of research on this point, the present inventor found that when silver is dissolved in an alloy, it has almost no effect on machinability, so it is necessary to intersperse the silver particles themselves in the alloy. It was found that machinability can be further improved if the material is made into a spherical shape of a predetermined size.

そして、このような銀粒子を含有した切削性の良いニッ
ケルクロム合金を得るための製造方法について考察を加
えた。本発明はこれらの点をふまえて快削性を付与した
新規なニッケルクロム合金の製造方法を提供するもので
、以下本発明について説明する。
We also considered a manufacturing method for obtaining a nickel-chromium alloy containing such silver particles and having good machinability. In view of these points, the present invention provides a novel method for producing a nickel-chromium alloy that is endowed with free machinability.The present invention will be described below.

本発明による快削性ニッケルクロム合金の第1の製造方
法は、銀0.1〜5重量%、クロム5〜25重量%、残
部実質的にニッケルからなるニッケルクロム合金を、7
00℃以上900℃未満の温度で加熱処理を施すことを
特徴とするものである。
A first method for producing a free-machining nickel-chromium alloy according to the present invention is to produce a nickel-chromium alloy consisting of 0.1 to 5% by weight of silver, 5 to 25% by weight of chromium, and the remainder substantially nickel.
It is characterized in that the heat treatment is performed at a temperature of 00°C or more and less than 900°C.

すなわち、合金中に切削性を高めるのに適切な長径10
山以上、短径7山以上で両者比が3:2以上である球状
の銀粒子を形成し、且つこの銀粒子が合金の断面積にお
いて0.5〜30%の割合で占めるようにして磯れた切
削性を有するニッケルクロム合金を得るものである。
That is, the long diameter 10 is suitable for improving machinability in the alloy.
Forming spherical silver particles with at least 7 peaks and 7 peaks in the short axis and a ratio of 3:2 or more, and making the silver particles occupy 0.5 to 30% of the cross-sectional area of the alloy. The objective is to obtain a nickel-chromium alloy with excellent machinability.

この製造方法により製造されたニッケルクロム合金は、
快削性に優れたものである。
The nickel-chromium alloy manufactured by this manufacturing method is
It has excellent free cutting properties.

すなわち、このニッケルクロム合金は銀粒子の形状が長
径10仏以上、短径7仏以上で両者比が3:2以上の大
きさをもった球状であるので、合金の切削性に対して最
も大きな効果を与え、同時に合金の加工性を妥当な状態
に維持できる。そして、この特定された粒子形状を有す
る銀粒子を、ニッケルクロム合金の断面積に占める割合
が0.5〜30%、特に好ましくは6〜20%とするこ
とにより、合金に対して最も大きな切削性を付与でき、
しかも経済的にも妥当である。ここで銀の割合とはマト
リックスに対し実質的に区別できる銀の割合をいう。こ
れらの限定は電子顕微鏡によるものである。本発明の製
造方法が対象とするニッケルクロム合金の組成は、球状
の銀粒子を効果的に形成するために銀0.1〜5重量%
、クロム5〜25重量%、残部実質的にニッケルである
ことを基本組成とする。
In other words, in this nickel-chromium alloy, the shape of the silver particles is spherical with a major axis of 10 degrees or more and a short axis of 7 degrees or more, with a ratio of 3:2 or more, which has the greatest effect on the machinability of the alloy. effect, and at the same time maintains the workability of the alloy at a reasonable level. By setting the proportion of silver particles having the specified particle shape to the cross-sectional area of the nickel-chromium alloy to be 0.5 to 30%, particularly preferably 6 to 20%, the alloy can be cut to the greatest extent possible. It can give gender,
Moreover, it is economically reasonable. Here, the silver percentage refers to a substantially distinguishable silver percentage in the matrix. These limitations are due to electron microscopy. The composition of the nickel-chromium alloy targeted by the production method of the present invention is 0.1 to 5% by weight of silver in order to effectively form spherical silver particles.
The basic composition is 5 to 25% by weight of chromium, and the remainder substantially nickel.

なお、この他に銅、鉄、けし、素、マンガン、炭素、チ
タン、アルミニウムなどを必要に応じて適量添加するこ
とは可能である。ここで、銀は切削性付与のため不可欠
で、コストや銀の分散を考慮すると5%程度で十分であ
る。クロムは耐食性付与のため必要で、加工性に悪影響
を与えない程度の割合とする。本発明の製造方法では、
ニッケルクロム合金に対する加熱処理を合金中に銀粒子
が球状化される700以上900℃未満の温度範囲で施
すものとする。
In addition, it is possible to add appropriate amounts of copper, iron, poppy, elemental, manganese, carbon, titanium, aluminum, etc. as necessary. Here, silver is essential for imparting machinability, and considering cost and dispersion of silver, about 5% is sufficient. Chromium is necessary for imparting corrosion resistance, and the proportion should be such that it does not adversely affect workability. In the manufacturing method of the present invention,
The heat treatment of the nickel-chromium alloy is performed at a temperature range of 700° C. or more and less than 900° C. at which the silver particles in the alloy are spheroidized.

この条件においてニッケルクロム合金を加熱処理すると
、合金中の銀粒子は温度700qo以下で繊維状に分散
しているが、700℃以上90ぴ○未満の間では球状化
し、900℃以上となると微細粒子化することが観察に
より判明し、従って合金の切削性を高めるには700℃
以上900℃禾満の温度範囲での加熱処理が有効である
と云える。ニッケルクロム合金中の銭粒子は球状化され
るのと同時にこの銀粒子が合金の断面積において0.5
〜30%の割合を占めることになり、この点でも合金の
切削性を向上できる。
When a nickel-chromium alloy is heat-treated under these conditions, the silver particles in the alloy are dispersed in the form of fibers at a temperature of 700 qo or less, but become spheroidal at temperatures above 700°C and below 90 qo, and become fine particles at temperatures above 900°C. It has been found through observation that the machinability of the alloy is improved by heating at 700°C.
It can be said that heat treatment within the temperature range of 900° C. or higher is effective. The silver particles in the nickel-chromium alloy are spheroidized and at the same time the silver particles are 0.5 in the cross-sectional area of the alloy.
This accounts for a proportion of ~30%, and the machinability of the alloy can also be improved in this respect.

本発明による快削性ニッケルクロム合金の第2の製造方
法は、銀0.1〜5重量%、クロム5〜25重量%、残
部実質的にニッケルよりなるニッケルクロム合金を、9
00〜1100つ0の温度で軟化燐鈍を施した後、70
0℃以上90ぴ○未満の温度で加熱処理を施すことを特
徴とするものである。
A second method for producing a free-machining nickel-chromium alloy according to the present invention is to produce a nickel-chromium alloy consisting of 0.1 to 5% by weight of silver, 5 to 25% by weight of chromium, and the remainder substantially nickel.
After softening with phosphorus at a temperature of 0 to 1100, 70
It is characterized in that the heat treatment is performed at a temperature of 0° C. or more and less than 90 pi.

すなわち、ニッケルクロム合金に対し初めに900〜1
100℃で燐錨処理を施すことにより合金の内部歪除去
および絞り特性の向上を図り、これに加えて700℃以
上900℃未満で加熱処理を施して銀粒子を球状化して
切削性の向上を図ることによつて、内部歪除去および優
れた絞り特性と優れた切削性を併せ持ったニッケルクロ
ム合金を得るものである。
That is, initially 900 to 1
Phosphorous anchor treatment at 100°C removes internal strain from the alloy and improves drawing characteristics. In addition, heat treatment at 700°C or higher and lower than 900°C makes silver particles spheroidal to improve machinability. By doing so, it is possible to obtain a nickel-chromium alloy that eliminates internal strain and has both excellent drawing characteristics and excellent machinability.

このように第2の製造方法では2段階の熱処理を組合せ
るものであって、暁錨処理は900〜1100℃の温度
で施すことにより効果的に内部歪除去および絞り特性の
向上を得られるが、それ以下であれば期待する特性が縛
られないとともにそれ以上であれば結晶粒が粗大化し絞
り性を阻害することになり、特に1000〜1100℃
の温度で行なうことが好ましい。
In this way, the second manufacturing method combines two stages of heat treatment, and by performing the Akatsuki anchor treatment at a temperature of 900 to 1100°C, it is possible to effectively remove internal strain and improve drawing characteristics. If it is lower than that, the expected properties are not restricted, and if it is higher than that, the crystal grains will become coarse and the drawability will be inhibited, especially at 1000 to 1100°C.
It is preferable to carry out the reaction at a temperature of .

加熱処理は凝錨処理後に常温まで急冷して再び700℃
以上900℃未満の温度に加熱しても良いし、燐鈍を行
なった同一炉において連続して加熱しても良い。処理保
持間としては材料大きさにより異なるが、暁鎚処理の場
合少なくとも1ぴ分以上、加熱処理の場合2の片間以上
を必要とする。本発明の製造方法による実験結果におけ
る加工材の加熱温度と切削性との関係を図について述べ
る。加工材としては銀1.の重量%、クロム14重量%
、銅1.0%、残部実質的にニッケルからなるニッケル
クロム合金を所望の形状に加工したものを用い、この加
工材を各温度毎に加熱してドリル穿孔を行ない切削性を
測定した。ドリル穿孔条件はドリル蓬1.5肋、回転数
35皿PM、穿孔樹重2.0k9、穿孔時間6の砂であ
る。図において銀粒子が繊維状である700℃未満では
切削性が低く、銀粒子が球状化する700℃以上900
qo未満では80000を中心として切削性が急激に上
昇し、900午0以上では・切削性が再び低下して横ば
いとなるのが明瞭である。なお、図中Aは加熱処理温度
範囲、Bは競錨温度範囲である。本発明の快削性ニッケ
ルクロム合金の製造方法は以上説明したように、合金中
に所定大きさの球状形状をなす銀粒子が点在することに
より、優れた切削性を有するニッケルクロム合金を得る
ことができる。
The heat treatment is performed after the anchor treatment, rapidly cooled to room temperature, and then heated to 700℃ again.
It may be heated to a temperature above 900° C. or may be heated continuously in the same furnace where the phosphor annealing was performed. The treatment holding time varies depending on the size of the material, but it requires at least 1 minute or more for Akatsuki hammer treatment, and 2 days or more for heat treatment. The relationship between the heating temperature of the processed material and the machinability in the experimental results obtained by the manufacturing method of the present invention will be described with reference to the diagram. Silver is used as a processed material. % by weight, 14% by weight of chromium
A nickel-chromium alloy consisting of 1.0% copper and the remainder substantially nickel was processed into a desired shape, and the processed material was heated at each temperature and drilled to measure machinability. The drilling conditions were as follows: 1.5 ribs of the drill, 35 disks of rotation, 2.0 k9 of drilling weight, and 6 sand drilling times. In the figure, below 700°C, where silver particles are fibrous, machinability is poor, and above 700°C, where silver particles are spherical, 900°C
It is clear that below qo, the machinability sharply increases around 80,000, and above 900:0, the machinability decreases again and becomes flat. In addition, in the figure, A is the heat treatment temperature range, and B is the competitive anchor temperature range. As explained above, the method for producing a free-cutting nickel-chromium alloy of the present invention obtains a nickel-chromium alloy having excellent machinability by interspersing silver particles having a spherical shape with a predetermined size in the alloy. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

図は加工材の加熱温度と切削性との関係を示す線図であ
る。
The figure is a diagram showing the relationship between heating temperature and machinability of a processed material.

Claims (1)

【特許請求の範囲】 1 銀0.1〜5重量%、クロム5〜25重量%、残部
実質的にニツケルからなるニツケルクロム合金を、70
0℃以上900℃未満の温度で加熱処理を施すことを特
徴とする快削性ニツケルクロム合金の製造方法。 2 銀0.1〜5重量%、クロム5〜25重量%、残部
実質的にニツケルよりなるニツケルクロム合金を900
〜1100℃の温度で軟化焼鈍を施した後、700℃以
上900℃未満の温度で加熱処理を施すことを特徴とす
る快削性ニツケルクロム合金の製造方法。
[Scope of Claims] 1. A nickel-chromium alloy consisting of 0.1 to 5% by weight of silver, 5 to 25% by weight of chromium, and the remainder substantially nickel,
A method for producing a free-cutting nickel-chromium alloy, which comprises performing heat treatment at a temperature of 0°C or more and less than 900°C. 2 A nickel-chromium alloy consisting of 0.1 to 5% by weight of silver, 5 to 25% by weight of chromium, and the remainder substantially nickel.
A method for producing a free-cutting nickel-chromium alloy, which comprises performing softening annealing at a temperature of ~1100°C and then heat treatment at a temperature of 700°C or more and less than 900°C.
JP6070277A 1977-05-25 1977-05-25 Manufacturing method of free-cutting nickel-chromium alloy Expired JPS602382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070277A JPS602382B2 (en) 1977-05-25 1977-05-25 Manufacturing method of free-cutting nickel-chromium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070277A JPS602382B2 (en) 1977-05-25 1977-05-25 Manufacturing method of free-cutting nickel-chromium alloy

Publications (2)

Publication Number Publication Date
JPS53144818A JPS53144818A (en) 1978-12-16
JPS602382B2 true JPS602382B2 (en) 1985-01-21

Family

ID=13149874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070277A Expired JPS602382B2 (en) 1977-05-25 1977-05-25 Manufacturing method of free-cutting nickel-chromium alloy

Country Status (1)

Country Link
JP (1) JPS602382B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835588B2 (en) * 1979-12-14 1983-08-03 株式会社東芝 decorative alloy
DE102010014832B4 (en) * 2010-04-10 2018-04-26 Technische Universität Braunschweig Easy machinable nickel base alloy

Also Published As

Publication number Publication date
JPS53144818A (en) 1978-12-16

Similar Documents

Publication Publication Date Title
CN100535164C (en) Fe-36Ni based alloy wire and manufacturing method thereof
JP2013007091A (en) Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
US3663314A (en) Bearing steel composition
JP2005179772A (en) Method for manufacturing high-chromium ferritic/martensitic heat-resistant alloy
CN103131966A (en) Steel tube piercing point and preparation method thereof
JP2000256776A (en) Brake disk material for vehicle
CN108950366A (en) A kind of processing method for the spheroidal graphite cast-iron product that wearability is good
JPS602382B2 (en) Manufacturing method of free-cutting nickel-chromium alloy
US2796373A (en) Method of forming malleableized iron castings
JP2659373B2 (en) Method of manufacturing high-temperature bolt material
JP3783666B2 (en) Machine structural steel excellent in cold forgeability after spheroidizing annealing and method for producing the same
JPH03257141A (en) Fe-ni-co-al-c alloy
JPS583921A (en) Holed tublar product
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same
US2614921A (en) Stainless steel and method
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
US2883281A (en) Air hardening graphitic steel
JP4975343B2 (en) Steel pipe excellent in cold forging processability and manufacturing method thereof
JPS5939483B2 (en) Manufacturing method of low alloy steel with excellent cold drawing and cold extrusion processability
JPS627260B2 (en)
WO2022210125A1 (en) Steel wire for mechanical structural component and manufacturing method therefor
JPS6140746B2 (en)
JPS60187652A (en) High-elasticity alloy
US2622021A (en) Dies for high-temperature applications and alloy therefor
JP2002194478A (en) Cast iron material for sizing press die