JPS60236193A - Memory cell circuit - Google Patents

Memory cell circuit

Info

Publication number
JPS60236193A
JPS60236193A JP9227284A JP9227284A JPS60236193A JP S60236193 A JPS60236193 A JP S60236193A JP 9227284 A JP9227284 A JP 9227284A JP 9227284 A JP9227284 A JP 9227284A JP S60236193 A JPS60236193 A JP S60236193A
Authority
JP
Japan
Prior art keywords
potential
line
memory cell
nodes
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9227284A
Other languages
Japanese (ja)
Inventor
Hiroshi Kadota
廉田 浩
Yoshihito Nishimichi
西道 佳人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9227284A priority Critical patent/JPS60236193A/en
Publication of JPS60236193A publication Critical patent/JPS60236193A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/04Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To obtain an associative memory cell which has less number of constituting transistors and acts at a high speed by providing a sensor line where the connection to the ground in the same direction as that of a word line is controlled by serial transistors acting in correspondence to a bit line potential and storage contents of a memory cell. CONSTITUTION:A sensor line (d) is provided whose potential is set to a high level in the same direction as that of a word line (c) of an associative memory cell Mo formed by inverters I1 and I2 having two sets of nodes X is and Y, etc. Between said line (d) and a ground transisitors Q3 and Q5 controlled in accordance with potential of bit lines (a) and (b), and transistors Q4 and Q6, which are connected to said transistors Q3 and Q5 in serial and controlled by potentials of the nodes X and Y, are provided. When a refrerence potential is different from a momory potential produced by the lines (a) and (b), the line (d) is connected to the ground. Consequently, if the line (d) is set to a high potential level, cells are not sequentially detected by any one of cell forming words at the time of the dissident detection, but the line (d) goes to a grounding potential instantaneously. Thus an associative memory which has less number of constituting transistors and acts at a high speed can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高速動作可能な連想記憶回路の構成に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the configuration of an associative memory circuit capable of high-speed operation.

従来例の構成とその問題点 連想記憶回路(Content Addressabl
eMemory : CA M )とは、通常のメモリ
とは逆にデータ(データのベクトル)を与えて同一のデ
ータが記憶されているかどうか、更に記憶されている場
合はデータの存在する番地を出力する機能を持ったメモ
リで、データの検索やソーティングを行なう場合、CA
Mを使うと直接ハードウェアで行えるため非常に高速に
実行でき有効である。従来CAMは例えば第1図に示す
構成をもっていた。
Conventional configuration and its problemsAssociative memory circuit (Content Addressable)
eMemory (CAM) is a function that, contrary to normal memory, provides data (vector of data) and checks whether the same data is stored, and if so, outputs the address where the data is located. When searching or sorting data in a memory with
If M is used, it can be executed directly on hardware, so it can be executed very quickly and is effective. A conventional CAM had a configuration shown in FIG. 1, for example.

第1図で、RAMは通常のランダムアクセスメモリでそ
のうちADはアドレスデコーダ、(Moが記憶要素(メ
モリセル)部分である。Cはカウンターで起動信号ST
が入力されるとカウントを開始し、バイナリ−出力A1
〜Amがアドレス信号としてアドレスデコーダADに印
加される。RAMの語数(第1図の例では上下の段数に
対応)を2mとするとカウンターは211nマでカウン
トする。従ってA、の本数はm本必要である。D′1〜
Dnは比較用の参照データの入力端子でRAMから出力
されたデータD1〜Dnと比較器Eで各ビットを比較し
、全て同一であれば出力E1〜EnK全て「1」符号が
出力される。このときのアドレス(即ちカウンタ出力A
1〜Am)をしらべることで、CAMとしての機能が実
現できる。
In Figure 1, RAM is a normal random access memory, AD is an address decoder, (Mo is a storage element (memory cell) part, C is a counter and a start signal ST
starts counting when input, binary output A1
~Am is applied to address decoder AD as an address signal. If the number of words in the RAM (corresponding to the number of upper and lower rows in the example of FIG. 1) is 2m, the counter counts at 211nm. Therefore, the number of A is required to be m. D'1~
Dn is an input terminal for reference data for comparison, and the comparator E compares each bit with the data D1 to Dn output from the RAM, and if they are all the same, outputs E1 to EnK all output a "1" code. The address at this time (i.e. counter output A
1 to Am), the function as a CAM can be realized.

この従来方式の欠点は、一つの参照データについて一致
をしらべるのに2nサイクルの時間が必要なことである
。高速のCAMの場合1サイクルは0.1μsec程度
、アドレスビット数nは10ビット以上で、2 即ち1
000サイクル以上かかる。つまり高速のCAMでも1
回の処理に100μ8eC程度以上の時間がかかること
になり、高速の演算回路等の各種演算(四則演算等)の
実行時間(1μ〜数十μ8QC)に比べ非常に遅く、プ
ログラム実行上の問題点になっていた。
The disadvantage of this conventional method is that it takes 2n cycles to match one reference data. In the case of high-speed CAM, one cycle is about 0.1 μsec, and the number of address bits n is 10 bits or more, 2, that is, 1
It takes more than 000 cycles. In other words, even high-speed CAM is 1
It takes about 100μ8eC or more to process one cycle, which is extremely slow compared to the execution time (1μ to several tens of μ8QC) of various calculations (arithmetic operations, etc.) such as high-speed arithmetic circuits, which causes problems in program execution. It had become.

次に、上述の第1図の例では動作速度が非常に遅くなる
ので、通常のRAM等に比べ大巾に集積度を犠牲にしそ
の代りに高速の動作を得るようにした例を第2図に示す
。第2図はこの例の基本メモリセルの回路を示し、0)
)は(a)のセルを用いたメモリアレイの構成を示す。
Next, since the operating speed in the example shown in Fig. 1 is extremely slow, Fig. 2 shows an example in which the degree of integration is greatly sacrificed compared to ordinary RAM, etc., and in return high-speed operation is obtained. Shown below. Figure 2 shows the basic memory cell circuit of this example, 0)
) shows the configuration of a memory array using the cells in (a).

(a)の内M1で示されたセルの上半分は通常のスタテ
ィックRAMのメモリセルと同一であり、C(C1,C
2・・・・・C4)はアドレス信号を印加するワード線
、a (&1・・・・・・a n )+b(bl・・・
・・・bn)はデータの入出力を行なうビット線対であ
る。通常のスタティックRAMと同一の動作で情報を記
憶し、次に、連想メモリとして使用する場合は、a、b
に相補的な電位で参照デー6、−ツ タ信号を印加すると、節点N1 で記憶されているデー
タとの排他的論理和の否定出力DN1=M−B+M・B
、DNl:N1の状態、M:記憶状態、B:ビット線の
状態、各 はその否定)が得られる。つまり一致すれば
N1はパ1”、一致しなければN1はo”となる。
The upper half of the cell indicated by M1 in (a) is the same as a normal static RAM memory cell, and C(C1,C
2...C4) is a word line to which an address signal is applied, a (&1...a n )+b(bl...
...bn) are bit line pairs for inputting and outputting data. When storing information in the same manner as normal static RAM and then using it as an associative memory, a, b
When a reference data 6, - tsuta signal is applied at a complementary potential to the node N1, a negative output of exclusive OR with the data stored at the node N1 is obtained.DN1=M-B+M・B
, DNl: state of N1, M: memory state, B: state of bit line, each is its negation). In other words, if they match, N1 becomes pa1'', and if they do not match, N1 becomes o''.

次にnビットからなる1ワ一ド全体での一致。Next, there is a match across one word consisting of n bits.

不一致を検出するために、各ビットの否定排他論理和出
力を順次論理積をとりながら伝搬させ、最終的に右端で
全ビットの論理積が得られるようにする。左にあるセル
で一つでも不一致ビットがあれば、第2図(、)の節点
N2の状態が”0”となり論理積出力N3も“0”とな
る。通常の集積回路で論理積を1段のゲートで構成する
のは困難であるので、否定論理積(NAND)と反転回
路(インバータ)の直列接続でこれを実現する。この第
2の従来例の問題点は、 (1)基本セルを構成する回路素子数がかなり多くなる
。例ばNch形のLSIでは通常のRAM部(Ml)が
6素子の上に追加部(M2)で14素子必要であり、単
純に見積っても、単位面積当りの記憶容量が%〜%に劣
化する。
In order to detect a mismatch, the negative exclusive OR output of each bit is successively ANDed and propagated, so that finally, the AND of all bits is obtained at the right end. If there is even one mismatched bit in the cell on the left, the state of the node N2 in FIG. 2(, ) becomes "0" and the AND output N3 also becomes "0". Since it is difficult to configure a logical product using a single stage gate in a normal integrated circuit, this is achieved by connecting a negative logical product (NAND) and an inverter in series. The problems with this second conventional example are as follows: (1) The number of circuit elements constituting the basic cell is considerably large. For example, in an Nch type LSI, the normal RAM part (Ml) requires 6 elements and an additional part (M2) of 14 elements, and even if it is simply estimated, the storage capacity per unit area deteriorates by % to %. do.

(2)1ワ一ド分全体の一致、不一致を検出するためN
ANDとインバータを各ビットで経由する。したがって
、10ビット以上のワード構成のものでは、この伝搬遅
延により、アクセスが速度が制限される。
(2) N to detect matches and mismatches for the whole one word
Each bit passes through AND and an inverter. Therefore, for word configurations of 10 bits or more, this propagation delay limits access speed.

このように、第2図では、LSIとして製作した場合記
憶容量が小さく、その割には動作速度が充分に高速にな
らない連想メモリしか得られなかった。
In this way, in FIG. 2, when manufactured as an LSI, only an associative memory was obtained whose storage capacity was small and the operating speed was not sufficiently high.

発明の目的 従って本発明の目的とするところは、通常のRAMセル
に比べさほど大きくないメモリセルで構成され、かつ第
2図等の例より高速な動作をする連想メモリを得ること
にある。
OBJECTS OF THE INVENTION Accordingly, an object of the present invention is to obtain an associative memory that is constructed of memory cells that are not much larger than ordinary RAM cells and that operates faster than the example shown in FIG.

発明の構成 本発明にかかるメモリセル回路は、相補的な電位を有す
る二部点を持つ双安定回路と、この二部点の各々と二本
のビット線との電気的接続を制御7 へ−7 する二部の第1.第2のスイッチ素子と、これらスイッ
チ素子を制御する一本のワード線からなるメモリ要素に
対して、前記ワード線と同一方向に一本のセンス線を設
け、前記二節点のうち一節点の電位によって制御される
第3のスイッチ素子と前記二本のビット線のうち一本の
ビット線の電位によって制御される第4のスイッチ素子
を直列に接続した第1の回路要素を前記センス線と電源
との間に接続し、同時に前記二節点のうち他の節点の電
位によって制御される第6のスイッチ素子と前記二本の
ビット線のうち他のビット線の電位によって制御される
第6のスイッチ素子とを直列に接続した第2の回路要素
を前記第1の回路要素と並列に前記センス線と上記電源
に接続することを特徴とするものである。
Structure of the Invention The memory cell circuit according to the present invention includes a bistable circuit having two points having complementary potentials, and electrical connection between each of the two points and two bit lines. 7 Part 1 of the second part. For a memory element consisting of a second switch element and one word line that controls these switch elements, one sense line is provided in the same direction as the word line, and the potential of one of the two nodes is A first circuit element in which a third switch element controlled by the potential of one of the two bit lines and a fourth switch element controlled by the potential of one of the two bit lines are connected in series to the sense line and the power supply. a sixth switch element connected between the two nodes and simultaneously controlled by the potential of another node of the two nodes; and a sixth switch controlled by the potential of the other of the two bit lines. A second circuit element in which elements are connected in series is connected to the sense line and the power source in parallel with the first circuit element.

実施例の説明 第3図に本発明の各実施例にかかるCAMの記憶要素(
メモリセル)構造を示す。図中点線で囲った部分M0は
従来のスタティックRAMと同一のセル構造でピア)線
a、bでデータの読み書きが行なわれ、ワード線Cでア
クセスするセルの行が選択される。インバータエ。、I
2によって双安定回路を構成し、相補的な電位をもつ節
点X、Yとビット線a、bの各4間の電気的接続は絶縁
ゲート型、電界効果トランジスタ(IGFET)Ql。
DESCRIPTION OF EMBODIMENTS FIG. 3 shows storage elements (
(memory cell) structure is shown. A portion M0 surrounded by a dotted line in the figure has the same cell structure as a conventional static RAM, where data is read and written using peer lines a and b, and a word line C selects a row of cells to be accessed. Inverter. , I
2 constitute a bistable circuit, and the electrical connection between the nodes X and Y having complementary potentials and each of the bit lines a and b is an insulated gate field effect transistor (IGFET) Ql.

Q2によって制御される。これがNチャンネル型IGF
DTであればワード線Cを高電位にすることでQl、Q
2は導通状態になり、そのワード線上に並んだメモリセ
ルに対してデータの書き込みゃ読み出しが行なわれる。
Controlled by Q2. This is an N-channel IGF
In the case of DT, by setting the word line C to a high potential, Ql, Q
2 becomes conductive, and data is written or read from memory cells arranged on the word line.

さて本発明のメモリセルはMoに、スイッチ素子Q3.
Q4.Q6.Q6とセンス線dが追加されている。
Now, in the memory cell of the present invention, Mo is used as the switch element Q3.
Q4. Q6. Q6 and sense line d are added.

回路構成はメモリセルの一部であるM。の相補的な節点
X、Yの電位によって制御されるスイッチ素子Q5.Q
3と相補的なビット線a、bの電位によって制御される
スイッチ素子Q4.Q6とを各々直列接続し、かつ、Q
3−04.Q6−06の両回路を並列にしてセンス線と
電源(第3図の例では低電位電源)間に接続する。
The circuit configuration is M, which is part of a memory cell. The switching element Q5. is controlled by the potentials of the complementary nodes X and Y of the switching element Q5. Q
Switch element Q4.3 is controlled by the potentials of bit lines a and b complementary to Q4.3. Q6 are each connected in series, and Q
3-04. Both circuits of Q6-06 are connected in parallel between the sense line and the power supply (low potential power supply in the example of FIG. 3).

く動作説明〉 9 ベ−7 説明を簡単にするため、Q3.Q4.Q5.Q6をNチ
ャンネル型IGFET と仮定するが、Pチャンネル型
IGFETやその他のスイッチング素子であっても信号
の極性を考慮する等すれば全て同等の機能を持たせるこ
とができる。
Operation explanation〉 9 B-7 To simplify the explanation, Q3. Q4. Q5. Although it is assumed that Q6 is an N-channel IGFET, a P-channel IGFET or other switching elements can have the same function if the polarity of the signal is considered.

このメモリセルMが一致検出機能を持つことを説明する
The fact that this memory cell M has a match detection function will be explained.

あるワードのデータが比較用参照データと一致している
か不一致かはセンス線dが高電位か低電位かによって判
別する。
Whether the data of a certain word matches or does not match the reference data for comparison is determined depending on whether the sense line d has a high potential or a low potential.

まず、一致検出動作開始前にセンス線dの電位を高電位
に設定しておく。第4図に示したようにセンス線のワー
ド方向の端部に電位検出用のセンスアンプSAと負荷要
素RLを接続し、RLの他端を高電位電源VDに接続し
、更に全ビット線の初期状態を低電位に保持しておけば
センス線はRLを介して高電位に充電され、初期設定が
完了する。
First, before starting the coincidence detection operation, the potential of the sense line d is set to a high potential. As shown in FIG. 4, a sense amplifier SA for potential detection and a load element RL are connected to the end of the sense line in the word direction, and the other end of RL is connected to a high potential power supply VD. If the initial state is maintained at a low potential, the sense line is charged to a high potential via RL, and the initial setting is completed.

但しワード線Cは一致検出動作時は常に低電位とし、Q
l、Q2はOFF状態にしておく。
However, the word line C is always kept at a low potential during the match detection operation, and the Q
1 and Q2 are kept in the OFF state.

次に、比較参照用データを電位情報としてピッ1゜ ト線に相補的に供給する。これはスタティックRAMに
おけるデータ書き込み動作と同一動作である。例えば第
3図に示すメモリセルの記憶されている情報がX:高電
位、Y:低電位(これをパ1″状態と定義する)であり
、一方ピット線に供給される電位をビット線a:高電位
、ビット線り=低電位(これを参照データとして1”が
供給されていると定義する)とするとQ3.Q4.Q5
゜Q6の各々の状態はQ3:OFF Q4: ○NQ5
:○N Q6: OFF となり直列接続されたQ3−04.Q5−06の何れの
回路もOFF状態となる。メモリセル回路の構成はビッ
ト線a、bについて対称的になっているので、記憶デー
タが、x:低電位、Y:高電位(即ち“0”)参照デー
タが、ピント線a:低電位、ピット線り:高電位(即ち
参照データ”o’)の場合もQ3−Q4.Q6−Q6の
両回路がOFF状態になる。以上まとめると記憶データ
と参照用データが同一の場合03−Q4.Q5−06の
両回路はOFFである。他方、参照データと記憶データ
が11 へ−7 異なる場合例えば参照データ′°0”、記憶データ”1
″のとき Q:OFF Q4 :OFF Q : ○NQ6 : ON になりQ5−06の回路はONになる。
Next, comparison reference data is supplied complementary to the pitch 1° line as potential information. This is the same operation as the data write operation in static RAM. For example, the information stored in the memory cell shown in FIG. : High potential, bit line = low potential (this is defined as 1" being supplied as reference data), then Q3. Q4. Q5
゜The status of each of Q6 is Q3: OFF Q4: ○NQ5
:○N Q6: OFF and Q3-04 connected in series. All circuits Q5-06 are turned off. Since the configuration of the memory cell circuit is symmetrical about bit lines a and b, stored data is x: low potential, Y: high potential (i.e. "0"), reference data is focused line a: low potential, Pit line: Both circuits Q3-Q4.Q6-Q6 are in the OFF state also when the potential is high (that is, reference data "o').To summarize the above, when the stored data and reference data are the same, 03-Q4. Both circuits of Q5-06 are OFF.On the other hand, if the reference data and the stored data are different from each other, for example, the reference data '°0' and the stored data '1'.
'', Q: OFF Q4: OFF Q: ○NQ6: ON, and the Q5-06 circuit is turned ON.

従ってセンス線dから低電位電源(この場合アース)に
電流が流れ、負荷要素の抵抗値をある程度以上高く選ん
でおけばセンス線dの電位が低くなる。一つのワード中
に1ビツトでも参照データと記憶データとの間に相違が
あればONの回路が存在するので、センス線dの電位が
低下し、不一致の検出が可能である。
Therefore, a current flows from the sense line d to the low potential power supply (ground in this case), and if the resistance value of the load element is selected to be higher than a certain level, the potential of the sense line d will be lowered. If there is a difference in even one bit between the reference data and the stored data in one word, an ON circuit is present, so the potential of the sense line d is lowered, and a mismatch can be detected.

第3図ではQ3.Q6の制御電位として各々Y。In Figure 3, Q3. Y as the control potential of Q6.

Xの節点電位を使っているが、逆にXを03.YをQ5
に接続しても一致検出動作が可能である。但しこの場合
、記憶データの極性を逆に考えねばならない。即ちX:
高電位、Y:低電位の状態を0″′と定義し、X:低電
位、Y:高電位の状態を1″と定義せねばならない。
The node potential of X is used, but conversely, if X is 03. Y to Q5
Coincidence detection operation is possible even if connected to . However, in this case, the polarity of the stored data must be considered in reverse. That is, X:
The state of high potential and Y: low potential must be defined as 0'', and the state of X: low potential and Y: high potential must be defined as 1''.

発明の詳細 な説明から明きらかなように、本発明のメモリセルでは
連想メモリ用のセルとして正しく動作するだけでなく構
成トランジスタ数が通常のスタティックRAMのメモリ
セルに4箇加えただけでよいので極めて小規模であり、
高い集積度のものが得られる。しかも一致検出動作速度
は通常のスタティックRAMの読み出し動作速度並みで
あり、従来例の欠点が全て克服される。また製造プロセ
スの容易さや集積度が極めて高くなるという点からスイ
ッチ素子Q3.Q4.Q5.Q6を全てMI 5FET
(絶縁ゲート型電界効果トランジスタ)にするのは極め
て有効である。
As is clear from the detailed description of the invention, the memory cell of the present invention not only operates correctly as an associative memory cell, but also requires only four transistors to be added to the memory cell of a normal static RAM. extremely small scale;
A high degree of integration can be obtained. Moreover, the coincidence detection operation speed is comparable to the read operation speed of a normal static RAM, and all the drawbacks of the conventional example are overcome. In addition, the switch element Q3. Q4. Q5. Q6 is all MI 5FET
(Insulated gate field effect transistor) is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連想メモリ構成例を示す図、第2図(a
) 、 (b)は他の従来の連想メモリ構成例を示す図
、第3図は本発明の一実施例の連想メモリセルの構造を
示す図、第4図は本発明のメモリセルを並置し連想メモ
リの1ワードとする構成例を示す図である。 a、b・・・・・・ピットi、C−=・・ワード線、1
1.I。 13、、、・ ・・・・・・インバータ、X、Y・・・・・・節点、Q
1〜Q6・・・・・・IGFET(スイッチ素子)0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (処 憾
Figure 1 is a diagram showing an example of a conventional associative memory configuration, and Figure 2 (a
), (b) is a diagram showing another conventional associative memory configuration example, FIG. 3 is a diagram showing the structure of an associative memory cell according to an embodiment of the present invention, and FIG. 4 is a diagram showing the structure of an associative memory cell according to an embodiment of the present invention. FIG. 3 is a diagram illustrating an example of a configuration of one word of an associative memory. a, b...Pit i, C-=...Word line, 1
1. I. 13,...Inverter, X, Y...Node, Q
1~Q6...IGFET (switch element) 0 Name of agent Patent attorney Toshi Nakao and 1 other person 1st
Figure (Regret)

Claims (2)

【特許請求の範囲】[Claims] (1)相線的な電位を有する二節点を持つ双安定回路と
、この二節点の各々と二本のビット線との電気的接続を
制御する三筒の第1.第2のスイッチ素子と、これらス
イッチ素子を制御する一本のワード線からなるメモリ要
素に対して、前記ワード線と同一方向に一本のセンス線
を設け、前記二節点のうち一節点の電位によって制御さ
れる第3のスイッチ素子と前記二本のピント線のうち一
本のビット線の電位によって制御される第4のスイッチ
素子を直列に接続した第1の回路要素を前記センス線と
電源との間に接続し、同時に前記二節点のうち他の節点
の電位によって制御される第6のスイッチ素子と前記二
本のビット線のうち他のビット線の電位によって制御さ
れる第6のスイッチ素子とを直列に接続した第2の回路
要素を前記第1の回路要素と並列に前記センス線と上記
電源に接続することを特徴とするメモリセル回路。
(1) A bistable circuit having two nodes having a phase-line potential, and a three-tube first circuit that controls the electrical connection between each of these two nodes and two bit lines. For a memory element consisting of a second switch element and one word line that controls these switch elements, one sense line is provided in the same direction as the word line, and the potential of one of the two nodes is A first circuit element is connected in series with a third switch element controlled by a potential of one bit line of the two focus lines and a fourth switch element controlled by the potential of one bit line of the two focus lines. a sixth switch element connected between the two nodes and simultaneously controlled by the potential of another node of the two nodes; and a sixth switch controlled by the potential of the other of the two bit lines. A memory cell circuit characterized in that a second circuit element in which elements are connected in series is connected to the sense line and the power supply in parallel with the first circuit element.
(2)第3.第4.第5.第6のスイッチ素子として絶
縁ゲート型電界効果トランジスタを用い、各二節点を前
記第3.第6の絶縁ゲート型電界効果トランジスタのゲ
ートに接続し、前記各二本のビット線を前記第4.第6
の絶縁ゲート型電界効果トランジスタのゲートに接続す
ることを特徴とする特許請求の範囲第1項に記載のメモ
リセル回路。
(2) Third. 4th. Fifth. An insulated gate field effect transistor is used as the sixth switch element, and each two nodes are connected to the third... The gate of the sixth insulated gate field effect transistor is connected to each of the two bit lines. 6th
2. The memory cell circuit according to claim 1, wherein the memory cell circuit is connected to a gate of an insulated gate field effect transistor.
JP9227284A 1984-05-08 1984-05-08 Memory cell circuit Pending JPS60236193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9227284A JPS60236193A (en) 1984-05-08 1984-05-08 Memory cell circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9227284A JPS60236193A (en) 1984-05-08 1984-05-08 Memory cell circuit

Publications (1)

Publication Number Publication Date
JPS60236193A true JPS60236193A (en) 1985-11-22

Family

ID=14049758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9227284A Pending JPS60236193A (en) 1984-05-08 1984-05-08 Memory cell circuit

Country Status (1)

Country Link
JP (1) JPS60236193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281299A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Associative memory device
US5305262A (en) * 1991-09-11 1994-04-19 Kawasaki Steel Corporation Semiconductor integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136447A (en) * 1977-05-02 1978-11-29 Nippon Telegr & Teleph Corp <Ntt> Associative memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136447A (en) * 1977-05-02 1978-11-29 Nippon Telegr & Teleph Corp <Ntt> Associative memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281299A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Associative memory device
US5305262A (en) * 1991-09-11 1994-04-19 Kawasaki Steel Corporation Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US4417328A (en) Random access semiconductor memory device using MOS transistors
JP3851224B2 (en) Content address memory device
JPS58212698A (en) Storage device
US4062000A (en) Current sense amp for static memory cell
JPS5812676B2 (en) sense amplifier
CN116206650B (en) 8T-SRAM unit and operation circuit and chip based on 8T-SRAM unit
US5544125A (en) Semiconductor integrated circuit having logic gates
US6618280B2 (en) Associative memory for accomplishing longest coincidence data detection by two comparing operations
US7102934B1 (en) Sense amplifier systems and methods
JPH0375899B2 (en)
Rajput et al. Energy efficient 9T SRAM with R/W margin enhanced for beyond Von-Neumann computation
KR100290493B1 (en) Sense amplifier circuit having high speed operation
JPS60236193A (en) Memory cell circuit
JP2982902B2 (en) Semiconductor memory
JP3071435B2 (en) Multi-bit match circuit
JP3595565B2 (en) Semiconductor memory cell circuit and memory cell array
US4841279A (en) CMOS RAM data compare circuit
JP2000066951A (en) Multibit coincidence detection circuit
US4802126A (en) Semiconductor memory device
JP3808623B2 (en) Data input / output circuit, semiconductor memory device, and information processing device
CN116913342B (en) Memory circuit with in-memory Boolean logic operation function, and module and chip thereof
US5313436A (en) Address transition detecting circuit
JP2993966B2 (en) Semiconductor integrated circuit
JP2638357B2 (en) High-speed address comparison circuit for memories with redundant addressing components.
JPS63144495A (en) Memory cell circuit