JPS60235741A - Infrared transmission glass - Google Patents

Infrared transmission glass

Info

Publication number
JPS60235741A
JPS60235741A JP59093508A JP9350884A JPS60235741A JP S60235741 A JPS60235741 A JP S60235741A JP 59093508 A JP59093508 A JP 59093508A JP 9350884 A JP9350884 A JP 9350884A JP S60235741 A JPS60235741 A JP S60235741A
Authority
JP
Japan
Prior art keywords
glass
infrared
infrared transmitting
transmission glass
tlbr2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59093508A
Other languages
Japanese (ja)
Other versions
JPS6350297B2 (en
Inventor
Masayuki Nogami
正行 野上
Junji Hayakawa
早川 惇二
Masaki Makihara
牧原 正記
Toru Komiyama
小見山 亨
Shigeto Sawanobori
成人 沢登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumita Optical Glass Inc
Original Assignee
Agency of Industrial Science and Technology
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sumita Optical Glass Inc filed Critical Agency of Industrial Science and Technology
Priority to JP59093508A priority Critical patent/JPS60235741A/en
Publication of JPS60235741A publication Critical patent/JPS60235741A/en
Publication of JPS6350297B2 publication Critical patent/JPS6350297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium

Abstract

PURPOSE:An infrared-transmission glass material prepared by using ZnBr2, PbBr2 and TlBr2 at specific molar ratios. CONSTITUTION:ZnBr2, PbBr2 and TlBr2 are compounded at molar ratios falling within the region surrounded by the lines connecting the points A(45,0,55), B(35, 10,55), C(35,30,35), D(45,30,25), E(65,10,25), and F(65,0,35) in the triangular diagram representing the molar composition. The mixture is melted by heating in a crucible at about 250-700 deg.C in an atmosphere free from oxygen and water. The molten mixture is poured into a mold made of a metal, graphite, etc., and cooled to obtain a colorless transparent glass.

Description

【発明の詳細な説明】 腹!ユg側九匁 本発明は、赤外線透過ガラスに関するものである。本発
明の赤外線透過ガラスは、光通信用のガラスファイバー
、炭酸ガスレーザー用のエネルギー伝送用ガラスファイ
バー、赤外線透過レンズ等の用途に有用である。
[Detailed description of the invention] Belly! The present invention relates to an infrared transmitting glass. The infrared transmitting glass of the present invention is useful for applications such as glass fibers for optical communications, energy transmission glass fibers for carbon dioxide lasers, and infrared transmitting lenses.

従来技術 光を透過させるガラス材料として、現在、石英ガラスフ
ァイバーが実用化されている。これは、主に可視光域の
光を対象にしたもので、3μm以上の波長で石英ガラス
固有の吸収があり、これより長波長の光を透過させるこ
とができない。
BACKGROUND OF THE INVENTION Quartz glass fiber is currently in practical use as a glass material that transmits light. This is mainly aimed at light in the visible light range, and quartz glass has inherent absorption at wavelengths of 3 μm or more, and cannot transmit light with longer wavelengths.

一方、3μmより長波長の光を透過させるガラス材料と
して、カルコゲナイドガラスやフッ化物ガラスが知られ
ている。しかし、それらの透過波長もほぼ7μmが限界
である。
On the other hand, chalcogenide glass and fluoride glass are known as glass materials that transmit light with a wavelength longer than 3 μm. However, their transmission wavelength is also limited to approximately 7 μm.

最近、10.6μmに発娠波長をもつ炭酸ガスレーザー
に代表されるように、赤外域波長の光源が開発されてい
る。このような長波長の光を透過させる材料として、K
Br 、T+!Br 、TG! Iのような結晶材料が
知られている。しかしながら、これらの結晶材料を赤外
線透過材料として使用するためには、結晶粒界のない単
結晶を1造しなければならないが、現在では、これらの
結晶材料を使った単結晶としては、板状のものを製造で
きるのみである。
Recently, light sources with wavelengths in the infrared region have been developed, as typified by carbon dioxide lasers having an initiation wavelength of 10.6 μm. As a material that transmits such long wavelength light, K
Br, T+! Br, TG! Crystalline materials such as I are known. However, in order to use these crystalline materials as infrared transmitting materials, it is necessary to make a single crystal without grain boundaries, but currently, single crystals made from these crystalline materials are plate-shaped. It is only possible to manufacture .

従って、寸法及び形状に対する制約の少ないガラスの特
徴を生かす為、赤外線を透過させ得る新たなガラス材料
を開発することが強く望まれている。
Therefore, there is a strong desire to develop a new glass material that can transmit infrared rays in order to take advantage of the characteristics of glass, which has fewer restrictions on size and shape.

B明の目的及び敬承 本発明は、上記の点に鑑み、赤外線を透過させるガラス
材料を提供することを目的としたものである。
OBJECTS AND ACKNOWLEDGMENTS In view of the above points, the present invention aims to provide a glass material that transmits infrared rays.

即チ、本発明ハ、Zn Br2、Pb Sr、、及びT
QBrから成り、その組成割合が、第1図に示すモル比
三角成分図において、A(45,0,55) 、B (
35,10,55)、C(35,30,35)、D (
45,30,25)、E(65,10,25)及びF(
65,0,35)の各点を結ぶ直線で囲まれた領域内に
あることをFirPiとする赤外線透過ガラスに係るも
のである。
That is, H, the present invention C, Zn Br2, Pb Sr, and T
QBr, whose composition ratios are A(45,0,55), B(
35,10,55), C(35,30,35), D(
45,30,25), E(65,10,25) and F(
This relates to an infrared transmitting glass whose FirPi is defined as being within an area surrounded by straight lines connecting the points 65, 0, 35).

本発明によると、上記組成範囲にあるガラスは、全て無
色透明のガラスとなり、25μm以下の赤外線を透過さ
せることができるため、赤外線透過ガラスとして有効に
使用することができる。
According to the present invention, all glasses within the above composition range are colorless and transparent and can transmit infrared rays of 25 μm or less, so they can be effectively used as infrared transmitting glasses.

本発明のガラスを製造するための原料は、ln Br2
.Pb BrQ及びTQ Br rある。これらが、水
和物や酸化物を含んでいると、できたガラスの赤外線透
過率を低下させる原因となるので、できるだけ不純物の
少ないものを使用することが望ましい。
The raw material for producing the glass of the present invention is ln Br2
.. There are Pb BrQ and TQ Br r. If these contain hydrates or oxides, it will cause a decrease in the infrared transmittance of the resulting glass, so it is desirable to use ones with as few impurities as possible.

本発明のガラスを製造する方法としては、まず、原料を
秤量、混合した後、ルツボ内で加熱して溶融する。溶融
温度は、250℃から700℃の範囲とすることが必要
である。250℃より低いと原料が溶融せず700℃よ
り高いと一部成分の逃散が起こる危険性があり、通常は
500’C前後の温度が望ましい。溶融時間は、溶融体
の均質化のために長い程よいが通常30分間程度で充分
均一なガラスを得ることができる。この場合、途中、撹
拌することも、均質なガラスを得るためには望ましい操
作である。
As a method for manufacturing the glass of the present invention, first, raw materials are weighed and mixed, and then heated and melted in a crucible. The melting temperature needs to be in the range of 250°C to 700°C. If it is lower than 250°C, the raw material will not melt, and if it is higher than 700°C, there is a risk that some components will escape, so a temperature of around 500'C is usually desirable. The longer the melting time, the better, in order to homogenize the melt, but usually a sufficiently uniform glass can be obtained within about 30 minutes. In this case, stirring during the process is also a desirable operation in order to obtain a homogeneous glass.

また、溶融時の雰囲気調整も赤外線透過率の高いガラス
を得るために重要である。空気中の酸素や水分が存在す
ると、ガラス中に酸化物や水酸化物を発生させる原因と
なり、これらの化合物は、ガラスの赤外線透過率を低下
させる。このため、「1素や水分はN2や八「ガスなど
の不活性ガス雰囲気によって除去することが必要である
。更に1良素ガスを吹き付けることも、酸化物や水酸化
物の発生を防ぐためには望ましい操作であるが、不可欠
なものではない。
In addition, controlling the atmosphere during melting is also important in order to obtain a glass with high infrared transmittance. The presence of oxygen and moisture in the air causes oxides and hydroxides to be generated in the glass, and these compounds reduce the infrared transmittance of the glass. For this reason, it is necessary to remove ``1'' and moisture using an inert gas atmosphere such as N2 or ``8'' gas.It is also necessary to spray 1'' gas to prevent the generation of oxides and hydroxides. is a desirable operation, but not essential.

次いで、溶融体は、金属、黒鉛等で作られた型枠に流し
出し、冷却することで無色透明なガラスとすることがで
きる。
Next, the molten material can be poured into a mold made of metal, graphite, etc., and cooled to form colorless and transparent glass.

また、このようにして得られる赤外線透過ガラスは、通
常知られている方法により、ガラスファイバーとするこ
とができる。このようなガラスファイバーは光通信用の
光ファイバーなどとして有効に使用できる。
Further, the infrared transmitting glass thus obtained can be made into glass fiber by a commonly known method. Such glass fibers can be effectively used as optical fibers for optical communications.

発明の効果 本発明の赤外線透過ガラスは、25μmまでの赤外線を
透過することができ、かつ自由な形状とすることができ
る。よって、25μmまでの波長範囲にある赤外線を透
過させる材料として、種々の用途に使用することができ
、例えば赤外線を透過光とするエネルギー伝送用ファイ
バーや光通信用ファイバーとして有効に使用でき、また
レンズ状に成形して、赤外線透過レンズとしても使用す
ることができる。
Effects of the Invention The infrared transmitting glass of the present invention can transmit infrared rays up to 25 μm and can be formed into any shape. Therefore, it can be used for various purposes as a material that transmits infrared rays in the wavelength range up to 25 μm. For example, it can be effectively used as an energy transmission fiber or optical communication fiber that transmits infrared rays, and it can also be used as a lens. It can also be molded into a shape and used as an infrared transmitting lens.

実 施 例 次に実施例を示して本発明を更に詳しく説明する。Example Next, the present invention will be explained in more detail by showing examples.

実施例1 1n Br 242.8g、Pb Bt’ 214. 
OQ及びTQBr 43.2gを秤量、混合し、白金ル
ツボを用いて420℃で30分間溶融し、金属板上に流
しだして70X70X5 (+111)程度の板状ガラ
スを得た。なお、ここまでの操作は窒素ガス雰囲気下で
行った。できたガラスは、Zn 3r 250モル%、
pbBr210モル%及びT9Br40モル%の無色透
明なガラスであり、ガラス転移温度は43℃、結晶化温
度は110℃であった。
Example 1 1n Br 242.8g, Pb Bt' 214.
43.2 g of OQ and TQBr were weighed and mixed, melted at 420° C. for 30 minutes using a platinum crucible, and poured onto a metal plate to obtain a plate glass of approximately 70×70×5 (+111). Note that the operations up to this point were performed under a nitrogen gas atmosphere. The resulting glass contains 250 mol% of Zn 3r,
It was a colorless and transparent glass containing 210 mol% of pbBr and 40 mol% of T9Br, and had a glass transition temperature of 43°C and a crystallization temperature of 110°C.

この試料、について、赤外線透過率の測定を行った結果
を第2図に示す。
FIG. 2 shows the results of measuring the infrared transmittance of this sample.

比較例2及び3 従来品として実施例1と同一形状の石英ガラス及びフッ
化物ガラスについて赤外線透過率を測定した結果を第2
図に示す。
Comparative Examples 2 and 3 The results of measuring infrared transmittance of quartz glass and fluoride glass of the same shape as Example 1 as conventional products are shown in the second table.
As shown in the figure.

実施例1と比較例2.3より、本発明赤外線透過ガラス
は可視光線波長域の光から波長25μmの赤外線まで高
い透過率を示し、従来品と比較して優れた赤外線透過ガ
ラスであることがわかる。
From Example 1 and Comparative Examples 2.3, the infrared transmitting glass of the present invention exhibits high transmittance from light in the visible light wavelength range to infrared light with a wavelength of 25 μm, and is an excellent infrared transmitting glass compared to conventional products. Recognize.

実施例2〜6 組成割合以外は実施例1と同様にして第1表の組成の赤
外線透過ガラスを製造した。
Examples 2 to 6 Infrared transmitting glasses having the compositions shown in Table 1 were produced in the same manner as in Example 1 except for the composition ratios.

第 1 表 得られたガラスはすべて無色透明であり、実施例1の赤
外線透過ガラスとほぼ同様な赤外線吸収曲線を示した。
Table 1 All of the obtained glasses were colorless and transparent, and showed almost the same infrared absorption curve as the infrared transmitting glass of Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を構成する組成領域を示したモル比三
角成分図である。 第2図は、透過率曲線を示すグラフである。 (1)は、実施例1の赤外線透過ガラス、(2)はフッ
化物ガラス、(3〉は石英ガラスの透過率曲線である。 (以 上) 代理人 弁理士 三 枝 英 二
FIG. 1 is a triangular molar ratio diagram showing the compositional regions constituting the present invention. FIG. 2 is a graph showing a transmittance curve. (1) is the transmittance curve of the infrared transmitting glass of Example 1, (2) is the fluoride glass, and (3> is the transmittance curve of the quartz glass. (Above) Agent: Eiji Saegusa, patent attorney

Claims (1)

【特許請求の範囲】[Claims] ■ Zn Br2、Pb Br2及びTQBrから成り
、その組成割合が、第1図に示すモル比三角成分図にお
いて、A(45,0,55)、B(35,10,55)
、C(35,30,35)、D(45,30,25>、
E (65,10,25)及びF(65,0,35)の
各点を結ぶ直線で囲まれた領域内にあることを特徴とす
る赤外線透過ガラス。
■ Consisting of Zn Br2, Pb Br2 and TQBr, whose composition ratios are A (45, 0, 55) and B (35, 10, 55) in the molar ratio triangular diagram shown in Figure 1.
, C(35,30,35), D(45,30,25>,
An infrared transmitting glass characterized by being located within an area surrounded by straight lines connecting points E (65, 10, 25) and F (65, 0, 35).
JP59093508A 1984-05-09 1984-05-09 Infrared transmission glass Granted JPS60235741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093508A JPS60235741A (en) 1984-05-09 1984-05-09 Infrared transmission glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093508A JPS60235741A (en) 1984-05-09 1984-05-09 Infrared transmission glass

Publications (2)

Publication Number Publication Date
JPS60235741A true JPS60235741A (en) 1985-11-22
JPS6350297B2 JPS6350297B2 (en) 1988-10-07

Family

ID=14084286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093508A Granted JPS60235741A (en) 1984-05-09 1984-05-09 Infrared transmission glass

Country Status (1)

Country Link
JP (1) JPS60235741A (en)

Also Published As

Publication number Publication date
JPS6350297B2 (en) 1988-10-07

Similar Documents

Publication Publication Date Title
FR2513986A1 (en) OPTICAL GLASS
US6128429A (en) Low phonon energy glass and fiber doped with a rare earth
US4011006A (en) GeO2 -B2 O3 -SiO2 Optical glass and lightguides
JPH0420861B2 (en)
US2701208A (en) Glasses
JPS60235741A (en) Infrared transmission glass
JP2004292299A (en) Lead-free optical glass and optical fiber
Shahriari et al. Synthesis and characterization of aluminum fluoride-based glasses and optical fibers
JPH08133779A (en) Infrared rays transmission glass
US5352639A (en) Tellurium and selenium halide-based glasses, their preparation and use
JPH0211535B2 (en)
JP3080708B2 (en) New AlF3-based fluoride glass
JP3145136B2 (en) Infrared transparent fluoride glass
JPS60195029A (en) Preparation of optical fiber for transmitting infrared ray
JPS60195032A (en) Infrared transmission glass
JPS63107841A (en) Halide glass for optical fiber
Fleming et al. GeO2-B2O3-SiO2 optical glass and lightguides
JPH01320294A (en) Production of lithium niobate single crystal
JPS62216940A (en) Infrared transmission glass
JPS6177639A (en) Production of infrared optical membrane material
JPS6086054A (en) Production of fluoride glass for transmission of infrared ray
JPH01320296A (en) Production of bi12sio20 single crystal
JPH03232736A (en) Halide glass
JPH01234343A (en) Infrared ray transmitting glass and glass fiber using said glass
JPS60246243A (en) Infrared transmitting optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term