JPS60235004A - Automatic external dimension measuring apparatus - Google Patents

Automatic external dimension measuring apparatus

Info

Publication number
JPS60235004A
JPS60235004A JP9162284A JP9162284A JPS60235004A JP S60235004 A JPS60235004 A JP S60235004A JP 9162284 A JP9162284 A JP 9162284A JP 9162284 A JP9162284 A JP 9162284A JP S60235004 A JPS60235004 A JP S60235004A
Authority
JP
Japan
Prior art keywords
spindle
measured
stator
dimension
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9162284A
Other languages
Japanese (ja)
Other versions
JPH0214644B2 (en
Inventor
Kunihiko Takahashi
邦彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9162284A priority Critical patent/JPS60235004A/en
Publication of JPS60235004A publication Critical patent/JPS60235004A/en
Publication of JPH0214644B2 publication Critical patent/JPH0214644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Abstract

PURPOSE:To improve working efficiency, by installing light source and light receiving element forming an optical axis between travelling spindle and fixed piece and an apparatus detecting existence of an object subject to be measured between travelling spindle and fixed piece by interruption of the optical axis. CONSTITUTION:The output signal of a dimension detector 28 detecting an external dimension of an object to be measured (not illustrated) held squeezed between travelling spindle and fixed spindle as that travelling with the travelling spindle is count-controlled by a counter-controlling circuit 60 for digital display on a display apparatus 50. Further, a detector 43 of the object to be measured detects interruption by the object of the optical axis, issues a travelling command to a motor driving circuit 65 from the main controlling circuit 58 and allows starting of measurement of the external dimension of the object to be measured. Further, an outside condition controlling circuit 63, controlling such outside conditions as temperature or source voltage, etc., removes influences of temperature or voltage, etc. affecting a display value.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は、各種の機械加工部品等の被測定物の外側寸法
を1 自動的に測定するための自動外側寸法測定装置に
関する。 〔従来技術とその問題点〕 一般に、被測定物の外側寸法(外径寸法)を精密測定す
るには、マイクロメータが広く使用される。このマイク
ロメータは手動で、多量の被測定物を個々に測定検査す
るには、手数を要し、側足時間が長く、非能率的である
。従って、抜取検査程度ですますことが多い。しかし、
精密機械の組立は、個々の部品精度のより以上の向上が
期待される。被測定物の迅速で、確実な側足結果を得る
ためには、測定装置の自動化が散望されていたが、高級
化すれば高価格となり、現場検査に適した測定装置の実
現が必要であった。 〔発明の目的〕 本発明は、上述の点に鑑み、これを有効に解決し、その
取扱い操作が容易で、その側足が迅速で、測定性能が向
上する自動外側寸法測定装置を提供することを目的とす
る。 〔発明の要点〕 このような目的を達成するために、本考案は、移動スピ
ンドルと固定スピンドルとの間に光軸を形成する光源と
受光素子とを設け、前記光軸を遮断することにより被測
定物が前記移動スピンドルと固定子との間に介在するこ
とを検出する被測定物検出装置を備えることを特徴とす
る。 本発明の一実施態様によれば、移動スピンドルは、固定
子と共に、先端を平面状接触端とし、光軸を前記移動ス
ピンドルと固定子との軸線上に設ける。 本発明の他の実施態様によれば、移動スピンドルは、固
定子と共に先端を断面円弧状接触端とし、光軸を前記移
動スピンドルと固定子との軸線に沿って設置る。 本発明のさらに他の実施態様によれば、被送り部材社、
移動スピンドルと平行に形成された遮へい板を設け、こ
の蓮へい板の両面を挾んで複数組の発射、素子および受
光素子を前記移動スピンドルの軸線方向に所要の間隔を
もつ
[Technical field to which the invention pertains] The present invention relates to an automatic outer dimension measuring device for automatically measuring outer dimensions of objects to be measured such as various machined parts. [Prior Art and its Problems] Generally, micrometers are widely used to precisely measure the outer dimension (outer diameter dimension) of an object to be measured. Manually measuring and inspecting a large number of objects individually using this micrometer is laborious, takes a long time, and is inefficient. Therefore, in most cases, a sampling inspection is sufficient. but,
Assembling precision machinery is expected to improve the precision of individual parts even more. Automation of measuring equipment has long been desired in order to quickly and accurately obtain results on the side of the object to be measured, but the higher the quality, the higher the price, and it was necessary to create a measuring equipment suitable for on-site inspection. there were. [Object of the Invention] In view of the above-mentioned points, the present invention effectively solves the problems and provides an automatic outer dimension measuring device that is easy to handle, has quick operation, and has improved measurement performance. With the goal. [Summary of the Invention] In order to achieve such an object, the present invention provides a light source and a light receiving element that form an optical axis between a movable spindle and a fixed spindle, and blocks the optical axis. The present invention is characterized by comprising a measured object detection device that detects that a measured object is interposed between the movable spindle and the stator. According to one embodiment of the present invention, the movable spindle and the stator have a planar contact end at the distal end, and the optical axis is provided on the axis of the movable spindle and the stator. According to another embodiment of the present invention, the movable spindle and the stator have a contact end having an arcuate cross section, and the optical axis is disposed along the axis of the movable spindle and the stator. According to yet another embodiment of the present invention, a sent member company,
A shielding plate formed parallel to the moving spindle is provided, and a plurality of sets of emitting elements and light receiving elements are arranged at required intervals in the axial direction of the moving spindle by sandwiching both sides of the shielding plate.

【配置する測定圧選択装置を有し、前記発光素子および受光素子のいずれかの組を選択することにより、弾性部材が前記移動スピンドルを介して被測定物に付与する測定圧を選択する。 また、本発明のさらに他の実施態様によれば、制御演算処理部は、移動スピンドルの戻り量を選択処理する。 なお、本発明のさらに他の実施態様によれば、制御演算処理部は、被測定物の外側寸法が上限および下限公差内にあるか否かを判定処理する。 〔発明の実施例〕A measuring pressure selection device is provided, and by selecting any one of the light emitting element and the light receiving element, the measuring pressure applied by the elastic member to the object to be measured via the moving spindle is selected. According to still another embodiment of the present invention, the control arithmetic processing section selects and processes the return amount of the moving spindle. According to yet another embodiment of the present invention, the control arithmetic processing section determines whether the outer dimensions of the object to be measured are within upper and lower tolerance limits. [Embodiments of the invention]

次に、本発明の実施例を図面に基づき、詳細に説明する
。 第1図は本発明の一実施例の概略構成図を示し、(4)
はその正面図、(B)Fiその平面図、C1t;t、そ
の側面図、第2図は第1図の矢印方向A−Aの拡大図、
第3図Fi第1図の矢印方向B−Hの拡大図である。 第1図ないし第3図において、自動外側寸法測定装置l
扛、主として基台2と、基台2上に設けられた取付枠体
5を有する測定部箱体3、アンビル部4およびカバー3
A等から#I成される。この取付枠体5の上端には案内
板6が固定される。案内板6には、被送り部材7および
廻止め部材8が設けられる。被送り部材7は第2図およ
び第4図に示すように、送りナツト9、この送りナツト
9に取付ねじ10により固定されるボールホルダ11゜
このボールホルダ11により案内板6の側面に保持され
るボール12等からなり、案内板6に沿って前後方向に
移動自在に設けられる。また、送りナツト9には雌ねじ
13および小貫通孔14が設けられる。廻止め部材8は
、第5図に示す廻止め片15、第2図と同様にボールホ
ルダ11およびボールホルダ11により案内板6の側面
に保持されるボール12等からなり、案内板6に沿って
前後方向に移動自在である。なお、廻止め片15に社、
貫通孔16およびねじ孔17等が設けられる。 移動スピンドル】8は、一端が廻止め片15の貫通孔1
6に挿入されて固定され、他端が前方向に延長されて取
付枠体5の軸受部19により軸支される。送りねじ20
は、一端が取付枠体5の軸受部21により軸支さh1プ
ーリ22を固定し、他端がバイブ状に形成された移動ス
ピンドル18内に挿入される。ブー922は、駆動モー
タ23のプーリ24との間に、■ベルト25が懸張され
駆動モータ23の回転を送りねじ20に伝達する。 また、移動スピンドル18の段付部26と被送り部材7
との間に、弾性部材、本実施例ではコイルスプリング2
7が介在する。 寸法検出装置28は、第3図に示すようにスケール板2
9、このスケール板29に近接して設けられたスリット
30、このスケール板29およびスリット30を挾み上
部に設りられた発光素子板31、受光素子板32等から
なる。スケール板29は、通常有機樹脂系ガラス製で多
数の格子縞が等間隔に設けられ、一端が廻止め部材8に
固定された取付片29Aに接着剤にて接着され、他端が
第6図に示すように移動スピンドル18に取付ねじ33
により固定された主ホルダ34、この主ホルダ34に取
付ねじ35Aにて固定烙れたスクールホルダ35の腕部
に同じ(接着剤にて接着される。スリット台37は、取
付枠体5上に取付ねじ36にて固定され、スケール板2
9およびスリット30tl−挾んで上下に対向して配置
される発光素子板31および受光素子板32を支持する
。スリット板30は、スケール板29とは1/4スつ位
相をずらせた4個の格子縞が設けられている。板ばね3
7Aはスリット板30とスケール板29との接触を保持
する。 なお、測定土選択装置38は、被送り部材7の側面に固
定され、移動スピンドル18と平行な平−面を形成する
遮へい板39、この遮へい板390両面を挾む発光素子
板40および受′光素子板41からなる。この発光素子
板40および受光素子板41は、遮へい板39を挾んで
対向する複数組、本実施例では3組の発光素子4OAお
よび受光素子41A(第2図)を具備する。これらの発
光素子40Aおよび受光素子41Aは移動スピンドル1
8の軸線方向に所要の間隔をもって配置6れる。 被測定物検出装置43は、アンビル部4内に設置された
光源44と、移動スピンドル18内に設置された受光素
子45とからなる。この光源44および受光素子45は
、固定スピンドル42および移動スピンドル18の軸線
上に光軸を形成する。 従って、被測定物がこの固定スピンドル42および移動
スピンドル18間に挿入されると元軸は遮断される。載
置台45は被測定物を載置する際、その高さを調整する
調整ねじ45Aを有する。47は駆動モータ23其他の
電気機器への電源トランスである。、また、48は、本
測定装置1をi」搬のための取手である。なお、49は
連結ねじて、送りナツト9の小貫通孔14に挿入され、
廻止め片15のねじ孔17に螺着され、被送り部材7と
廻止め部材8とを連結する。 次に、第7図はカバーの表示および操作機器配置図を示
す。図においてカバー3Aの表面には、ディジタル寸法
表示器50.1l111I定土表示ランプ51、戻り量
表示ランプ52、上・下限公差設置器53.54および
表示ランプ55、操作スイッチ56、電源スイツチ57
等が配置されている。 次に、第8図は本測定装置の制御演算処理部のブロック
図でおる。図において第1図ないし第7図と同一の機能
を有する部分には、同一の符号が付されている。制御演
算処理部は、主制御回路58、演算回路59、計数制御
回路60、外部出力回路61.からなり、寸法検出装置
28、測定圧選択装置3B、被測定物検出装置43、戻
り量選択装置64、表示装置50、公差警報装置62、
外部条件制御回路63およびモータ駆動装置65が接続
される。このうち、寸法検出装置28は、移動スピンド
ル18と固定スピンドル420間に挾持される被測定物
の外側寸法を、移動スピンドル18と共に移動するスケ
ール板29の移動量としてスリット30、発光素子板3
1および受光素子板32により検出し、計数制御回路6
0にて計数制御され表示装置50にディジタル表示する
。 この際、外部条件制御回路63は、温度または電源電圧
変化等の外部条件を制御して、表示装置50の表示値へ
の温度または電圧等の影響を取除く。 被測定物検出装置43は、移動スピンドルlfjおよび
固定スピンドル42の先端が平坦状接触面を有するから
、光軸が軸線上に設けられこの光軸が被測定物により遮
断されると、被測定物が介在することが検出ネれる。主
制御回路58は、モータ駆動装置65に移動スピンドル
18i、被測定物の外側寸法全測定するように移動指令
を発信する。従って、本測定装fiitlの被測定物の
外側寸法測定が開始する。 また、測定圧選択装置38は、この測定の際の被測定物
の種類により任意に測定比を選択できる。 すなわち、移動スピンドル18が被測定物に任意の接触
圧を付与することにより、正確な寸法測定が可能である
。従って、遮へい板39を挾んで設けられた発光素子板
40および受光素子板41は、所定の軸線方向への間隔
をもって配列する3組の発光素子40Aおよび受光素子
41Aを設けるから、例えば遮へい板39に最も近い1
組を選択して作動させ、残りの2組は作動停止させると
き、移動スピンドル1Bが被測定物に接触した後の被送
り部材7は、遮へい板39が最も近い1組の発光素子4
OAと受光素子41Aを遮断した位置で停止する。従っ
て、スプリング27の押圧力は最も小さくなる。反対に
、遮へい版39から最も遠い1組を選択すれば、スプリ
ング27の押圧力は最も大きくなる。この測定圧の選択
け、カバー3Aに設けられた押釦スイッチ56の操作に
より表示ランプ51に表示される。なお、本実施例では
測定圧を200gす、500gす、100100Oの3
株類とする。 次に、戻り量選択装置64は、被測定物の外側寸法の測
定が終われば、速やかに移動スプリング18を復帰させ
て次のし測定物の測定に備えなければならない。この際
、連続的に同一寸法の被測定物を測定するには、移動ス
プリング18の戻り量を任意に選択しておけば、無駄な
往復運動を避け、測定時間の短縮が可能である。従って
、本実施例では戻り量表示ランプ52で表示される戻り
量はlozm、5oW+ ioo論または150謹の3
mとし、移動スピンドル18の零位置からの戻り時間が
主制御回路58および演算回路59に【処理される。 なお、公差警報装置62は、上・下限設定器53.51
Cて被測定物の標準寸法に対する上・下限公差が設定さ
れ、この設定値に対する被測定物の外側寸法が上・下限
公差内にめるか否か全判定し、この上・下限公差より外
れたとき、上・下限警報ランプ5+5が表示するように
、主制御回路58および演算回路59にて処理される。 さらに、外部出力回路61は、図示されていないディジ
タル記録装置に接続され、測定データが作成される。 さらに、本測定装置1は、送りねじ20がパイプ状移動
スピンドル18に挿入されているから、測定部箱体3の
内部に余裕ができ、電源トランス49が収容可能となり
、商用電源を直接に接続すればよ(、その取扱いが容易
である。 次に、第9図は本発明の他の実施例の概略構成図を示し
、[有]は移動ス藍ンドル側、(6)は固定スピンドル
側でおる。図において移動スピンドル18および固定ス
ピンドル42の先端は、それぞれ断面円弧状接触端66
.67が装着される。この際、光源44および受光素子
45からなる光軸は、移動スピンドル18および固定ス
ピンドル42の軸線上または軸線からは僅かにはずれる
も、この軸線に沿って穿孔された小孔68.69により
形成される。従って、平行面を有する被測定物の厚さ寸
法測定がこの接触面66.67で可能となり、この際被
測定物の有無の検出が確実である。 〔発明の効果〕 以上に説明するように本発明によれば、移動スピンドル
と固定スピンドルとに光源および受光素子を設け、この
光源と受光素子との間の光軸を遮断することにより、被
測定物の介在を検出する被測定物検出装置を設け、さら
に測定圧選択装置、戻り量選択装置、公差警報装置を設
けることによりその構成が簡単で、自動化され、その取
扱いが容易で、その測定が迅速で、省力化され、測定性
能が向上する等その効果は極めて大きい。
Next, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention, (4)
is a front view thereof, (B) Fi is a plan view thereof, C1t;t is a side view thereof, and FIG. 2 is an enlarged view in the direction of the arrow A-A in FIG.
FIG. 3 is an enlarged view taken in the direction of the arrow B-H in FIG. 1; In Figures 1 to 3, the automatic outside dimension measuring device l
The main components are a base 2, a measuring unit box 3 having a mounting frame 5 provided on the base 2, an anvil 4, and a cover 3.
#I is formed from A etc. A guide plate 6 is fixed to the upper end of this mounting frame 5. The guide plate 6 is provided with a member to be sent 7 and a rotation stopper member 8 . As shown in FIGS. 2 and 4, the member 7 to be fed is attached to a feed nut 9, a ball holder 11 fixed to the feed nut 9 by a mounting screw 10, and held on the side surface of the guide plate 6 by the ball holder 11. It consists of a ball 12 and the like, and is provided so as to be movable in the front and back direction along the guide plate 6. Further, the feed nut 9 is provided with a female thread 13 and a small through hole 14. The rotation preventing member 8 includes a rotation preventing piece 15 shown in FIG. It can be moved freely in the front and rear directions. In addition, there is a company on the rotation stopper piece 15.
A through hole 16, a screw hole 17, etc. are provided. [Moving spindle] 8 has a through hole 1 with a rotation stopper piece 15 at one end.
6 and is fixed, and the other end is extended forward and pivotally supported by a bearing portion 19 of the mounting frame 5. Feed screw 20
has one end fixed to the h1 pulley 22 which is pivotally supported by the bearing part 21 of the mounting frame 5, and the other end is inserted into the movable spindle 18 formed in the shape of a vibrator. A belt 25 is stretched between the boo 922 and the pulley 24 of the drive motor 23, and transmits the rotation of the drive motor 23 to the feed screw 20. In addition, the stepped portion 26 of the moving spindle 18 and the member to be fed 7
An elastic member, in this example, a coil spring 2
7 intervenes. The dimension detection device 28 includes a scale plate 2 as shown in FIG.
9. Consists of a slit 30 provided close to the scale plate 29, a light emitting element plate 31, a light receiving element plate 32, etc. provided above the scale plate 29 and the slit 30. The scale plate 29 is usually made of organic resin glass and has a large number of checkered stripes arranged at equal intervals. One end is glued to the mounting piece 29A fixed to the rotation stopper 8, and the other end is attached as shown in FIG. Attach the mounting screw 33 to the moving spindle 18 as shown.
The main holder 34 is fixed to the main holder 34, and the arm part of the school holder 35 is fixed to the main holder 34 with the mounting screw 35A. It is fixed with the mounting screw 36, and the scale plate 2
9 and the slit 30tl - supports a light emitting element plate 31 and a light receiving element plate 32 which are arranged vertically facing each other. The slit plate 30 is provided with four lattice stripes whose phase is shifted by 1/4 step from that of the scale plate 29. Leaf spring 3
7A maintains contact between the slit plate 30 and the scale plate 29. The measuring soil selection device 38 includes a shielding plate 39 fixed to the side surface of the member to be sent 7 and forming a plane parallel to the moving spindle 18, a light emitting element plate 40 and a receiving plate sandwiching both sides of the shielding plate 390. It consists of an optical element plate 41. The light-emitting element plate 40 and the light-receiving element plate 41 include a plurality of sets, in this embodiment, three sets of light-emitting elements 4OA and light-receiving elements 41A (FIG. 2) facing each other with the shielding plate 39 in between. These light emitting elements 40A and light receiving elements 41A are connected to the moving spindle 1.
They are arranged 6 at a required interval in the axial direction of 8. The object detection device 43 includes a light source 44 installed within the anvil portion 4 and a light receiving element 45 installed within the movable spindle 18. The light source 44 and the light receiving element 45 form an optical axis on the axis of the fixed spindle 42 and the movable spindle 18. Therefore, when the object to be measured is inserted between the fixed spindle 42 and the movable spindle 18, the original shaft is interrupted. The mounting table 45 has an adjustment screw 45A that adjusts the height when placing the object to be measured. 47 is a power transformer for the drive motor 23 and other electrical equipment. , and 48 is a handle for transporting the measuring device 1. In addition, 49 is inserted into the small through hole 14 of the feed nut 9 with a connecting screw,
It is screwed into the screw hole 17 of the rotation stopper piece 15 to connect the sent member 7 and the rotation stopper member 8 . Next, FIG. 7 shows a cover display and an arrangement diagram of operating equipment. In the figure, the surface of the cover 3A includes a digital dimension indicator 50.1l111I fixed earth indicator lamp 51, return amount indicator lamp 52, upper/lower limit tolerance setting device 53, 54, indicator lamp 55, operation switch 56, and power switch 57.
etc. are arranged. Next, FIG. 8 is a block diagram of the control calculation processing section of this measuring device. In the drawings, parts having the same functions as those in FIGS. 1 to 7 are designated by the same reference numerals. The control arithmetic processing section includes a main control circuit 58, an arithmetic circuit 59, a counting control circuit 60, an external output circuit 61. It consists of a dimension detection device 28, a measurement pressure selection device 3B, a measured object detection device 43, a return amount selection device 64, a display device 50, a tolerance alarm device 62,
External condition control circuit 63 and motor drive device 65 are connected. Of these, the dimension detection device 28 detects the outer dimensions of the object to be measured held between the movable spindle 18 and the fixed spindle 420 as the amount of movement of the scale plate 29 that moves together with the movable spindle 18 through the slit 30 and the light emitting element plate 3.
1 and the light receiving element plate 32, and the counting control circuit 6
The count is controlled at 0 and digitally displayed on the display device 50. At this time, the external condition control circuit 63 controls external conditions such as changes in temperature or power supply voltage to eliminate the influence of temperature, voltage, etc. on the display value of the display device 50. The object detection device 43 has a flat contact surface at the tips of the movable spindle lfj and the fixed spindle 42, so when the optical axis is set on the axis and this optical axis is blocked by the object, the object to be measured is detected. Intervention is detected. The main control circuit 58 issues a movement command to the motor drive device 65 to measure the entire outer dimension of the moving spindle 18i and the object to be measured. Therefore, the measurement of the outer dimension of the object to be measured by the measuring device fiitl starts. Further, the measurement pressure selection device 38 can arbitrarily select a measurement ratio depending on the type of the object to be measured. That is, accurate dimensional measurement is possible by applying arbitrary contact pressure to the object to be measured by the moving spindle 18. Therefore, since the light emitting element plate 40 and the light receiving element plate 41 provided with the shielding plate 39 in between are provided with three sets of light emitting elements 40A and light receiving elements 41A arranged at predetermined intervals in the axial direction, for example, the shielding plate 39 1 closest to
When one set is selected and activated and the remaining two sets are deactivated, the member 7 to be sent after the moving spindle 1B contacts the object to be measured is the one set of light emitting elements 4 whose shielding plate 39 is closest.
It stops at the position where the OA and the light receiving element 41A are cut off. Therefore, the pressing force of the spring 27 is the smallest. On the other hand, if the set furthest from the shielding plate 39 is selected, the pressing force of the spring 27 will be the largest. This measurement pressure selection is displayed on the display lamp 51 by operating a push button switch 56 provided on the cover 3A. In this example, the measurement pressure was 200g, 500g, and 100100O.
Stocks. Next, when the return amount selection device 64 finishes measuring the outer dimensions of the object to be measured, it must immediately return the movable spring 18 to prepare for the measurement of the next object to be measured. At this time, in order to continuously measure objects of the same size, by arbitrarily selecting the return amount of the moving spring 18, it is possible to avoid wasteful reciprocating motion and shorten the measurement time. Therefore, in this embodiment, the return amount displayed by the return amount display lamp 52 is 100 ozm, 5 oW + ioo theory, or 150 min.
m, and the return time of the moving spindle 18 from the zero position is processed by the main control circuit 58 and the arithmetic circuit 59. Note that the tolerance alarm device 62 includes upper and lower limit setters 53 and 51.
The upper and lower limit tolerances for the standard dimensions of the object to be measured are set using C, and a complete judgment is made as to whether or not the outer dimensions of the object to be measured with respect to these set values fall within the upper and lower limit tolerances. When this occurs, processing is performed by the main control circuit 58 and the arithmetic circuit 59 so that the upper/lower limit alarm lamp 5+5 is displayed. Furthermore, the external output circuit 61 is connected to a digital recording device (not shown) to create measurement data. Furthermore, in this measuring device 1, since the feed screw 20 is inserted into the pipe-shaped movable spindle 18, there is room inside the measuring unit box 3, and the power transformer 49 can be accommodated, allowing direct connection to a commercial power source. (It is easy to handle.) Next, Fig. 9 shows a schematic configuration diagram of another embodiment of the present invention, [with] is the movable spindle side, and (6) is the fixed spindle side. In the figure, the tips of the movable spindle 18 and the fixed spindle 42 each have a contact end 66 having an arcuate cross section.
.. 67 is installed. At this time, the optical axis consisting of the light source 44 and the light-receiving element 45 is on the axis of the moving spindle 18 and the fixed spindle 42, or is slightly deviated from the axis, but is formed by the small holes 68 and 69 bored along this axis. Ru. Therefore, the thickness dimension of the object to be measured having parallel surfaces can be measured using the contact surfaces 66 and 67, and in this case, the presence or absence of the object to be measured can be reliably detected. [Effects of the Invention] As explained above, according to the present invention, a light source and a light receiving element are provided on the movable spindle and the fixed spindle, and the optical axis between the light source and the light receiving element is blocked. By providing a measurement object detection device for detecting the presence of an object, and further providing a measurement pressure selection device, a return amount selection device, and a tolerance alarm device, the configuration is simple, automated, and easy to handle. The effects are extremely large, such as speed, labor savings, and improved measurement performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図を示し、(4)
はその正面図、ω)はその平面図、(C)はその側面図
、第2図は第1図の矢印方向A−Aの拡大図、第3図は
第1図の矢印方向B−Bの拡大図、第4図は送りナツト
の概略構成図を示し、囚はその正面図、(均はその側面
図、第5図は廻止め片の概略構成図を示し、(4)はそ
の正面図、(均はその側面図、第6図はスケール板組立
斜視図、第7図はカバーの表示および操作機器配置図、
第8図は本側足装置の制御演算処理部のブロック図、第
9図は本発明の他の実施例の概略構成図を示し、(4)
はその移動スピンドル側、03)はその固定スピンドル
側である。 l:自動外側寸法測定装置、3:測定部箱体、4:アノ
ビル部、5:取付枠体、6:案内板、7:被送り部材、
8:廻止め部材、18:移動スピンドル、20:送りね
じ、27:コイルスプリング、28二寸法検出装置、2
9ニスクール板、38:測定圧選択製筒、42:固定ス
ピンドル、43:被測定物検出装置、58:主制御回路
、59:演算回路、60:外部出力回路、62:公差警
報装置、64:戻り量選択装置、66.67:断面円弧
状接触端。 パメ゛4目 第 5 図 (B) (A) 床 9に! 弱 第 6 1−ぐ(
FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention, (4)
is a front view thereof, ω) is a plan view thereof, (C) is a side view thereof, Fig. 2 is an enlarged view in the direction of the arrow A-A in Fig. 1, and Fig. 3 is an enlarged view in the direction of the arrow B-B in Fig. 1. Figure 4 shows a schematic diagram of the feed nut, Figure 4 shows its front view, Hitoshi's side view, Figure 5 shows a schematic diagram of the rotation stopper, and Figure 4 shows its front view. (Figure 6 is a side view, Figure 6 is a perspective view of the scale plate assembly, Figure 7 is a diagram of the cover display and operating equipment arrangement,
FIG. 8 is a block diagram of the control calculation processing section of the present side leg device, and FIG. 9 is a schematic configuration diagram of another embodiment of the present invention, (4)
03) is the moving spindle side, and 03) is the fixed spindle side. l: Automatic outer dimension measuring device, 3: Measuring part box, 4: Anobil part, 5: Mounting frame, 6: Guide plate, 7: Sent member,
8: Rotation preventing member, 18: Moving spindle, 20: Feed screw, 27: Coil spring, 28 Two dimension detection device, 2
9 Niskool plate, 38: Measurement pressure selection cylinder, 42: Fixed spindle, 43: Measured object detection device, 58: Main control circuit, 59: Arithmetic circuit, 60: External output circuit, 62: Tolerance alarm device, 64 : Return amount selection device, 66.67: Contact end with arcuate cross section. Pamela 4th Figure 5 (B) (A) Floor 9! Weak No. 6 1-g (

Claims (1)

【特許請求の範囲】 l)測定部箱体と、この測定部箱体内に設けられ駆動モ
ータにより正逆回転される送りねじと、前記測定部箱体
内に設けられ前記送りねじと螺合し前記送りねじの回転
により前後方向に移動する被送り部材と、この被送り部
材との間に弾性部材を介在し前記被送り部材の前方向へ
の移動により前記弾性部材を介して前方向へ移動する移
動スピ先端に対向して前記移動スピンドルの軸線上に設
けられた固定子と、前記測定部箱体内に設けられ前記移
動スピンドルと固定子との間に挾持される被測定物の外
側寸法を検出する寸法検出装置と、この寸法検出装置の
検出信号を制御演算処理する制御演算処理部とを有する
測定装置において、前記移動スピンドルとIl!!!1
足子との間に元軸を形成する光源と受光素子とを設け、
前記光軸を遮断することにより前記被測定物が前記移動
スピンドルと固定子との間に介在することを検出する被
測定物検出装置金偏えたことを特徴とする自動外側寸法
測定装置。 2、特許請求の範囲第1項の記載において、送りねじは
、パイプ状に形成された移動スピンドル内に挿入される
ことを%徴とする自動外側寸法測定装置。 3)%許請求の範囲第1項の記載において、移動スピン
ドルは、固定子と共に先端を平面状接触端とし、光軸を
前記移動スピンドルと固定子との軸線上に設けることを
特徴とする自動外側寸法測定装置。 4)特許請求の範囲第1項の記載において、移動スピン
ドルは、固定子と共に先端を断面円弧状の接触端とし、
光軸を前記移動スピンドルと固定子との軸線に沿って設
けることを特徴とする自動外側寸法測定装置。 5)特許請求の範囲第1項の記載において、被送り部材
は、移動スピンドルと平行に形成された蓮へい板を設け
、この辿へい板の両面を挾んで複数組の発光素子および
受光素子を前記移動スピンドルの軸線方向に所要の間隔
をもって配置する測定圧選択装置を有し、前記発光素子
および受光素子のいずれ力・の組を選択することにより
、弾性部材が前記移動スピンドルを介して被測定物に付
与する測定圧を選択することを特徴とする自動外側算処
理部は、移動スピンドルの戻りitt演算処理算処理部
は、被測定物の外側寸法が上限および下限公差内にある
か否かを判定処理することを%徴とする自動外側寸法測
定装置。
[Scope of Claims] l) A measuring unit box, a feed screw provided in the measuring unit box and rotated in forward and reverse directions by a drive motor, and a feed screw provided in the measuring unit box and screwed with the feed screw; An elastic member is interposed between the to-be-fed member that moves in the front-back direction due to the rotation of the feed screw, and the to-be-fed member moves forward through the elastic member when the to-be-fed member moves forward. A stator provided on the axis of the movable spindle facing the tip of the movable spindle, and detecting the outer dimensions of the object to be measured, which is disposed inside the measuring unit box and is held between the movable spindle and the stator. In the measuring device, the measuring device includes a dimension detecting device that performs control and arithmetic processing on a detection signal of the dimension detecting device, and a control calculation processing unit that performs control calculation processing on a detection signal of the dimension detection device. ! ! 1
A light source and a light-receiving element are provided to form an original axis between the foot and the foot,
An automatic outer dimension measuring device characterized in that a device to be measured detects that the object to be measured is interposed between the movable spindle and the stator by blocking the optical axis. 2. The automatic outside dimension measuring device according to claim 1, wherein the feed screw is inserted into a moving spindle formed in a pipe shape. 3) Permissible scope of claim 1, wherein the movable spindle has a planar contact end with the stator, and an optical axis is provided on the axis of the movable spindle and the stator. External dimension measuring device. 4) In the description of claim 1, the movable spindle has a contact end having an arcuate cross section along with the stator;
An automatic outer dimension measuring device characterized in that an optical axis is provided along the axis of the movable spindle and the stator. 5) In the description of claim 1, the member to be sent is provided with a lotus plate formed parallel to the moving spindle, and a plurality of sets of light emitting elements and light receiving elements are arranged between both sides of the plate. A measuring pressure selection device is provided which is arranged at a required interval in the axial direction of the moving spindle, and by selecting the force of the light emitting element and the light receiving element, the elastic member is moved through the moving spindle to the measuring force to be measured. The automatic outer calculation processing section is characterized in that it selects the measurement pressure to be applied to the object.The automatic outer calculation processing section is characterized in that it selects the measurement pressure to be applied to the object. An automatic outside dimension measuring device whose percentage is to judge and process.
JP9162284A 1984-05-08 1984-05-08 Automatic external dimension measuring apparatus Granted JPS60235004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9162284A JPS60235004A (en) 1984-05-08 1984-05-08 Automatic external dimension measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9162284A JPS60235004A (en) 1984-05-08 1984-05-08 Automatic external dimension measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60235004A true JPS60235004A (en) 1985-11-21
JPH0214644B2 JPH0214644B2 (en) 1990-04-09

Family

ID=14031661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9162284A Granted JPS60235004A (en) 1984-05-08 1984-05-08 Automatic external dimension measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60235004A (en)

Also Published As

Publication number Publication date
JPH0214644B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
US20180259669A1 (en) Method and Apparatus for Locating Non-Visible Objects
CN114280463A (en) Chip testing system
JPS60235004A (en) Automatic external dimension measuring apparatus
CN217717508U (en) Rotary multi-angle vision measuring equipment
CN110044272B (en) Laser width measurement centering device and using method
CN207888308U (en) Stepped hole concentricity automatic detection device
JPH0469726B2 (en)
US6286227B1 (en) Micrometer system and process of use therefor
CN212331033U (en) Industrial robot coordinate system calibration module
CN210719021U (en) Point laser measuring device capable of moving in multiple dimensions
CN208476175U (en) A kind of novel and multifunctional detection device
JPH0460523B2 (en)
CN112179254A (en) Device for detecting verticality of metal workpiece
CN213422001U (en) Automobile punching part punching detection device
CN216748008U (en) Battery pack testing device and battery pack testing system
CN214953761U (en) Equipment detection mechanism based on supply voltage
CN110586497B (en) High-precision multi-sensor size detection device and data acquisition and processing system thereof
CN213067415U (en) Device for detecting verticality of metal workpiece
US4050294A (en) Apparatus and method of measuring surface roughness
CN219179304U (en) Detection equipment for automatic production line
CN116817814B (en) Stamping workpiece check out test set
CN217764900U (en) Part circular truncated cone portion inclined plane testing fixture
RU219945U1 (en) Measuring arm for tool setting
CN213208917U (en) One-touch size measuring device
CN217900756U (en) Automatic part size measuring device based on visual sensing and automatic machining system