JPS6023485A - Coal gasification apparatus - Google Patents

Coal gasification apparatus

Info

Publication number
JPS6023485A
JPS6023485A JP13076883A JP13076883A JPS6023485A JP S6023485 A JPS6023485 A JP S6023485A JP 13076883 A JP13076883 A JP 13076883A JP 13076883 A JP13076883 A JP 13076883A JP S6023485 A JPS6023485 A JP S6023485A
Authority
JP
Japan
Prior art keywords
coal
oxygen
burner
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13076883A
Other languages
Japanese (ja)
Inventor
Akira Kimura
彰 木村
Eiji Kida
木田 栄次
Toshiki Furue
古江 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP13076883A priority Critical patent/JPS6023485A/en
Publication of JPS6023485A publication Critical patent/JPS6023485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the troubles caused by the temperature lowering near the oxygen burner in a jet-layer gasification furnace, by attaching a flow control valve to the oxygen-supply line of the coal supply burner, and controlling the supply of oxygen to the burner according to the state of the slag deposited in the gasification furnace. CONSTITUTION:The wall of the gasification furnace 10 is furnished with a pair of vertically arranged burners 3A and 3B and flow-control valves 13 and 14. The valves 13 and 14 are provided with a timer 16 and a device 15 for setting and switching the ratio of oxygen/coal to enable the alternate change-over of the valves 13 and 14. The supply of the oxygen from the valves is controlled by this process so as to attain a specific oxygen/coal ratio for a definite time interval at the burners 3A and 3B. The oxygen content in the coal-transfer gas of the burner 3B is adjusted separately, or the oxygen supply is controlled by adjusting the timer so as to maintain the pulverized coal at a temperature above the temperature to cause the solidification and deposition of the coal in the burners 3A and 3B. The troubles caused by the solidification and deposition of slag flowing down along the wall of the furnace can be prevented by this process.

Description

【発明の詳細な説明】 本発明は、石炭ガス化装置に係り、特に噴流層ガス火炉
内の酸素バーナ付近での温度低下によるトラブル発生を
防止した石炭ガス化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal gasifier, and more particularly to a coal gasifier that prevents troubles caused by a temperature drop in the vicinity of an oxygen burner in a spouted bed gas furnace.

従来技術による噴流層ガス化装置を第1図に示す。図に
おいて、微粉化された石炭は、酸素(または空気)と共
にバーナ3を通して圧力容器4内に形成されたガス火炉
10内に吹き込まれる。炉内では部分酸化反応により主
にCOと1−12からなるガスが発生ずる。通常、投入
石炭中のカーボンの80〜98%がガス火炉IO内で反
応し、残りの未燃炭素分は生成ガスに同伴されてガス化
装置からサイクロン6、熱回収ボイラ7、サイクロン6
を経て、ガス精製部9へ送られる。一方、石炭中の灰分
は30〜70%が炉壁の耐火jfAl上へ付着し、溶融
状態で流下しスラグタップホール8から落下し、炉底の
クエンチタンク75で急冷され、固化スラグ5Aとして
排出される。残りの灰分はガスに同伴され炉から排出さ
れた後、サイクロン6で捕集され、N2ガスの気流搬送
によりガス化炉10ヘリサイクルされる。
A prior art spouted bed gasifier is shown in FIG. In the figure, pulverized coal is blown together with oxygen (or air) through a burner 3 into a gas furnace 10 formed in a pressure vessel 4. In the furnace, a gas consisting mainly of CO and 1-12 is generated due to a partial oxidation reaction. Normally, 80 to 98% of the carbon in the input coal reacts in the gas furnace IO, and the remaining unburned carbon is entrained in the produced gas and sent from the gasifier to cyclone 6, heat recovery boiler 7, and cyclone 6.
The gas is then sent to the gas purification section 9. On the other hand, 30 to 70% of the ash in the coal adheres to the refractory jfAl on the furnace wall, flows down in a molten state, falls from the slag tap hole 8, is rapidly cooled in the quench tank 75 at the bottom of the furnace, and is discharged as solidified slag 5A. be done. After the remaining ash is discharged from the furnace along with the gas, it is collected by the cyclone 6 and recycled to the gasifier 10 by the air flow of N2 gas.

反応条件としては、ガス化濃度1400〜2300“C
1圧力常圧〜1100at、供給酸素/供給石炭重量流
量比0.7〜1.0程度の範囲でほとんどすべての炉が
運転されている。
The reaction conditions include a gasification concentration of 1400 to 2300"C.
Almost all furnaces are operated in the range of 1 pressure normal pressure to 1100 at and a supply oxygen/supply coal weight flow ratio of about 0.7 to 1.0.

ガス火炉10の効率としては、冷ガス効率と石炭反応率
の2つが主なものであるが、下式のように定義される。
The two main efficiency factors of the gas furnace 10 are cold gas efficiency and coal reaction rate, which are defined as in the following equation.

石炭量×石炭発熱量 この2つの効率を向上させるには、極力、酸素量を低下
させ、かつガス化炉内での石炭反応率を上げ、ガス同伴
微粉中の炭素割合を低減する必要がある。酸素量を減少
すると冷ガス効率が上昇する関係を第2図により説明す
る。第2図はガス化炉の物質終始を示すもので、02を
減するとCO十H20量が減少し、CO+H2の割合が
増加する。すなわち冷ガス効率が上昇する。ただし02
を減すると石炭反応率が低下するため、02量がある一
定量以下になると冷ガス効率は低下するようになる。ま
た02量を減するに伴いガス化炉内温度が低下し、スラ
グタップから流出する灰分スラグの固化を生じるため、
これを防ぐためにもある一定量以上の02を供給する必
要がある。このような関係を考慮し、石炭の反応率を上
げる方法として、石炭供給バーナを2段として上段バー
ナの02量石炭比を0.4、下段バーナの02量石炭比
を1.2とし、下段のスラグタップ近傍の温度を高く保
ち、かつ粒子の滞留時間を増加させる方法が考えられて
いるが、この方法では」二部の02量石炭比が0.4と
低下するために、石炭量によっては上部ガス化温度が上
昇せず、スラグが流下せずに壁面に固着し、運転継続が
不能となる欠点があった。
Coal amount x Coal calorific value To improve these two efficiencies, it is necessary to reduce the amount of oxygen as much as possible, increase the coal reaction rate in the gasifier, and reduce the carbon percentage in the gas-entrained fine powder. . The relationship in which cold gas efficiency increases as the amount of oxygen decreases will be explained with reference to FIG. 2. FIG. 2 shows the material end-to-end of the gasifier, and as 02 is reduced, the amount of CO+H20 decreases and the ratio of CO+H2 increases. In other words, cold gas efficiency increases. However, 02
Since the coal reaction rate decreases when the amount of 02 is reduced, the cold gas efficiency begins to decrease when the amount of 02 becomes less than a certain amount. In addition, as the amount of 02 is reduced, the temperature inside the gasifier decreases, causing solidification of the ash slag flowing out from the slag tap.
In order to prevent this, it is necessary to supply more than a certain amount of 02. Considering this relationship, as a method to increase the reaction rate of coal, the coal supply burner is set in two stages, the 02 quantity coal ratio of the upper stage burner is 0.4, the 02 quantity coal ratio of the lower stage burner is 1.2, and the 02 quantity coal ratio of the lower stage burner is set to 1.2. A method has been considered in which the temperature near the slag tap is kept high and the residence time of particles is increased. However, the upper gasification temperature did not rise, and the slag did not flow down but stuck to the wall, making it impossible to continue operation.

本発明の目的は、石炭反応率および冷ガス効率が共に高
く、かつ灰分の固着トラブルの起きない石炭ガス化装置
を提供することにある。
An object of the present invention is to provide a coal gasification device that has both a high coal reaction rate and a high cold gas efficiency, and which does not cause ash fixation problems.

本発明は、ガス化炉に複数の石炭供給バーナを、多段に
、かつ火炉で旋回流を生じるように配置した石炭ガス化
装置において、−上段の石炭供給バーナの酸素供給ライ
ンに流量コントロールバルブを設け、ガス火炉内のスラ
グ付着状況に応じて上部バーナの酸素供給量を増減する
ようにしたことを特徴とする。
The present invention provides a coal gasifier in which a plurality of coal supply burners are arranged in a gasification furnace in multiple stages so as to generate a swirling flow in the furnace. The gas furnace is characterized in that the amount of oxygen supplied to the upper burner is increased or decreased depending on the state of slag adhesion within the gas furnace.

本発明において、ガス化炉内のスラグ11着状況に応じ
て上部バーナの酸素供給量を増減するには、石炭ガス化
炉の耐火壁の温度を測定し、該温度がスラグの固化温度
以上になるように上部バーナの酸素供給量を制御するこ
とが好ましい。また酸素供給の増減に伴うガス量および
石炭ガスの変動を吸収するためにバッファータンクを設
けることが好ましい。
In the present invention, in order to increase or decrease the amount of oxygen supplied to the upper burner according to the slag deposition status in the gasifier, the temperature of the refractory wall of the coal gasifier is measured, and the temperature is higher than the solidification temperature of the slag. It is preferable to control the amount of oxygen supplied to the upper burner so that Further, it is preferable to provide a buffer tank to absorb fluctuations in gas amount and coal gas due to increase/decrease in oxygen supply.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図は、本発明の一実施例を示す石炭ガス化装置の説
明図である。図において、第1図の装置と異なる点は、
炉の耐火壁に上下2段のバーナ3A、3Bを設げ、かっ
バーナ3A、3Bの石炭IM送シライン設けられた酸素
供給ラインにそれぞれ流量コントロールバルブ13.1
4を設け、該流量コントロールバルブに酸素/石炭比率
設定切替装置15とタイマー16を設け、バルブ13お
よび14から供給される酸素供給量が上下バーナ3A、
3Bで所定時間、所定の酸素/石炭比になるように交互
に切替可能にしたことである。なお、後流側のサイクロ
ン6はバッファータンク11に接続され、このバッファ
ータンク11は、前記コントロールバルブ13または1
4の切替時のガス火炉内のガス量変動を吸収するために
、石炭ガス火炉lOへ戻されるサイクロン捕集灰のリサ
イクルラインに連結されている。
FIG. 3 is an explanatory diagram of a coal gasification apparatus showing one embodiment of the present invention. In the figure, the differences from the device in Figure 1 are as follows:
Two stages of upper and lower burners 3A and 3B are installed on the fireproof wall of the furnace, and flow control valves 13.1 are installed in the oxygen supply lines provided with the coal IM feed lines of the burners 3A and 3B, respectively.
4 is provided, and the flow rate control valve is provided with an oxygen/coal ratio setting switching device 15 and a timer 16, so that the amount of oxygen supplied from the valves 13 and 14 is adjusted to the upper and lower burners 3A,
3B can be alternately switched to a predetermined oxygen/coal ratio for a predetermined period of time. Note that the cyclone 6 on the downstream side is connected to a buffer tank 11, and this buffer tank 11 is connected to the control valve 13 or 1.
In order to absorb changes in the amount of gas in the gas furnace at the time of switching, the cyclone-collected ash is connected to a recycling line for returning the cyclone-collected ash to the coal-gas furnace lO.

上記の構成において、微粉化された石炭は、二段旋回流
炉の上下2段のバーナ3A、3Bに1対エの割合で供給
される。この際、酸素は全石炭供給量に対し0.8の重
量割合で供給される。」二段バーナ3Bに0.4、下段
バーナ3Aに1.2で供給すると全石炭供給量に対する
酸素供給量は0.8になる。
In the above configuration, pulverized coal is supplied to the upper and lower burners 3A and 3B of the two-stage swirling flow furnace at a ratio of 1:E. At this time, oxygen is supplied at a weight ratio of 0.8 to the total amount of coal supplied. ” If 0.4 is supplied to the second stage burner 3B and 1.2 is supplied to the lower stage burner 3A, the amount of oxygen supplied to the total amount of coal supplied becomes 0.8.

太平洋炭を使用すると、この反応条件で例えば炭素反応
率93%、冷ガス効率70%が得られるが、このような
一定条件では上段の酸素量が0.4と少ないため、ガス
化温度が上昇せず、スラグの流下に支障をきたし、安定
運転ができな(なる。例えば下段バーナ付近ガス温度が
2200〜2300°Cのときに、上段バーナ付近ガス
温度は1500℃以下となり、このような条件下では、
例えば太平洋炭の場合、ガス温度が還元雰囲気下の灰の
流動点である約1400℃以下になり、そのため灰が炉
壁上で流動し難くなり、炉壁上への付着流が極端に大き
くなってバーナ閉塞、固化スラグ脱落によるスラグタッ
プホール閉塞等のトラブルを生 ゛じる。特にスケール
アップに伴い上下バーナ間の間隔が大きくなると、炉内
の温度分布が一様でなくなり、また下段バーナの影響を
上段バーナ部分が受けにくくなり、上段バーナ付近の温
度が一層低下する現象が認められた。
If Pacific coal is used, under these reaction conditions, for example, a carbon reaction rate of 93% and a cold gas efficiency of 70% can be obtained, but under these conditions, the amount of oxygen in the upper stage is as low as 0.4, so the gasification temperature increases. For example, when the gas temperature near the lower burner is 2200 to 2300°C, the gas temperature near the upper burner is 1500°C or less, and under such conditions Below,
For example, in the case of Pacific coal, the gas temperature is below the pour point of ash in a reducing atmosphere, approximately 1400°C, which makes it difficult for the ash to flow on the furnace wall, and the flow of adhesion onto the furnace wall becomes extremely large. This causes problems such as burner blockage and slag tap hole blockage due to solidified slag falling off. In particular, as the distance between the upper and lower burners increases with scale-up, the temperature distribution inside the furnace becomes uneven, and the upper burner becomes less susceptible to the effects of the lower burner, causing the temperature near the upper burner to drop further. Admitted.

本発明ではこれに対処するため、上段バーナの酸素/石
炭比を酸素供給量の多い下段バーナと周期的に切替え、
上段バーナでの石炭燃焼量を周期的に増加させることに
より、上段バーナ近辺の炉壁温度を周期的に増加させ、
該炉壁のスラグ堆積を防止するようにしている。第4図
は、このような操作方法の一例を示したもので、上段バ
ーナ付近は周期T2に対応する時間には1400°C程
度でガス化され、高効率のガス化反応が行われるが、周
期T+ に対応する時間には、2200〜2300℃で
ガス化され、周期T1 で何着堆積したスラグが溶融流
下される。このようにして上部バーナ付近における固化
スラグの付着成長が抑制される。
In order to deal with this, the present invention periodically switches the oxygen/coal ratio of the upper stage burner with that of the lower stage burner, which supplies a large amount of oxygen.
By periodically increasing the amount of coal burned in the upper burner, the furnace wall temperature near the upper burner is periodically increased.
This is to prevent slag accumulation on the furnace wall. FIG. 4 shows an example of such an operating method. The area near the upper burner is gasified at approximately 1400°C during the period corresponding to period T2, and a highly efficient gasification reaction is performed. At the time corresponding to the period T+, the slag is gasified at 2,200 to 2,300° C., and the slag deposited in the period T1 is melted and flowed down. In this way, the adhesion and growth of solidified slag in the vicinity of the upper burner is suppressed.

なお、操作条件の変更によるガス組成の変動を吸収でき
るように、炉のガスリザイクル系統に充分な容量のバツ
ファークンク11 (第3図)を設りることか望ましい
In addition, it is desirable to provide a buffer pump 11 (FIG. 3) of sufficient capacity in the gas recycle system of the furnace so as to absorb fluctuations in gas composition due to changes in operating conditions.

本発明の操作により、溶融スラグの排出量も周期的に変
動するようになるが、これは、むしろスラグ排出に好影
響を与えるものである。何故ならば、スラグがスラグタ
ップボールから流下する時は、ある一定の流下量以上の
量が確保されている方が、ヒートロスの割合が小さくな
り、またスラグタップ付近で再固化する恐れが少なくな
るからである。
Due to the operation of the present invention, the amount of molten slag discharged also changes periodically, which rather has a positive effect on the slag discharge. This is because when the slag flows down from the slag tap ball, if the flow rate is above a certain level, the rate of heat loss will be smaller and the risk of re-solidification near the slag tap will be reduced. It is from.

また第4図の操作方法において、炉壁の耐火材温度(第
3図の温度計12)の異常低下が検出された場合には、
上段バーナの酸素供給量が多くなるように、すなわち周
期T2 が長く (周期T1が短かく)なるように運転
することができる。このように、上段バーナ近傍の耐火
材温度がガススラグの付着堆積の許容温度以上になるよ
うに、上下段バーナの酸素/石炭比を周期的に切替え、
またはその周期を変化させることにより、スラグの固化
堆積によるトラブルを防止することができる。
In addition, in the operating method shown in Fig. 4, if an abnormal drop in the temperature of the refractory material on the furnace wall (thermometer 12 in Fig. 3) is detected,
It is possible to operate so that the amount of oxygen supplied to the upper burner increases, that is, the cycle T2 becomes longer (the cycle T1 becomes shorter). In this way, the oxygen/coal ratio of the upper and lower burners is periodically switched so that the temperature of the refractory material near the upper burner is higher than the allowable temperature for gas slag deposition.
Alternatively, by changing the period, troubles caused by solidification and accumulation of slag can be prevented.

第5図は、上段バーナの石炭/酸素比を耐火壁の温度に
応じて独立して変化させる場合の制御系統を示したもの
である。この装置系統は、上段バーす3B近傍の炉壁(
耐火壁)に設けられた温度検出器12と、これに連結さ
れた温度指示制御部23と、該制御部の指示によって酸
素供給量を決定する流量設定器24と、該流量設定器2
4からの信号によって上段バーナへ所定量の酸素を供給
する流量コントロールバルブ25と、該流量コントロー
ルバルブ25の流量が上記所定値になるようにフィール
ドバック制御する流量指示−調節計26とからなる。な
お、20は固化スラグ、21は流下スラグ、22は炉の
外胴シェル、25A、26Aはそれぞれ下段バーナ3A
に設け5られた流量コントロールバルブおよび流量指示
調節針である。
FIG. 5 shows a control system in which the coal/oxygen ratio of the upper stage burner is changed independently according to the temperature of the fireproof wall. This equipment system is installed on the furnace wall near the upper bar 3B (
a temperature detector 12 provided on a fireproof wall), a temperature instruction control unit 23 connected to the temperature detector 12, a flow rate setting device 24 that determines the oxygen supply amount according to instructions from the control unit, and the flow rate setting device 2.
The flow rate control valve 25 supplies a predetermined amount of oxygen to the upper stage burner in response to a signal from the flow rate control valve 25, and a flow rate indicator/controller 26 performs feedback control so that the flow rate of the flow rate control valve 25 becomes the predetermined value. In addition, 20 is a solidified slag, 21 is a flowing slag, 22 is an outer shell of the furnace, and 25A and 26A are each a lower stage burner 3A.
These are a flow rate control valve and a flow rate indicator adjustment needle provided at 5.

また第6図は、上段バーナ3B近傍の炉壁温度を検出端
12、温度指示計27で検出し、該温度が所定値以上に
なるように、流量設定器24、タイマー設定器10に接
続された流量コントロールバルブ25により上段バーナ
3Bの酸素供給量を制御するものである。
FIG. 6 also shows that the furnace wall temperature near the upper burner 3B is detected by the detection end 12 and the temperature indicator 27, and is connected to the flow rate setting device 24 and the timer setting device 10 so that the temperature becomes a predetermined value or higher. The flow rate control valve 25 controls the amount of oxygen supplied to the upper burner 3B.

第5図および第6図に示したように、上段バーナ3B近
傍の炉壁温度を検出し、該温度がスラグの固化堆積を生
じない所定温度以上に維持されるように、上段バーナ3
Bの石炭搬送ガス中の酸素量を独立して変化させるか、
またはタイマー設定によって酸素供給量を周期的もしく
は定期的に変化させることにより、炉壁上を流下するス
ラグの固化堆積によるトラブル防止することができる。
As shown in FIGS. 5 and 6, the temperature of the furnace wall near the upper burner 3B is detected, and the upper burner 3B
By independently changing the amount of oxygen in the coal carrier gas of B,
Alternatively, by changing the oxygen supply amount periodically or periodically by setting a timer, it is possible to prevent troubles caused by solidification and accumulation of slag flowing down on the furnace wall.

以上、本発明によれば、高い石炭反応率および冷ガス効
率を維持しつつ、灰分溶融物またはスラグの固着、堆積
等によるトラブルのない石炭ガス化装置を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a coal gasification apparatus that is free from troubles such as adhesion and accumulation of molten ash or slag while maintaining a high coal reaction rate and cold gas efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の噴流層石炭ガス化装置の説明図、第2
図は、石炭ガス化装置におけるガス化物質収支を説明す
るための概念図、第3図および第4図は、本発明の一実
施例を示す石炭ガス化装置およびその操作方法を示す説
明図、第5図および第6図は、それぞれ本発明における
上段バーナの。 石炭/酸素比を変化させるための制御装置系統を示す説
明図である。 3A・・・下段バーナ、3B・・・上段バーナ、6・・
・サイクロン、7・・・熱回収ボイラ、1o・・・ガス
化炉、11・・・バッファータンク、13.14・・・
酸素流量コンl−ロールバルブ、15・・・酸素/石炭
比率設定切替器、16・・・タイマー。 代理人 弁理士 川 北 武 長 第1図 b 第2図 −! 第3図 保抑 ! 第4図 第5図 乙 第6図 595−
Figure 1 is an explanatory diagram of a conventional spouted bed coal gasifier;
The figure is a conceptual diagram for explaining the balance of gasified materials in a coal gasifier, and FIGS. 3 and 4 are explanatory diagrams showing a coal gasifier and its operating method according to an embodiment of the present invention. FIG. 5 and FIG. 6 respectively show the upper stage burner according to the present invention. FIG. 2 is an explanatory diagram showing a control device system for changing the coal/oxygen ratio. 3A...lower burner, 3B...upper burner, 6...
・Cyclone, 7... Heat recovery boiler, 1o... Gasifier, 11... Buffer tank, 13.14...
Oxygen flow rate control l-roll valve, 15...Oxygen/coal ratio setting switch, 16...Timer. Agent Patent Attorney Takenaga Kawakita Figure 1b Figure 2 -! Figure 3: Preservation! Figure 4 Figure 5 Figure B Figure 6 595-

Claims (1)

【特許請求の範囲】 (1)ガス化炉に複数の石炭供給バーナを、多段に、か
つ火炉で旋回流を生じるように配置した石炭ガス化装置
において、上段の石炭供給ノ\−すの酸素供給ラインに
流量コントロールバルブを設け、ガス火炉内のスラグ付
着状況に応じて上部/Nl−すの酸素供給量を増減する
ようにしたことを特徴とする石炭ガス化装置。 (2、特許請求の範囲第1項において、石炭ガス火炉の
耐火壁の温度を測定し、その温度によって上部バーナの
酸素供給量を増減するようにしたことを特徴とする石炭
ガス化装置。 (3)特許請求の範囲第1項または第2項において、酸
素供給量の増減に伴うガス量および石炭ガス組成の変動
を吸収するためにノ\ツファータンクを設けたことを特
徴とする石炭ガス化装置。
[Scope of Claims] (1) In a coal gasifier in which a plurality of coal supply burners are arranged in a gasification furnace in multiple stages so as to generate a swirling flow in the furnace, the oxygen in the upper stage coal supply nozzle is A coal gasifier characterized in that a flow rate control valve is provided in the supply line to increase or decrease the amount of oxygen supplied to the upper part/Nl-gas according to the state of slag adhesion within the gas furnace. (2. A coal gasification apparatus according to claim 1, characterized in that the temperature of the fireproof wall of the coal gas furnace is measured, and the amount of oxygen supplied to the upper burner is increased or decreased depending on the temperature. ( 3) The coal gas according to claim 1 or 2, characterized in that a fuel tank is provided to absorb fluctuations in the gas amount and coal gas composition due to increases and decreases in the amount of oxygen supplied. conversion device.
JP13076883A 1983-07-20 1983-07-20 Coal gasification apparatus Pending JPS6023485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13076883A JPS6023485A (en) 1983-07-20 1983-07-20 Coal gasification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13076883A JPS6023485A (en) 1983-07-20 1983-07-20 Coal gasification apparatus

Publications (1)

Publication Number Publication Date
JPS6023485A true JPS6023485A (en) 1985-02-06

Family

ID=15042193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13076883A Pending JPS6023485A (en) 1983-07-20 1983-07-20 Coal gasification apparatus

Country Status (1)

Country Link
JP (1) JPS6023485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225165A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Method of gasifying coal
JPS62145310U (en) * 1986-03-10 1987-09-12

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225165A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Method of gasifying coal
JPH0331757B2 (en) * 1985-07-26 1991-05-08 Hitachi Ltd
JPS62145310U (en) * 1986-03-10 1987-09-12
JPH0512990Y2 (en) * 1986-03-10 1993-04-06

Similar Documents

Publication Publication Date Title
US4270740A (en) Apparatus for producing molten iron by submerged combustion
SU1438615A3 (en) Method and apparatus for producing moltem iron or steel semi-product
SU938747A3 (en) Process and apparatus for reducing iron oxide and producing molten crude iron
JPS5936195A (en) Method for gasifying coal in jetted stream bed
CS212734B2 (en) Method of simultaneous combined production of electric energy and raw iron
JPS638162B2 (en)
CN86101817A (en) Produce molten iron or steel process of semi-finished with granular iron-bearing materials
RU2133780C1 (en) Method of producing liquid iron or liquid steel semiproducts and plant for its embodiment
JPS6023485A (en) Coal gasification apparatus
JPS5858206A (en) Controlling method for temperature of reducing gas in production of pig iron
US6736876B1 (en) Fluidized bed breakage prevention system for fluidized bed reduction reactor and method
JPS57182395A (en) Apparatus for gasification of coal
KR100444277B1 (en) Method for making liquid metal
RU2170266C2 (en) Method of loading metal carriers into melting-and-gasifying apparatus and plant for realization of this method
CN206858499U (en) A kind of new fixed bed side slag tap structure
US4286775A (en) Apparatus for producing molten iron from iron oxide with coal and oxygen
RU2165984C2 (en) Method of charging metal carriers into melting-gasifying zone and plant for method embodiment
JP2916516B2 (en) Method for producing liquid metal from metal oxide fine particles and reduction smelting furnace for carrying out this method
JPH0678535B2 (en) Operation method of spouted bed type coal gasifier
JP2010163499A (en) Method for operating entrained-bed gasification furnace
JPH066709B2 (en) Coal gasifier
JPS63264696A (en) Operation control method of coal gasifier oven
AU769901B2 (en) Method for producing pig iron
CA2092216A1 (en) Waste melting furnace
JPH0931476A (en) Two stage jetting bed gasification furnace