JPS60234581A - Preparation of pullulanase - Google Patents

Preparation of pullulanase

Info

Publication number
JPS60234581A
JPS60234581A JP8850584A JP8850584A JPS60234581A JP S60234581 A JPS60234581 A JP S60234581A JP 8850584 A JP8850584 A JP 8850584A JP 8850584 A JP8850584 A JP 8850584A JP S60234581 A JPS60234581 A JP S60234581A
Authority
JP
Japan
Prior art keywords
pullulanase
strain
minutes
plasmid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8850584A
Other languages
Japanese (ja)
Other versions
JPH0120869B2 (en
Inventor
Yoshikatsu Murooka
室岡 義勝
Noboru Takizawa
昇 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8850584A priority Critical patent/JPS60234581A/en
Publication of JPS60234581A publication Critical patent/JPS60234581A/en
Publication of JPH0120869B2 publication Critical patent/JPH0120869B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To mass produce pullulanase safely, by cultivating a specific transformed bacterium belonging to the genus Klebsiella, collecting its product. CONSTITUTION:(i) Escherichia coli (e.g., strain C-600) is transformed with a plasmid integrated with a bacterium [e.g., Klebsiella aerogenes strain W70 (FERM-P 7575)] belonging to the genus Klebsiella, capable of producing pullunalase, then, (ii) the prepared Escherichia coli a recombinant plasmid capable of producing pullulanase is taken out, treated with a restriction enzyme and miniaturized. Then, (iii) the a bacterium (host) belonging to the genus Klebsiella is transformed with the low-molecular plasmid, it is cultivated at about 5-10pH at about 15-40 deg.C for about 1-15 days, and pullulanase produced from the concentrated culture solution is collected.

Description

【発明の詳細な説明】 本発明は遺伝子組換え技術により得られたクレープジュ
ラ(Klabsiella)属菌菌によりプルラナーゼ
を大量に生産する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pullulanase in large amounts using Klabsiella bacteria obtained by genetic recombination technology.

(利用分野) プルラナーゼは澱粉のα−1,6−グルコサイド結合を
切断するため、澱粉加工分野においてマルトース及びブ
ドウ糖の製造に有用な酵素である。
(Field of Application) Pullulanase is an enzyme useful in the production of maltose and glucose in the field of starch processing because it cleaves α-1,6-glucoside bonds in starch.

従来から工業上のプルシナ4ゼ産生菌としては酵素生産
性及び安全性の面からクレープジュラ・エアロゲネス(
−1帥1e11aaツ」μtes)が用いられてきた。
Traditionally, Crepe Dura aerogenes (Crepe dura aerogenes) has been used as an industrial Prusin 4ase-producing bacterium in terms of enzyme productivity and safety.
-1 帥1e11aaatsu"μtes) has been used.

しかしその酵素産生量は少なく、プルラナーゼは澱粉加
工用酵素としては比較的高価となり、その利用が制限さ
れていた。
However, the amount of enzyme produced is small, and pullulanase is relatively expensive as an enzyme for starch processing, limiting its use.

本発明によりプルラナーゼの大量供給が可能となり、澱
粉加工技術に大いに寄与することができる。
The present invention makes it possible to supply pullulanase in large quantities and can greatly contribute to starch processing technology.

(従来技術) 遺伝子組換え技術によるプルラナーゼ産生については、
バチルス属(Bacillus)細菌又はクレープシェ
ラ番ニューモニア(Klebsiella neumo
niaL)をDNA供与菌とし、λファージ及びプラス
ミドpACYC184等を介して、宿主としての大腸菌
にクローン化した例(特開昭56−128796 )が
みられる。
(Prior art) Regarding pullulanase production by genetic recombination technology,
Bacillus bacteria or Klebsiella neumo
There is an example (Japanese Unexamined Patent Application Publication No. 128796/1983) in which the DNA was cloned into E. coli as a host via λ phage, plasmid pACYC184, etc. using .niaL) as a DNA donor.

ところが、異種細菌内での外来遺伝物質の発現や増殖に
関しては、ヌクレアーゼ障壁、複製機構障壁、転写障壁
、翻訳障壁及びプロテアーゼ障壁等が存在するといわれ
、外来遺伝子の増幅量にみあった産物量が得られ難いも
のである。
However, it is said that there are nuclease barriers, replication mechanism barriers, transcription barriers, translation barriers, protease barriers, etc. regarding the expression and propagation of foreign genetic material within heterologous bacteria, and it is said that there are barriers such as nuclease barriers, replication mechanism barriers, translation barriers, protease barriers, etc. It is difficult to obtain.

(解決の手段) 本発明者らは上記各障壁を克服すべく鋭意研究を重ねた
結果、現在プルラナーゼの工業的製造に使用され、安全
性の面でも確認されているクレープシェラ・エアロゲネ
スをDNA供与菌及び宿主菌として使用すれば、プルラ
ナーゼの安全かつ大量生産が可能になることを見出し、
本発明を完成したものである。
(Means for Solving the Solution) As a result of intensive research to overcome each of the above-mentioned obstacles, the present inventors obtained DNA from Crepesciella aerogenes, which is currently used in the industrial production of pullulanase and whose safety has been confirmed. We discovered that pullulanase can be produced safely and in large quantities by using it as a fungus and a host bacterium.
This completes the present invention.

すなわち、DNA供与菌としてクレープジュラ属細菌を
用い、該菌株由来のプルラナーゼ産生遺伝情報を担うD
NAを、同じくクレープシェラ属細菌を宿主としてクロ
ーン化すると、プルラナーゼ産生遺伝情報を担うDNA
が増幅されて、DNA供与菌の産生レベルより明らかに
大量のプルラナーゼを産生させることができる。
That is, using a Crepe Dura bacterium as a DNA donor, D
When NA is cloned using a Crepsiella bacterium as a host, the DNA carrying the genetic information for pullulanase production is cloned.
can be amplified to produce a significantly larger amount of pullulanase than the production level of the DNA donor bacterium.

(発明の構成) 本発明に係るプルラナーゼ高産生菌株の造成は下記■〜
■の工程により行われる。
(Structure of the Invention) The production of the pullulanase high-producing bacterial strain according to the present invention is as follows.
This is carried out by the step (2).

■ DNA供与体である細菌より全DNAを抽出し、次
いで制限酵素により断片化する。
(2) Total DNA is extracted from the bacteria that is the DNA donor, and then fragmented with restriction enzymes.

■ ヘクターDNAを制限酵素により断片化し、その開
裂部位に■で得られたDNA断片を組込ませる。
(2) Fragment the hector DNA with a restriction enzyme, and incorporate the DNA fragment obtained in (2) into the cleavage site.

■ 組み換えプラスミドを大腸菌に形質転換させ、プル
ラナーゼ産生能を有するに至った大腸菌を選択する。
(2) Transform E. coli with the recombinant plasmid, and select E. coli that has the ability to produce pullulanase.

■ プルラナーゼ産生能を有する大腸菌より組み換え体
プラスミドを取出し、制限酵素により処理して小型化す
る。
(2) A recombinant plasmid is extracted from Escherichia coli capable of producing pullulanase and is reduced in size by treatment with restriction enzymes.

■ 低分子小型化プラスミドをクレープシェラ属細菌の
宿主株に形質転換し、高生産能をしする宿主菌をスクリ
ーニングする。
■ Transform the small-molecule miniaturized plasmid into a host strain of Crepsiella bacteria, and screen for host bacteria that exhibit high productivity.

本発明において使用されるプルラナーゼ産生情報を有す
るDNA供与体としてはプルラナーゼ産生能を有するク
レープジュラ属細菌、好ましくはクレープジュラ・エア
ロゲネス、より好ましくはクレープシェラ・エアロゲネ
スW70株(微工研菌寄託番号第7575号)が利用で
きる。全DNAの抽出は公知の方法(J、Marmur
+J、Mol、Biol、+ 3208(1961)で
行った。得られた全DNAを制限酵素で部分分解後、同
一制限酵素で分解されたプラスミドと組み換える。ここ
で用いられる制限酵素としては、BamHI 、Sal
 I + Hinder、Sma I 、 EcoRI
 、CIa I 、等が挙げられる。又、プラスミドと
してはp BR322及びその誘導体等の公知のものが
使用できる。
The DNA donor having pullulanase production information used in the present invention is a Crepe Jura bacterium capable of producing pullulanase, preferably Crepe Jura aerogenes, and more preferably Crepe Jura aerogenes strain W70 (Feikoken Deposit No. No. 7575) is available. Total DNA was extracted using a known method (J, Marmur
+J, Mol, Biol, +3208 (1961). The obtained total DNA is partially digested with restriction enzymes, and then recombined with a plasmid digested with the same restriction enzymes. Restriction enzymes used here include BamHI, Sal
I + Hinder, Sma I, EcoRI
, CIa I, and the like. Furthermore, known plasmids such as pBR322 and its derivatives can be used.

組み換え体プラスミドはその後大腸菌C−600株に常
法により形質転換され、転換株の中からプルラナーゼ産
生能を有する大腸菌株を選択する。
The recombinant plasmid is then transformed into E. coli strain C-600 by a conventional method, and E. coli strains capable of producing pullulanase are selected from among the transformed strains.

この大腸菌の選択分離は次のようにした。This selective isolation of E. coli was carried out as follows.

例えば、制限酵素にBamHIを用いた場合にはアンヒ
シリン含有シャーレ培地で生育するアンピシリン耐性コ
ロニーをプルラナーゼ検出培地にレプリカし、37℃で
2日間培養後、シャーレにエタノールを流し込み、2〜
4時間後にハローを形成するコロニーを分離した。
For example, when BamHI is used as the restriction enzyme, an ampicillin-resistant colony growing in an anhisillin-containing Petri dish medium is replicated on a pullulanase detection medium, and after culturing at 37°C for 2 days, ethanol is poured into the Petri dish, and 2-
Colonies forming a halo were isolated after 4 hours.

次いで、プルラナーゼ産生能を有する大腸菌株よりプル
ラナーゼ産生遺伝情報を担う組み換えプラスミドを抽出
し、更に制限酵素で部分分解し、小型化プラスミドを得
る。この小型化プラスミドを、宿主菌としてのクレープ
シェラ属細菌にカルシウム法で形質転換し高生産株を選
択した。宿主菌としては、プルラナーゼ産生能を有する
クレープジュラ属細菌、好ましくはクレープシェラ・エ
アロゲネス、より好ましくはクレープシェラ・エアロゲ
ネスW70株(微工研菌寄託番号第7575号)が利用
できる。
Next, a recombinant plasmid carrying pullulanase-producing genetic information is extracted from an Escherichia coli strain capable of producing pullulanase, and further partially digested with restriction enzymes to obtain a miniaturized plasmid. This miniaturized plasmid was transformed into a host bacterium of the genus Crepesciella using the calcium method, and a high-producing strain was selected. As the host bacterium, Crepesciella aerogenes strain having pullulanase-producing ability, preferably Crepesciella aerogenes, more preferably Crepesciella aerogenes strain W70 (Feikoken Bacteria Deposit No. 7575) can be used.

培養は通常の通気液体培養等の公知方法が適用でき、培
地には該微生物が資化しうる炭素源、窒素源、無機塩及
び必要に応じて微量栄養源が含まれる。特に炭素源とし
てプルラン及びマルトース、又窒素源としてグルタミン
酸を添加すれば酵素産生量が一段と向上する。培養pH
は5〜10、温度15〜40℃で1日〜15日間培養す
る。
For the culture, known methods such as ordinary aerated liquid culture can be applied, and the medium contains a carbon source, a nitrogen source, an inorganic salt, and, if necessary, a trace nutrient source that can be assimilated by the microorganism. In particular, if pullulan and maltose are added as a carbon source, and glutamic acid is added as a nitrogen source, the amount of enzyme production will be further improved. Culture pH
The cells are cultured for 5 to 10 days at a temperature of 15 to 40°C for 1 to 15 days.

かくして得られた培養物よりプルラナーゼを単離するに
は、培養物をホローファイハーカートリッジを装着した
限外濾過装置等で菌体外プルラナーゼと菌体とを同時に
濃縮し、その濃縮液を目的に応じて後処理に供すればよ
い。精製プルラナーゼ標品を得たい場合には、この濃縮
液を常法により菌体破砕処理に供し、遠心分離により得
られた上清を通常の蛋白精製法(塩析、吸着クロマトグ
ラフィー、ゲル濾過等)により純化する。又、菌体の形
で使用するには濃縮液から遠心集菌する。
To isolate pullulanase from the culture obtained in this way, the extracellular pullulanase and bacterial cells are simultaneously concentrated from the culture using an ultrafiltration device equipped with a hollow fiber cartridge, and the concentrated liquid is used for the purpose. It may be subjected to post-processing as appropriate. If you want to obtain a purified pullulanase sample, this concentrated solution is subjected to bacterial cell disruption treatment by a conventional method, and the supernatant obtained by centrifugation is subjected to a conventional protein purification method (salting out, adsorption chromatography, gel filtration, etc.). ) to purify. In addition, to use in the form of bacterial cells, collect the bacteria from the concentrate by centrifugation.

(効果) 本発明により得られたプルラナーゼ高生産株は、通常の
培養法により大量に培養され、その培養物からプルラナ
ーゼが単離される。組み換えプラスミドを含有しない兄
妹の培養物では、プルラナーゼは培養上清と菌体とにほ
ぼ同程度存在しているが、組み換えプラスミド含有株で
は、プルラナーゼは菌体内に偏在している。又、得られ
たクローン株は酵素レベルが弗素に高い(32〜110
倍)ため、酵素の分離精製が容易である。更に、長期に
わたり高い菌体活性が維持されるため、菌体の形態での
利用が可能であり、そのため、特に固定化菌体として澱
粉加工分野で連続反応に利用でき、工業上の価値が大き
い。
(Effects) The strain with high pullulanase production obtained by the present invention is cultured in large quantities by a conventional culture method, and pullulanase is isolated from the culture. In the brother-sister culture that does not contain the recombinant plasmid, pullulanase is present in the culture supernatant and in the bacterial cells to approximately the same extent, but in the strain that contains the recombinant plasmid, pullulanase is unevenly distributed within the bacterial cells. In addition, the obtained clone strain has enzyme levels higher than that of fluorine (32-110
(fold), it is easy to separate and purify the enzyme. Furthermore, since high bacterial cell activity is maintained over a long period of time, it can be used in the form of bacterial cells.Therefore, it can be used as an immobilized bacterial cell for continuous reactions in the starch processing field, and has great industrial value. .

(実施例 実施例中の%は重量%である。)+IJ K
、aは1朋旦邦−W2Oより全DNAの分離1晩LB培
地(1%ポリペプトン、0.5%酵母エキス、0.5%
食塩、pH7,2) 500m1で培養したLJy遼肛
旦邦−W2O株を遠心集菌後、Murmur法を一部改
良した方法で全DNAを分離した。すなわち、湿菌体3
gを20m1の5aline−EDTA (0,15M
 NaC1,0,IM E、DTA−Nat 、pH8
,0)で洗浄し、遠心集菌した。
(Example % in the example is weight %.)+IJ K
, a is 1. Isolation of total DNA from W2O overnight in LB medium (1% polypeptone, 0.5% yeast extract, 0.5%
After centrifuging the LJy Liaojiao Danbang-W2O strain cultured in 500 mL of sodium chloride, pH 7.2), total DNA was isolated using a partially modified version of the Murmur method. In other words, wet bacterial cells 3
g to 20ml of 5aline-EDTA (0,15M
NaCl, 0, IM E, DTA-Nat, pH 8
, 0) and centrifuged to collect bacteria.

これを24m1の5aline EDTAに再懸濁し、
リリチウム溶液(10n+g/ml 5aline−E
DTA) 1 mlを加え、32℃で30分振とうし溶
菌させた。これに1mlの25%SDS溶液を加え充分
に混合した後、6.75m1の5M過塩素酸ソーダ溶液
を加え均等になるように混合した。更に、33.8ml
のクロロホルム−イソアミルアルコール(24:1)を
加え、30分分間中かに振とうして除蛋白した。400
0 rpm、15分間の遠心により上層を得、この2倍
量の99%エタノールを徐々に加えながらガラス棒に沈
澱してくるDNAを巻きつけた。
This was resuspended in 24ml of 5aline EDTA,
Lylithium solution (10n+g/ml 5aline-E
1 ml of DTA) was added and shaken at 32°C for 30 minutes to lyse the bacteria. After adding 1 ml of 25% SDS solution to this and thoroughly mixing, 6.75 ml of 5M sodium perchlorate solution was added and mixed evenly. Furthermore, 33.8ml
of chloroform-isoamyl alcohol (24:1) was added, and the mixture was shaken gently for 30 minutes to remove protein. 400
An upper layer was obtained by centrifugation at 0 rpm for 15 minutes, and the precipitated DNA was wrapped around a glass rod while gradually adding twice the amount of 99% ethanol.

これを10m1のDNA緩衝液1 (Tris−11C
I 50mM、EDTA−Nat 10mM、 pH8
,0)に熔解し、0.2mlのRNAase溶液(2m
g/ml−水)を加え37℃で20分間振とうした。こ
れに等量のクロロホルム−イソアミルアルコールを加え
、20分間振とう後、遠心により水層を得た。この水層
に1n+1の3M酢酸ナトリウム溶液を加え、2倍量の
エタノールを加えDNAをガラス棒に巻きつけた。これ
を9mlのDNA緩衝緩衝液溶解後、1mlの訪酢酸ナ
トリウム溶液を加え、5.4 mlのイソプロパツール
を滴下しながらDNAをガラス棒に巻きつけた。これを
75%エタノールに一晩浸した後、2mlのDNA緩衝
緩衝液溶(Tris−IC110mM、EDT^−Na
c 1mM、pH7,5)に熔解し4℃で保存した。
This was mixed with 10ml of DNA buffer 1 (Tris-11C
I 50mM, EDTA-Nat 10mM, pH 8
, 0) and 0.2 ml of RNAase solution (2 m
g/ml of water) was added and shaken at 37°C for 20 minutes. To this was added an equal amount of chloroform-isoamyl alcohol, and after shaking for 20 minutes, an aqueous layer was obtained by centrifugation. To this aqueous layer was added 1n+1 3M sodium acetate solution, and twice the amount of ethanol was added, and the DNA was wound around a glass rod. After dissolving this in 9 ml of DNA buffer, 1 ml of sodium acetate solution was added, and the DNA was wound around a glass rod while dropping 5.4 ml of isopropanol. After soaking this in 75% ethanol overnight, 2 ml of DNA buffer solution (Tris-IC 110 mM, EDT^-Na
c 1mM, pH 7.5) and stored at 4°C.

(2)L赳脛銭皿5W70の全DNAの制限酵素処理(
11で得られたDNA溶液10μj2 (20Mg D
NA/ Itρ)に11.1m1l l Jll(]i
%i/肖(N++CI 500mM、■BSOa100
mM、ジチオスレイ1−−ル10+nM、Tris−H
CI 100mM。
(2) Restriction enzyme treatment of all DNA of L 5W70 (
10μj2 (20Mg D
NA/ Itρ) to 11.1ml l Jll(]i
%i/Port (N++CI 500mM, ■BSOa100
mM, dithiothrei 1--10+nM, Tris-H
CI 100mM.

pH7,4) 2 /Z I!、水3 /Z e及びB
am1l I 10 Uを加え、37℃で40分間分解
後65℃、10分間保温し、制限酵素を失活させた。
pH7,4) 2 /Z I! , water 3 /Z e and B
10 U of am1l I was added, and after decomposition at 37°C for 40 minutes, the mixture was incubated at 65°C for 10 minutes to inactivate the restriction enzyme.

これを10〜40%蔗糖密度勾配遠心法(32,00O
rpm、22時間)により分画腰5〜20KbのDNA
断片をiMだ。これらの分画はエタノール沈澱後、75
%エタノールで洗浄し、50μlのDNA緩fi液Hに
溶解後、OD2[J]で濃度を測定し、4℃で保存した
This was centrifuged using 10-40% sucrose density gradient centrifugation (32,000
5 to 20 Kb of DNA fractionated by rpm, 22 hours)
The fragment is iM. After ethanol precipitation, these fractions were
After washing with % ethanol and dissolving in 50 μl of DNA mild solution H, the concentration was measured using OD2[J] and stored at 4°C.

(3) ヘクタープラスミドpBR322の分離精製B
irnboim+H,C,and Doly、J、 (
Nucleic Ac1ds Re5earch、7.
1513 (1979) )の方法を改良して行った。
(3) Separation and purification B of Hector plasmid pBR322
irnboim+H, C, and Doly, J, (
Nucleic Ac1ds Research, 7.
1513 (1979)) was modified.

pBR322を保持するE、Co11 C600株を用
い、800 mlを37℃で1晩培養後、遠心集菌し、
10mMのリン酸緩衝液で洗浄後、2本の50m1遠心
管に入れ遠心集菌した。それぞれに10m1の溶液■ 
(グルコース50mM、Tris−IC125mM、 
EDTA Nat 10mM、 pH8,0)を加え懸
濁後50mgのリリチウムを添加し、混合後室温に5分
間静置した。これに20m1のfg液U (NaOHO
,2N、 SO51%)を混合して、氷上で10分間保
持した。その後15m1の酢酸カリウム溶液(5M、p
H4,8,0℃)を加え、充分に混合後再び氷上に置い
た。10分後15,000 rpm 、4℃で20分間
遠心し上清を得た。これに0.6容量のイソプロパツー
ルを加え、混合し室温で15分間静置した後15,00
Orpm 30分の遠心で沈澱を回収した。
Using the E.Co11 C600 strain carrying pBR322, 800 ml was cultured overnight at 37°C, and the cells were collected by centrifugation.
After washing with 10 mM phosphate buffer, the cells were placed in two 50 ml centrifuge tubes and centrifuged to collect bacteria. 10ml of solution in each■
(Glucose 50mM, Tris-IC 125mM,
EDTA Nat (10mM, pH 8.0) was added and suspended, then 50mg of lylithium was added, and after mixing, the mixture was allowed to stand at room temperature for 5 minutes. Add 20ml of fg liquid U (NaOHO
, 2N, SO 51%) and kept on ice for 10 minutes. Then 15 ml of potassium acetate solution (5M, p
H4, 8,0°C) was added thereto, and after thorough mixing, the mixture was placed on ice again. After 10 minutes, the mixture was centrifuged at 15,000 rpm and 4°C for 20 minutes to obtain a supernatant. Add 0.6 volumes of isopropanol to this, mix and leave to stand at room temperature for 15 minutes.
The precipitate was collected by centrifugation in Orpm for 30 minutes.

これを4mlのDNA緩衝緩衝液溶解後、6mlにメス
アップし、6.3gの塩化セシウム及び臭化ブロマイド
(l抛g/ml)を0.6ml加え垂直型ローターを用
いて39.00Orpm、 16時間遠心した。この密
度勾配遠心によりDNAは2本のバンドを示したが、下
側のプラスミドバンドを抜取り、5M食塩水で飽和した
イソプロパツールで脱色後、2倍量のDNA緩衝緩衝液
溶6倍量のエタノールを加えプラスミドを沈澱させ、1
2.00Orpm、 15分の遠心により回収した。こ
れを50μlのDNA緩衝緩衝液溶解後、0Dan値よ
り濃度を測定し、4℃で保存した。
After dissolving this in 4 ml of DNA buffer, the volume was increased to 6 ml, and 6.3 g of cesium chloride and 0.6 ml of bromide bromide (1 g/ml) were added, using a vertical rotor at 39.00 Orpm, 16 Centrifuged for hours. The DNA showed two bands by this density gradient centrifugation, but the lower plasmid band was extracted, and after decolorizing with isopropanol saturated with 5M saline, it was diluted with 2 times the amount of DNA buffer solution and 6 times the amount. Add ethanol to precipitate the plasmid,
It was collected by centrifugation at 2.00 rpm for 15 minutes. After dissolving this in 50 μl of DNA buffer, the concentration was measured from the 0Dan value and stored at 4°C.

(4) プラスミドの切断及び組み換えプラスミドの作
成 (3)で得られたプラスミド2μm2 、 BamHI
用板ih/&2 p (!、水16,1711 、 B
am1l I 5Uを混合し、37℃、60分間反応さ
せた後40μlの緩ih液■飽和−フエノールを加えて
反応を停止させた。遠心分離により水層を分離しエーテ
ル抽出により残存フェノールを除き、エタノール沈毅、
洗浄後、減圧乾燥した。これに(2)で得られたDNA
断片溶液の全量、水及びIigation緩衝液(66
0mM Tris−HCI、pH7,6,66mM塩化
マグネシウム、100mMジチオスレイトール、10m
M ATP)を加え全反応液を20m1とし、これに0
.5 UのT4リガーゼを加えて16℃で16時間反応
させた。この時、プラスミドとDNAのモル比が約1=
2となるようにした。
(4) Plasmid 2μm2 obtained in (3) by cutting the plasmid and creating a recombinant plasmid, BamHI
Board ih/&2p (!, water 16,1711, B
After mixing 5 U of am11 I and reacting at 37° C. for 60 minutes, 40 μl of slow induction liquid (saturated phenol) was added to stop the reaction. Separate the aqueous layer by centrifugation, remove residual phenol by ether extraction, ethanol precipitation,
After washing, it was dried under reduced pressure. Add to this the DNA obtained in (2)
Total volume of fragment solution, water and Iigation buffer (66
0mM Tris-HCI, pH 7, 6, 66mM magnesium chloride, 100mM dithiothreitol, 10m
M ATP) was added to bring the total reaction solution to 20 ml, and 0
.. 5 U of T4 ligase was added and reacted at 16°C for 16 hours. At this time, the molar ratio of plasmid and DNA is approximately 1=
I set it to 2.

f51 E、Co11 C600への形質転換及びプラ
スミド生産株の分離 ゛ LB培地で一晩培養したE、Co11 C600(へ諷
哀)0.4 mlを40m lのLB培地に添加し、1
00 klett unitsになるまで37℃で培養
した。これを氷水中で冷却した後、4000 rpm、
10分、2℃で遠心集菌後、冷カルシウム緩衝?& (
50111M塩化カルシウム、10+IIMTris−
HC1,pH7,2) 20m1に懸濁し、氷水上に3
0分間保持した。再び遠心集菌後、2I111の冷カル
シウム緩衝液に再懸濁した。60分間氷水中に保持した
後、この0.1mMに(4)で得られたりガーゼ反応液
20μlを加え、氷水中で20分間保持した後、40℃
2分間熱パルスを与えた。1mlのLB培地を加え37
℃で30分間保温し、その0.1mlづつに分けて全量
をLB−アンピシリン(100μg/ml)寒天平板に
広げ、37℃で1晩培養した。アンピシリン耐性を示す
形質転換株を選択培地(1%プルラン、0.5%マルト
ースを含む合成培地)にレプリカし、37℃で2日間培
養した後、平板上にエタノールを注入した。その結果コ
ロニーの周囲にハローを形成する株が得られた。この株
の保持するプラスミドをp pH17(17Kb)と名
付けた。
Transformation to f51 E, Co11 C600 and isolation of plasmid producing strain ゛Add 0.4 ml of E, Co11 C600 (sorry) that was cultured overnight in LB medium to 40 ml of LB medium,
The cells were cultured at 37°C until reaching 00 klett units. After cooling this in ice water, 4000 rpm,
After collecting bacteria by centrifugation at 2℃ for 10 minutes, cold calcium buffer? & (
50111M Calcium Chloride, 10+IIMTris-
HC1, pH 7, 2) Suspended in 20ml and diluted on ice water for 30 minutes.
It was held for 0 minutes. After collecting the cells by centrifugation again, they were resuspended in cold 2I111 calcium buffer. After keeping it in ice water for 60 minutes, add 20 μl of the gauze reaction solution obtained in (4) to this 0.1 mM, keep it in ice water for 20 minutes, and then incubate at 40°C.
A heat pulse was applied for 2 minutes. Add 1 ml of LB medium and
The mixture was kept at 30° C. for 30 minutes, divided into 0.1 ml portions, spread on LB-ampicillin (100 μg/ml) agar plates, and cultured overnight at 37° C. The transformed strain exhibiting ampicillin resistance was replicated onto a selective medium (synthetic medium containing 1% pullulan and 0.5% maltose), cultured at 37°C for 2 days, and then ethanol was injected onto the plate. As a result, we obtained a strain that formed a halo around the colony. The plasmid carried by this strain was named ppH17 (17Kb).

なお、合成培地の組成は次の通りである。The composition of the synthetic medium is as follows.

リン酸カリウムハソハー 50mM、 Ph7.2M 
g CI 2 ・6H200,01%NaC1O,00
1% F e C13・ 6H200,001%Mn Cl 
t ・ 4 H2O0,001%(NH4)2304 
0.2 % 寒天 1・5% (6) p 5P19及びp MP 1の作成p pH
17はpBR322以外に5つのBamHI断片を持っ
ていた。これを分離精製(BtBr−CsC1密度勾配
遠心)後BamHIで部分分解してIigatior+
L、2つの断片が欠失したプラスミドpPB174 (
14,7Kb)を得た。分離精製したp pH1741
μl1(4μg/、ujり水17.u#、Smal用緩
衝液(100mM Tris −11C1,pH8,0
,70mM MgC1z 、200mM KCI、70
mM 2−メルカプトエタノール)2μl及びSma 
I 10 Uを混合し、37℃で60分反応させ部分分
解後、フェノール処理、エーテル処理、エタノール沈澱
洗浄後+igation シ、(5)と同様にE、Co
11 C600に形質転換後、p f’B174より2
〜4Kb小型のプラスミドpSP19 (12,5Kb
)を得た。これをEcoRI (EcoRI緩衝液: 
LM Tris 1(C1p+17.5.70mM塩化
マグネシウム、500mM NaC1,70mM 2メ
ルカプトエタノール、0.1%牛血清アルブミン)及び
Xhol (Xhol緩衝液: 100mM Tris
 IIcI pH7,5+ 70mM塩化マグネシウム
、I M NaCl、 70mM 2メルカプトエタノ
ール)で切断後、Mung Bean Nucleas
e (緩ih液二0.3門酢酸ナトリウム緩ih液、P
H4,6、IM NaC1,10IIIM塩化亜鉛)0
.5Uでで37℃、15分間処理し、プラントエンドに
した後、フェノール処理、エーテル処理、エタノール沈
澱洗浄後1igatior+Lz、形質転換を行いEc
oRI −Xho Iの2.2 Kb欠失したプラスミ
ドpMPIを得た。・ (7)L匹阻眺吟5−W2Oへの形質転換に、at川用
μ毘s W7L\の形質転換はE、Co11の場合と同
様に行った。ただし、転換株の選択はアンピシリンを6
00μg /m14むLB寒天平板上で行い、37℃、
12時間で形成されたコロニーを分離した。
Potassium phosphate hasohar 50mM, Ph7.2M
g CI 2 ・6H200,01%NaC1O,00
1% Fe C13・6H200,001%MnCl
t 4 H2O0,001% (NH4) 2304
0.2% Agar 1.5% (6) Preparation of p5P19 and pMP1 p pH
No. 17 had five BamHI fragments in addition to pBR322. After separating and purifying this (BtBr-CsC1 density gradient centrifugation), it was partially decomposed with BamHI and Iigatior+
L, plasmid pPB174 with two fragments deleted (
14.7 Kb) was obtained. Separated and purified p pH1741
μl1 (4μg/, water 17.u#, Smal buffer (100mM Tris-11C1, pH8,0
, 70mM MgC1z, 200mM KCI, 70
2 μl of mM 2-mercaptoethanol) and Sma
10 U of I was mixed, reacted at 37°C for 60 minutes, partially decomposed, treated with phenol, treated with ether, washed with ethanol, and treated with E and Co in the same manner as in (5).
11 After transformation into C600, 2 from p f'B174
~4Kb small plasmid pSP19 (12,5Kb
) was obtained. This was mixed with EcoRI (EcoRI buffer:
LM Tris 1 (C1p+17.5.70mM magnesium chloride, 500mM NaCl, 70mM 2-mercaptoethanol, 0.1% bovine serum albumin) and Xhol (Xhol buffer: 100mM Tris
Mung Bean Nucleas
e (slow induction liquid 20.3 sodium acetate slow induction liquid, P
H4,6, IM NaC1,10IIIM zinc chloride) 0
.. After treatment with 5 U at 37°C for 15 minutes to obtain plant ends, phenol treatment, ether treatment, ethanol precipitation washing, 1igatior + Lz, transformation and Ec
A plasmid pMPI with a 2.2 Kb deletion of oRI-Xho I was obtained. - (7) Transformation of atkawa μbis W7L\ was carried out in the same manner as in the case of E and Co11 for transformation into L Kenchogin 5-W2O. However, when selecting convertible stocks, ampicillin is 6
00μg/m14 LB agar plate, 37℃,
Colonies formed in 12 hours were isolated.

(8)形質転換されたに、acμ4μ+es W2Oに
よるプルラナーゼの生産 (7)の条件で得られた形質転換株をプルラン、マルト
ース又はグルコースを炭素源とした合成培地(リン酸1
妥i蚤iンa 50mM、グルクミン酸ナトリウム0.
5 %、MgCl26 +120 0.01%、NaC
1,MnCIz 4H20、FeCl2 6H20、各
0.001 % (N H4)2 S Oto、2%、
炭素源 0.5%)5mlを入れた試験管で28℃、3
日間培養し、5000 rpm、15分間遠心して得ら
れた上清について、菌体外活性としてプルラナーゼ活性
を測定した。又、菌体は10mMリン酸緩(封液(pH
7,2)5 mlに懸濁し、超音波処理により得られた
抽出液について、菌体内活性としてプルラナーゼ活性を
測定した。これらの結果を第1表に示した。
(8) Production of pullulanase using acμ4μ+es W2O The transformed strain obtained under the conditions of (7) was grown in a synthetic medium (phosphoric acid 1
Compatibility: 50mM, sodium glucinate 0.
5%, MgCl26 +120 0.01%, NaC
1, MnCIz 4H20, FeCl2 6H20, each 0.001% (NH4)2SOto, 2%,
In a test tube containing 5 ml of carbon source (0.5%), heat at 28°C for 30 minutes.
The supernatant obtained by culturing for 1 day and centrifuging at 5000 rpm for 15 minutes was measured for pullulanase activity as extracellular activity. In addition, the bacterial cells were diluted with 10mM phosphoric acid (sealing solution (pH
7,2) Pullulanase activity was measured as the intracellular activity of the extract obtained by suspending the suspension in 5 ml and subjecting it to ultrasonication. These results are shown in Table 1.

なお、酵素活性の測定は1mlの酵素液と1mlの1%
プルラン溶液(0,1M酢酸緩衝液、pH5,5)の混
合液を40℃で反応させ、15分間に生成するアルデヒ
ド基をソモジー・ネルラン法により定量し、1分間に1
μmoleのアルデヒド基の生成をもってIUとした。
The enzyme activity was measured using 1 ml of enzyme solution and 1 ml of 1%
A mixture of pullulan solution (0.1 M acetate buffer, pH 5.5) was reacted at 40°C, and the aldehyde groups generated in 15 minutes were quantified by the Somogyi-Nerlan method.
The production of μmole of aldehyde groups was defined as IU.

更に、形質転換株の解析に用いる小スケールのプラスミ
ドの分離は大ス′ケールとほぼ同様にしてBirngo
im and Dolyの方法を改良して用いた。
Furthermore, isolation of small-scale plasmids used for analysis of transformed strains is performed using Birngo in much the same way as large-scale isolation.
A modification of the method of im and Doly was used.

すなわち、培養液の0.2 mlを遠心して得た菌体(
或いは1白金耳のコロニー)を4mg/mlのリリチウ
ムを含む100μlの溶液■に懸濁し、室温に5分間お
いた後200μlの溶液■を加え混合し、氷上に5分間
おいた。150μβの溶液■(酢酸ナトリウム5 M、
 pH4,8)を加え、更に氷上に5分間おいた後、1
2.00Orpmで5分間遠心した。これに500μp
のクロロホルム−イソアミルアルコールを加え混合後、
12.00Orpm5分間の遠心により上層を分離した
。これに800μβの99%エタノールを加え、DNA
を沈澱、遠心により回収後、70%エタノールで2回洗
浄した。このペレットに10倍濃度緩衝液、水及び制限
酵素を加え反応させた後、解析に用いた。
That is, the bacterial cells obtained by centrifuging 0.2 ml of the culture solution (
Alternatively, 1 platinum loop of colony) was suspended in 100 μl of solution (2) containing 4 mg/ml lylithium, and after being left at room temperature for 5 minutes, 200 μl of solution (2) was added, mixed, and placed on ice for 5 minutes. 150μβ solution ■ (sodium acetate 5M,
After adding pH 4,8) and leaving it on ice for 5 minutes,
Centrifugation was performed at 2.00 rpm for 5 minutes. 500μp for this
After adding and mixing chloroform-isoamyl alcohol,
The upper layer was separated by centrifugation at 12.00 rpm for 5 minutes. Add 800μβ of 99% ethanol to this, and add DNA
was precipitated, collected by centrifugation, and washed twice with 70% ethanol. A 10-fold concentrated buffer solution, water, and a restriction enzyme were added to this pellet to cause a reaction, and then used for analysis.

第 1 表Table 1

Claims (3)

【特許請求の範囲】[Claims] (1) クレープシェラ(Klebsiella)属菌
菌由来のプルラナーゼ産生遺伝情報を担うDNAを組み
込んだプラスミドを含有するクレープジュラ属細菌を培
養し、プルラナーゼを取得するプルラナーゼの製造法。
(1) A method for producing pullulanase, which involves culturing a Klebsiella bacterium containing a plasmid incorporating DNA carrying pullulanase-producing genetic information derived from a Klebsiella bacterium to obtain pullulanase.
(2) クレープシェラ(Klebsiella)属菌
菌がクレープシェラ・エアロゲネス(Klebsiel
la aero en町)である特許請求の範囲第1項
記載のプルラナーゼの製造法。
(2) Bacteria of the genus Klebsiella are known as Klebsiel aerogenes.
1. The method for producing pullulanase according to claim 1.
(3) クレープシェラ・エアロゲネス(Klebsi
el la」肛」e n e s )がクレープジュラ
・エアロゲネス(U畦11ハ」肛」且叶)wio株であ
る特許請求の範囲第2項記載のプルラナーゼの製造法。
(3) Klebsiella aerogenes (Klebsi
3. The method for producing pullulanase according to claim 2, wherein the strain is Crepe Jura aerogenes (U-11ha'an' and leaves) wio strain.
JP8850584A 1984-05-04 1984-05-04 Preparation of pullulanase Granted JPS60234581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8850584A JPS60234581A (en) 1984-05-04 1984-05-04 Preparation of pullulanase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8850584A JPS60234581A (en) 1984-05-04 1984-05-04 Preparation of pullulanase

Publications (2)

Publication Number Publication Date
JPS60234581A true JPS60234581A (en) 1985-11-21
JPH0120869B2 JPH0120869B2 (en) 1989-04-18

Family

ID=13944678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8850584A Granted JPS60234581A (en) 1984-05-04 1984-05-04 Preparation of pullulanase

Country Status (1)

Country Link
JP (1) JPS60234581A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128796A (en) * 1980-02-15 1981-10-08 Cpc International Inc Genetically transformed microbe for mass production of amylolytic enzyme and its prescription

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128796A (en) * 1980-02-15 1981-10-08 Cpc International Inc Genetically transformed microbe for mass production of amylolytic enzyme and its prescription

Also Published As

Publication number Publication date
JPH0120869B2 (en) 1989-04-18

Similar Documents

Publication Publication Date Title
JPH01503036A (en) Expression of cloned lysostaphin gene
US4348478A (en) Method for preparation of a recombinant DNA phage
Kato et al. Extracellular production of Bacillus penicillinase by Escherichia coli carrying pEAP2
US4532211A (en) Coliform bacillus having a gene for the production of staphylokinase and a process for production of staphylokinase therewith
JPS60234581A (en) Preparation of pullulanase
JPH062061B2 (en) Process for producing N-acetylneuraminic acid lyase
JPS6030679A (en) Preparation of s-adenosyl-l-homocysteine hydrolase
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
JPS61181374A (en) Production of neutral protease
JPH02167084A (en) Production of pvui restricted endonuclease
JPS6140789A (en) Novel restriction enzyme and preparation thereof
JP2833793B2 (en) Plasmid encoding heparinase, heparinase-producing strain carrying this plasmid, and method for producing heparinase
JPS61205484A (en) Novel plasmid
FR2464998A1 (en) NEW PLASMID AND USE THEREOF FOR MODIFYING E. COLI STRAIN
JPH02286077A (en) Bacillus-s-p, dna fragment containing l-lactic acid dehydrogenase gene, gene recombinant plasmid containing the same gene, l-lactic acid dehydrogenase gene and gene recombinant plasmid containing the same gene
JPH03139283A (en) Dta gene and its use
JPS61280282A (en) Recombinant vector and microorganism containing same
JPS5863387A (en) Preparation of restriction enzyme
JPH01101886A (en) Production of novel recombinant dna and alkaline protease
JPS62122584A (en) Production of n-acylneuraminic aldolase
JPS61132183A (en) Production of cyclodextrin glucanotransferease
JPH03112484A (en) Novel restriction enzyme and its production
JPH02261384A (en) Dna fragment, heat-resistant endo-type cellulase and its production
JPS6030512B2 (en) Preparation method of restriction endonuclease
JPH02456A (en) Dna fragment having genetic information on penicillin acylase production