JPS60234458A - Damper shield of superconductive rotor - Google Patents

Damper shield of superconductive rotor

Info

Publication number
JPS60234458A
JPS60234458A JP59088420A JP8842084A JPS60234458A JP S60234458 A JPS60234458 A JP S60234458A JP 59088420 A JP59088420 A JP 59088420A JP 8842084 A JP8842084 A JP 8842084A JP S60234458 A JPS60234458 A JP S60234458A
Authority
JP
Japan
Prior art keywords
damper
shape
shield
cylinders
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59088420A
Other languages
Japanese (ja)
Inventor
Tadashi Tokumasu
正 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59088420A priority Critical patent/JPS60234458A/en
Publication of JPS60234458A publication Critical patent/JPS60234458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To prevent a normal temperature damper and both inner and outer holding cylinders from displacing strongly even when a defect of generating an external variation magnetic field by forming the cross sectional shape of the both inner and outer surfaces of the damper in noncircular shape and matching the contacting surface shape of the both cylinders thereto. CONSTITUTION:A normal temperature damper 1 made of good conductive material is formed on the inner and outer peripheral surfaces in noncircular regular dodecagonal shape. Holding cylinders 2, 3 are rigidly secured to the inner and outer sides of the damper 1. Thus, the inner and outer cylinders 2, 3 are formed in noncircular regular dodecagonal shape to construct a damper shield. The shield is constructed in the outer periphery of a superconductive rotor to coat the superconductive field winding. Thus, if a defect occurs at the external variation magnetic field, a shearing force is generated at the damper 1, but since the damper is formed in a polygonal shape, it is pressed by the shearing force to the cylinder 2 to prevent the damper 1 from moving by the reaction and the frictional force.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は発電機や調和機のような大容邦°回転電機に用
いられる超電導同転子のダンパーシールドの改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement of a damper shield of a superconducting trochanter used in a large-capacity domestic rotating electrical machine such as a generator or a harmonic generator.

[発明の技術的背景とその問題点] 九近、超電導界磁巻線を回転子に設けた大容景回転電様
が開発さノtてきている。超電導界磁巻線1はその超電
導性を維持するために液体ヘリウム温度に冷却し、かつ
、外部の変動磁界の影響から隔離しなければならない。
[Technical background of the invention and its problems] A large-scale rotary electric motor in which a rotor is provided with a superconducting field winding has been developed. The superconducting field winding 1 must be cooled to liquid helium temperature and isolated from the influence of external fluctuating magnetic fields in order to maintain its superconductivity.

外部の変動磁界の発生する最も大きい原因は、発電機の
負荷P、1の三411短絡車故である。このような場合
にも超電導界磁巻線(:変動磁界が影響を及はさないよ
うに、−餉、専売磁巻線の外側を覆う銅の様な良導電性
材の筒状の常温ダンパーを回転子に配設し、変動磁界に
より常温ダンパー表面に発生する渦電流による反発磁界
により変動磁界と相殺させ、超電導界磁巻線への外部変
動磁界の影響なほぼ完全に除去しようとしている。この
ような構造の回転子を超電導回転子という。
The largest cause of the external fluctuating magnetic field is the generator load P, 1, 3411 short-circuited vehicle fault. In such cases, a cylindrical room temperature damper made of a highly conductive material such as copper is used to cover the outside of the superconducting field winding (proprietary) so that the fluctuating magnetic field does not affect the superconducting field winding. is placed on the rotor, and the repulsive magnetic field generated by the eddy current generated on the surface of the room-temperature damper due to the fluctuating magnetic field cancels out the fluctuating magnetic field, thereby almost completely eliminating the influence of the external fluctuating magnetic field on the superconducting field winding. A rotor with such a structure is called a superconducting rotor.

ところが、上記の常温ダンパーは材質が銅の様な耐力の
低いものであるため、回転時の遠心力や、外部変動磁界
発生時に常温ダンパーに作用する外力に対抗するには強
度が不十分である。そこでこれを補うために、従来は常
温ダンパーを円筒状に製作すると共に、耐力の大きなス
テンレス鋼やインコネル等の円筒状保持筒で内外径側か
ら挾み込む3層円愉構造のダンパーシールドにして超電
導回転子に用いていた。
However, since the above-mentioned room-temperature damper is made of a material with low yield strength such as copper, its strength is insufficient to withstand the centrifugal force during rotation and the external force that acts on the room-temperature damper when an external fluctuating magnetic field is generated. . To compensate for this, in the past, normal temperature dampers were manufactured in a cylindrical shape, and a damper shield with a three-layer structure was used, which was sandwiched from the inner and outer diameter sides by a cylindrical holding tube made of stainless steel or Inconel, which had a high yield strength. It was used in superconducting rotors.

外部変動磁界発生事故時には、常温ダンパーと保持筒と
の1iAjに大きな剪断力が発生する。このため、特に
内側保持筒の画きに対して常温ダンパーがずtLると、
その跨間に冨碍ダンパーの渦電流が減少し、外部変動磁
界が界磁巻線に到達し、超電導状態を崩し、常電香状態
に転移するところの、いわゆるクエンチを発生する。従
って3者11のずれを防止することが必要である。
In the event of an external fluctuating magnetic field generation accident, a large shearing force is generated at 1iAj between the room temperature damper and the holding cylinder. For this reason, especially if the room temperature damper is not applied to the stroke of the inner holding cylinder,
In between, the eddy current in the power damper decreases, and the external fluctuating magnetic field reaches the field winding, causing a so-called quench, where the superconducting state is broken and the superconducting state is transferred to the normal state. Therefore, it is necessary to prevent the three members 11 from shifting.

しかるに前記したように従来のダンパーシールドは円筒
の3層構造であるので、焼きばめ、及び冷しばめにて3
者間の密着力を得て、ずれを防止しようとしていた。即
ち、まず内側保持筒を冷却し、常温ダンパーを加熱して
はめ合せた後に、外側保持筒を同様手段にてはめ合せる
が、全体の軸方向の長さが長く、3者間の密着力を大に
維持することが困難であった。しかも前記事故時に常温
ダンパーに発生する渦電流は常温ダンパー自身の温度を
上昇し、熱膨張により、内側保持筒との密着力を減少さ
せる。従って常温ダンパーと内外両側保持筒とのずれを
強力に防止できるダンパーシールドが要望さハていた。
However, as mentioned above, the conventional damper shield has a cylindrical three-layer structure, so it can be shrink-fitted and cold-fitted.
The aim was to obtain close contact between the two and prevent misalignment. That is, first, the inner holding cylinder is cooled and the normal temperature damper is heated and fitted together, and then the outer holding cylinder is fitted in the same manner, but the overall length in the axial direction is long and the adhesion between the three is It was difficult to maintain large numbers. Moreover, the eddy current generated in the room-temperature damper during the accident increases the temperature of the room-temperature damper itself, and due to thermal expansion, reduces the adhesion force with the inner holding cylinder. Therefore, there has been a need for a damper shield that can strongly prevent misalignment between the room-temperature damper and the inner and outer holding cylinders.

[発明の目的] 本発明は外部変動磁界発生事故時にも常温ダンパーと内
外両側保持筒とのずれを強力に防止できる超電導回転子
のダンパーシールドを提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a damper shield for a superconducting rotor that can strongly prevent misalignment between the room temperature damper and the inner and outer holding cylinders even in the event of an accident in which an externally fluctuating magnetic field is generated.

[発明の概要] 本発明においては、超電導界磁巻線を榎う良導電性材か
ら成る筒状の常温ダンパーの内外両側に筒状の保持筒を
配設した超電導回転子のダンパーシールドにおいて、常
温ダンパーの内外両面の横断面形状を非円形にし、これ
に両保持筒の当接面形状を合せることにより、形状抵抗
的に剪断力に対する抵抗力を犬にするものである。
[Summary of the Invention] The present invention provides a damper shield for a superconducting rotor in which cylindrical holding cylinders are arranged on both the inside and outside of a cylindrical room-temperature damper made of a highly conductive material that encloses superconducting field windings. By making the cross-sectional shape of both the inner and outer surfaces of the room-temperature damper non-circular and matching the shape of the contact surfaces of both holding cylinders with this, the resistance to shearing force is increased in terms of shape resistance.

[発明の実施例] 以下、本発明の一実施例について、第1図および第2図
を参照して説明する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図はこの実施例のダンパーシールドの斜視図、第2
図は第1図の側面図を示す。(1)は常温ダンパーであ
って、内外周面とも、横断面は正12角形にしである。
Figure 1 is a perspective view of the damper shield of this embodiment, and Figure 2 is a perspective view of the damper shield of this embodiment.
The figure shows a side view of FIG. (1) is a normal temperature damper, and the cross section of both the inner and outer peripheral surfaces is a regular dodecagon.

(2)は内側保持筒であって内周面の横断面は円形、外
周1mの横断面は常温ダンパー(1)の内周面に合せた
形状にしである。(31は外側保持筒で必って外周面の
横断面は円形、内周向の横断面は常温ダンパー(1)の
外周面に合せた形状にしである。常温ダンパー(1)の
材料は銅を使用し、両側保持1m +、2) + (S
lの材料はステンレス鋼を使用する。
(2) is an inner holding cylinder, and the cross section of the inner circumferential surface is circular, and the cross section of the outer circumference of 1 m is shaped to match the inner circumferential surface of the normal temperature damper (1). (The outer holding cylinder 31 has a circular cross section on its outer circumference, and a cross section on the inner circumference that matches the outer circumference of the room-temperature damper (1). The material of the room-temperature damper (1) is copper. and hold both sides 1m +, 2) + (S
The material used is stainless steel.

尚、第1図および第2凶において、常温ダンパー(1)
に#′jニアj/+線を施して示しであるが、これは両
側の保持筒(2)、(8)との区別を明瞭にしたもので
あって、断面表示ではない。そして、このダンパーシー
ルドは超電導回転子の外周部を構成し、超電導界磁巻線
(図示せず)を核うものである。
In addition, in Figures 1 and 2, the room temperature damper (1)
The #'j near j/+ line is added to make the distinction between the holding cylinders (2) and (8) on both sides clear, and this is not a cross-sectional representation. This damper shield constitutes the outer circumferential portion of the superconducting rotor and encloses a superconducting field winding (not shown).

次に作用について説明する。Next, the effect will be explained.

超電導回転子の外周を形成したダンパーシールドの回転
中に、外部変動磁界発生事故が生ずると、第3図に示す
ように、常温ダンパー(1)に剪断力(4)が発生する
。常温ダンパー(1)と内側保持筒(2)との接合面の
横断面形状は多角形であるから、剪断力(4)により常
温ダンパー(1)は内側保持筒(2)に押し付けられる
ことになる。このため常温ダンパー (11には、内側
保持筒(幻からの反力(6)と摩擦力(6)が働き、勇
断力(4)に対抗して常温ダンパー(1)の移動を防止
する。このように、剪断力(4)により常壽ダンパー(
1)が内仙j保持筒(2)に押し付けられる作用がある
ため、本実施例では、常温ダンパー(1)を強固に支持
することかり能であり、従来のように3重円筒の焼きは
め、冷しはめにより、常温ダンパーと両側保持筒とを強
固に密着させて支持しようとする必要もなくなり、簡単
な焼きばめだけで済ませるか、又はそのような作業を廃
止でき、製作も容易となる。
If an external fluctuating magnetic field generation accident occurs during rotation of the damper shield forming the outer periphery of the superconducting rotor, a shearing force (4) is generated in the room temperature damper (1) as shown in FIG. Since the cross-sectional shape of the joint surface between the room temperature damper (1) and the inner holding cylinder (2) is polygonal, the room temperature damper (1) is pressed against the inner holding cylinder (2) by the shear force (4). Become. Therefore, the reaction force (6) from the inner holding cylinder (phantom) and the frictional force (6) act on the room temperature damper (11), and prevent the room temperature damper (1) from moving against the shearing force (4). In this way, the shear force (4) causes the Tsunehisa damper (
1) is pressed against the inner cylinder holding cylinder (2), in this embodiment, it is possible to firmly support the normal temperature damper (1), and it is possible to avoid shrink fitting of the triple cylinder as in the conventional case. By cold fitting, there is no need to try to tightly support the room temperature damper and the holding tubes on both sides, and it is possible to do it with a simple shrink fitting or eliminate such work, and it is easy to manufacture. Become.

また、外部変動磁界発生事故時には、外側保持筒(81
にも#1電流が発生し、剪断力が働くが、常温ダンパー
(1)と外側保持筒(3(との間にも上記と同様な力が
働くため、外側保持筒(8)が常温ダンパー(1)に押
し付けられ、この力によって常温ダンパー(1)は更に
強く内側保持筒(2)に押し付けられ、一層安全性を増
すことになる。
In addition, in the event of an external fluctuating magnetic field accident, the outer holding cylinder (81
The #1 current is generated in (1), and this force forces the room temperature damper (1) even more strongly against the inner holding cylinder (2), further increasing safety.

第4図に他の実施例の要部を示す。FIG. 4 shows the main parts of another embodiment.

これは常温ダンパー(1)は周方向に初数に分割し、分
割辺(1a)の周方向端部は隣接するもの同志互いに半
径方向に重ね合う重ね合せ部(7)を設(ハ)だもので
、他は第1図および第2図に示した実施例と同様である
This is because the normal temperature damper (1) is divided into an initial number of parts in the circumferential direction, and the circumferential end of the divided side (1a) is provided with an overlapping part (7) where adjacent dampers overlap each other in the radial direction (c). The rest is the same as the embodiment shown in FIGS. 1 and 2.

このようにすると、内側保持筒(2)と外側保持筒(3
)の間へ、逐次分割片(la)を軸方向から挿入して組
立てることができるので、焼きばめ、冷しばめ作業を完
全に廃止することができる。そして隣接する分割片(l
a)、 (la)同志は、重ね合せ部(7) 、 (7
)が遠心力で強固に接触するため、電気的特性は一体の
常温ダンパー (1)と同様になり、第1図および第2
図に示した実施例と同様の作用効果が得られる0 尚、本発明は上記し、かつ図面に示した実施例のみに限
定されるものではなく、例えば、常温ダンパー(1)と
両側の保持筒(2)、(8)との接合面の断面形状が多
角形でなくしても非円形であればよい等、その要旨を変
更しない範囲で、種々変形して実施できることは勿論で
ある。
In this way, the inner holding cylinder (2) and the outer holding cylinder (3)
) can be assembled by sequentially inserting the divided pieces (la) from the axial direction, so shrink fitting and cold fitting operations can be completely eliminated. And the adjacent segment (l
a), (la) Comrades are overlapping parts (7), (7
) are firmly in contact with each other due to centrifugal force, so the electrical characteristics are similar to those of the integrated room temperature damper (1), and as shown in Figures 1 and 2.
The same effects as the embodiment shown in the drawings can be obtained.The present invention is not limited to the embodiments described above and shown in the drawings. Of course, various modifications can be made without changing the gist thereof, such as the cross-sectional shape of the joint surface with the tubes (2) and (8) need not be polygonal but may be non-circular.

[発明の効果] 以上説明したように、本発明によれば、外部変動磁界発
生事故時に常温ダンパーが内側保持筒に押し付けられる
ようにしたので、内側保持環からの反力と摩擦力が発生
して剪断力に対抗し、常温ダンパーが周方向に移動する
のを防止できる。そのため、従来行なっていた三重筒の
焼きばめ、冷しばめという困難な作業を軽減又は廃止で
きて、製作容易でかつ十分強固な信頼性の高い超電導回
転子のダンパーシールドを提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the room temperature damper is pressed against the inner holding cylinder in the event of an external fluctuating magnetic field generation accident, so that reaction force and frictional force from the inner holding ring are not generated. This can counter the shearing force and prevent the room temperature damper from moving in the circumferential direction. Therefore, it is possible to reduce or eliminate the conventionally difficult work of shrink fitting and cold fitting of triple tubes, and to provide a damper shield for a superconducting rotor that is easy to manufacture, sufficiently strong, and highly reliable. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導回転子のダンパーシールドの一
実施例を示す斜視図、第2図は第1図の側面図、第3図
は第1図の実施例の作用¥すj明するための説明図、第
4図は他の実施例を示す要部側面図。 1・・常温ダンパー 18・・分割片 2・・・内側保持筒 3・・・外側保持筒7・・・重ね
合せ部 代理人 弁理士 井 上 −男 第 1 図 第 2 図 第 3 図 1 第 4 図
Fig. 1 is a perspective view showing an embodiment of the damper shield of a superconducting rotor of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 illustrates the operation of the embodiment of Fig. 1. FIG. 4 is a side view of a main part showing another embodiment. 1... Normal temperature damper 18... Divided piece 2... Inner holding cylinder 3... Outer holding cylinder 7... Overlapping section agent Patent attorney Mr. Inoue No. 1 Fig. 2 Fig. 3 Fig. 1 No. 4 Figure

Claims (1)

【特許請求の範囲】 (1)超電導界磁巻線を参う良導電性材から成る筒状の
常温ダンパーの内外両側に筒状の保持筒を配設した超電
導回転子のダンパーシールド(二おいて、常温ダンパー
の内外両面の横断面形状を非円形にし、これに両保持筒
の当接面形状を合せたことを%徴とする超電導回転子の
ダンノく−シールド。 (2)非円形は多角形としたことを特徴とする特許請求
の範囲第1項記載の超電導回転子のダンノ(−シールド
。 (8) 常温ダンパーは周方向(二複数;二分割し、分
割片の周方向端部は@接するもの同志互いに半径方向(
二重ね合う重ね合せ都を設けたことを特徴とする特許請
求の範囲第1項又は第2項記載のMi電導回転子のダン
パーシールド。
[Scope of Claims] (1) A damper shield for a superconducting rotor (two or more (2) The non-circular shape of the superconducting rotor is characterized by the fact that the cross-sectional shape of both the inner and outer surfaces of the room-temperature damper is non-circular, and the shape of the contact surfaces of both holding cylinders is matched to this shape. A superconducting rotor (-shield) according to claim 1, characterized in that the damper has a polygonal shape. are in contact with each other in the radial direction (
A damper shield for a Mi conductive rotor according to claim 1 or 2, characterized in that two overlapping capitals are provided.
JP59088420A 1984-05-04 1984-05-04 Damper shield of superconductive rotor Pending JPS60234458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088420A JPS60234458A (en) 1984-05-04 1984-05-04 Damper shield of superconductive rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088420A JPS60234458A (en) 1984-05-04 1984-05-04 Damper shield of superconductive rotor

Publications (1)

Publication Number Publication Date
JPS60234458A true JPS60234458A (en) 1985-11-21

Family

ID=13942288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088420A Pending JPS60234458A (en) 1984-05-04 1984-05-04 Damper shield of superconductive rotor

Country Status (1)

Country Link
JP (1) JPS60234458A (en)

Similar Documents

Publication Publication Date Title
US4171494A (en) Electric rotary machine having superconducting rotor
EP2064799B1 (en) Torque tube assembly for superconducting rotating machines
US4076988A (en) Superconducting dynamoelectric machine having a liquid metal shield
US5113114A (en) Multilam or belleville spring contact for retaining rings on dynamoelectric machine
US4431932A (en) Advanced spiral pancake armature for a dynamoelectric machine
US4430589A (en) Rotor of a superconductive rotary electric machine
JPS6118349A (en) Rotor of superconductive rotary electric machine
GB2103887A (en) A rotor of a superconductive rotary electric machine
US4443722A (en) Rotor of a superconductive rotary electric machine
JPS60234458A (en) Damper shield of superconductive rotor
US4042846A (en) Unitary supporting structure for superconducting field assembly
US4442369A (en) Rotor of a superconductive rotary electric machine
US3469309A (en) Method of manufacturing squirrel-cage rotor
JP5016393B2 (en) Superconducting rotating electrical machine rotor
US4914328A (en) Electrical machine with a superconducting rotor having an improved warm damper shield and method of making same
US4329602A (en) Superconducting rotor
JP3461952B2 (en) Superconducting rotating electric machine rotor
GB2099231A (en) Rotor for superconductive rotary electric machine
JPH043567Y2 (en)
GB1077485A (en) Improvements in and relating to rotational dynamoelectric machines
JPS63228959A (en) Rotor for superconducting rotary electric machine
JPH0635660Y2 (en) Superconducting rotating electric machine rotor
JPH01157263A (en) Rotor for superconducting rotary electric machine
US3360669A (en) Squirrel-cage rotor
JPS59198865A (en) Damper shield of superconductive rotary electric machine