JPS60234105A - Driver with elastic contracting member - Google Patents

Driver with elastic contracting member

Info

Publication number
JPS60234105A
JPS60234105A JP9010384A JP9010384A JPS60234105A JP S60234105 A JPS60234105 A JP S60234105A JP 9010384 A JP9010384 A JP 9010384A JP 9010384 A JP9010384 A JP 9010384A JP S60234105 A JPS60234105 A JP S60234105A
Authority
JP
Japan
Prior art keywords
elastic
elastic contracting
spring
drive device
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9010384A
Other languages
Japanese (ja)
Inventor
Yuji Sakaguchi
坂口 裕二
Takeo Takagi
武雄 高木
Yoshinori Imamura
吉徳 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP9010384A priority Critical patent/JPS60234105A/en
Publication of JPS60234105A publication Critical patent/JPS60234105A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)

Abstract

PURPOSE:To shorten the time taken for decline of the vibration of the driver, by arranging two springs which act in the opposite direction of each other on the passage of the driving force from one end to the other end of the elastic contracting member. CONSTITUTION:A spring 24 is arranged in an elastic contracting member 1 so that its force will by exerted in the direction of contraction of the tube member 11. Thus, the rigidity of the elastic contracting member 1 is increased by the force exerted by the spring 24 and the natural frequency of the elastic contracting member 1 is increased. As a result, the time taken decline of the vibration of the driver can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば空気圧ロボットのアーム部の角度制御を
行なうサーボ機構に用いる弾性収縮体による駆動装置に
関するものである〇 (従来の技術) 放射性物質の貯蔵、詰め替え、配分、その他実験や加工
に際し放射能汚染からの防HI壁で囲まれた、いわゆる
ホットセルの遮蔽壁を介した操作に利用するために開発
されたマニプレータ(マジックハンド)は、その後ロボ
ット技術の発展により、人力作業の代替を含む広範用途
においてその使途の拡大はめざましい。このようなマニ
プレータを操作するアクチュエータとしては種々のもの
があるが、モータ特に電気 のものは、スパークが不可
避なので防爆上の必要ある時、好んで空気式が用いられ
、この場合に使途はもちろん汎用でめる口従米の空気式
アクチュエータは、いわゆるエアシリンダタイプのもの
が多いが、そのシリンダーピストン組立体は金属製とす
るのが通例であるので操作力の割りに自重が重くなる欠
点がめった。一方エアバツクタイプの空気圧アクチュエ
ータとして知られている弾性収縮体は内部に空洞を有す
る弾性部材の外周を高張力材料より成る編組み構造に与
り包囲したものであり、弾性部材の内部空洞に圧力を加
えることにより膨径する吸縮組み構造のバンクグラフ作
用により軸方向に収縮する作用を利用し皮ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a drive device using an elastic contractile body used, for example, in a servomechanism that controls the angle of the arm of a pneumatic robot.〇 (Prior art) Radioactive material The manipulator (Magic Hand) was developed to operate through the shielding wall of a so-called hot cell, which is surrounded by a HI wall to prevent radioactive contamination during storage, refilling, distribution, and other experiments and processing. With the development of robot technology, the use of robots is expanding rapidly in a wide range of applications, including replacing manual labor. There are various types of actuators that operate such manipulators, but since sparks are unavoidable with motors, especially electric ones, pneumatic types are preferably used when there is a need for explosion protection. Most of the pneumatic actuators in the market are of the so-called air cylinder type, but since the cylinder piston assembly is usually made of metal, it often has the disadvantage of being heavy in comparison to the operating force. On the other hand, an elastic contractile body known as an air bag type pneumatic actuator is one in which the outer periphery of an elastic member having a cavity inside is surrounded by a braided structure made of a high-tensile material, and pressure is applied to the inner cavity of the elastic member. This is a leather product that utilizes the effect of contraction in the axial direction due to the bank graph effect of the suction/contraction assembly structure, which expands in diameter by adding .

このような弾性収縮体は軽量でおる上、摺動部分を含ま
ず摩擦力の影響やエヤー洩れの心配もなく、かつエアー
シリンダタイプの空気式アクチュエータの10倍程度の
作用力全得ることができる利点がある。
This type of elastic contractile body is lightweight, does not include any sliding parts, so there is no need to worry about the effects of frictional force or air leakage, and it can obtain a full working force that is about 10 times that of an air cylinder type pneumatic actuator. There are advantages.

このため最近ではマニプレータ全駆動するサーボ機構に
用いる駆動装置として弾性収縮体による駆動装置が多く
用いられている0従米の弾性収縮体による駆動装置では
例えば回転角を制御する場合にはそれぞれ一端全固定し
た2個の弾性収縮体の他端をプーリに巻付けたワイヤに
より連結し、2個の弾性収縮体に加える圧力の差により
プーリを回動させ、プーリに連結したアーム等全所定位
fitまで回動させるようにしていた0この場合プーリ
の回転角は位置センサにより回転位置全検出しフィード
バック制御して所定位置に正確に停止するようにしてい
る。
For this reason, recently, drive devices using elastic contracting bodies are often used as drive devices for servo mechanisms that fully drive the manipulator.For example, when controlling the rotation angle, one end of each drive device is completely fixed. The other ends of the two elastic contracting bodies are connected by a wire wrapped around a pulley, and the pulley is rotated by the difference in pressure applied to the two elastic contracting bodies, until all of the arms connected to the pulley fit into a predetermined position. In this case, the rotation angle of the pulley is determined by detecting the entire rotational position using a position sensor and performing feedback control to accurately stop the pulley at a predetermined position.

(発明が解決しようとする問題点) しかしながら従来の弾性収縮体による駆動装置はその剛
性が低く、弾性収縮体が作動する際に生じる振動がおさ
まり、プーリが所定の位置に停止するまでにおる程匿時
間がかかる。また作動速度を速くした場合やブーりに連
結するアーム等の長さを長くシ′f′c場合にはこの時
間がさらに長くなること[なる。このプーリが所定の位
置に停止するまでの時間全短縮するため従来は位置フィ
ードバックゲインを高めることでサーボ機構の剛性を高
めていたが、これにもある程度の限界があった。
(Problem to be Solved by the Invention) However, the conventional drive device using an elastic contracting body has low rigidity, and the vibrations generated when the elastic contracting body operates subsides until the pulley stops at a predetermined position. It takes a lot of time. Furthermore, if the operating speed is increased or if the length of the arm connected to the boot is increased, this time will become even longer. Conventionally, the rigidity of the servo mechanism was increased by increasing the position feedback gain in order to completely shorten the time it takes for the pulley to stop at a predetermined position, but this also had certain limitations.

(問題点全解決するための手段) 本発明の目的は上述した従来の問題点を解決することの
できる弾性収縮体による駆動装ffi’に得ることでお
り、この目的を達成するため本発明では弾性収縮体によ
る駆動装置の固有振動数を高めることに着目し、これに
より駆動装置の振動が減衰する時間を短縮しようとする
ものであり、このた( 4 ) め本発明の弾性収縮体による駆動装置はそれぞれ一端全
固定した2個の弾性収縮体と、これらの弾性収縮体の他
端同志を連結する連結部材と、この連結部材により駆動
される被駆動部材とを具え、前記2個の弾性収縮体の内
圧変化による伸縮により前記被駆動部材全駆動するよう
にした駆動装置において、それぞれ反対方向に作用する
2個のばねを前記弾性収縮体の一方から他方へ至る駆動
経路に設けたこと全特徴とするもので弗る。
(Means for Solving All Problems) The object of the present invention is to provide a driving device ffi' using an elastic contractile body that can solve the above-mentioned conventional problems. Focusing on increasing the natural frequency of the drive device using the elastic contractile body, this aims to shorten the time during which the vibrations of the drive device are attenuated. The device includes two elastic contracting bodies each fully fixed at one end, a connecting member connecting the other ends of these elastic contracting bodies, and a driven member driven by the connecting member, In the driving device which fully drives the driven member by expansion and contraction due to changes in the internal pressure of the contracting body, it is preferable that two springs acting in opposite directions are provided in the drive path from one side of the elastic contracting body to the other. I'll close with the characteristics.

(作 用) このそれぞれ反対方向に作用する2個のばねによりこの
駆動装置の個有振動数全高くすることができ、駆動装置
の振動が減衰する時間が早くなる。
(Function) With these two springs acting in opposite directions, it is possible to increase the total unique vibration frequency of the drive device, and the time for the vibrations of the drive device to decay becomes faster.

(央 施 例) 以下に図面全参照して本発明の弾性収縮体による駆動装
[を詳述する。
(Central Example) The driving device using the elastic contracting body of the present invention will be described in detail below with reference to all the drawings.

第1図は本発明の第1夾施例を示す図でおる。FIG. 1 is a diagram showing a first embodiment of the present invention.

2個の弾性収縮体lは連結部材であるワイヤ2により連
結し、このワイヤ2?被駆動部材でおるプーリ8に巻付
け、弾性収縮体lの作動をワイヤ2を介してプーリ8に
伝えるようにしている。4はプーリ8に連結したアーム
であり、5はアーム番の先端に取付けた所定の部材でお
る。
The two elastic contraction bodies l are connected by a wire 2 which is a connecting member, and this wire 2? The wire 2 is wound around a pulley 8, which is a driven member, and the operation of the elastic contraction body 1 is transmitted to the pulley 8 via the wire 2. 4 is an arm connected to the pulley 8, and 5 is a predetermined member attached to the tip of the arm number.

第2図は第1図に示した弾性収縮体lの構成を示す断面
図でめる〇 第2図において、1は弾性収縮体全体を示し111は管
状体、12はその外周の編組み補強構造、1Bは両端の
閉鎖部材、14はかしめキャップでおる0 管状体11は、ゴム又はゴム状弾性材料がエアー不透過
性、可撓性の面で重宝に活用され得るが、均等材料・た
とえば各種のプラスチックで代替しおける慣用に準じる
が、その場合にいわゆる静止角(54°44’ ) K
近い編組み角とされるのに反して管状体11の内圧光て
んによる最大膨径において上記静止角に至るように、の
ぞましくは機組み角度初期値θ。を、20°程度におい
て、常用の歪みεがほぼ0.1〜0.2程度に至るよう
に使用条件を定める。
Figure 2 is a cross-sectional view showing the structure of the elastic contraction body l shown in Figure 1. In Figure 2, 1 indicates the entire elastic contraction body, 111 is a tubular body, and 12 is a braided reinforcement on its outer periphery. Structure: 1B is a closing member at both ends, 14 is a caulked cap. The tubular body 11 can be made of rubber or a rubber-like elastic material in terms of air impermeability and flexibility, but equivalent materials such as It follows the customary practice that various plastics can be substituted, but in that case, the so-called rest angle (54°44') K
Preferably, the initial value of the braiding angle θ is set so that the above-mentioned rest angle is reached at the maximum expansion diameter of the tubular body 11 due to the internal pressure of the tubular body 11, whereas the braiding angle is set to be close. The usage conditions are determined so that the normal strain ε reaches about 0.1 to 0.2 at about 20 degrees.

この編組み補強構造12に用いる耐張強化素子は、有機
又は無機質高張力繊維類、たとえば芳香族ポリアミド繊
維(ケプラー:商品名)や、極細金属ワイヤの如きフィ
ラメントの撚り又は無撚りの束などが適合する。
The tensile reinforcement element used in this braided reinforcement structure 12 is made of organic or inorganic high tensile strength fibers, such as aromatic polyamide fibers (Kepler: trade name), twisted or untwisted bundles of filaments such as ultrafine metal wires, etc. Compatible.

上記初期値20°のようにかなりに低い角度配列の]・
では、管状体11の外周における編上げ操作が必ずしも
容易でないけれども、たとえば通常のゴムホース用ブレ
ード編上げ機にて得られる編組み体を上記初期値に適合
するように軸方向に延伸した状Mにて、管状体11の外
周にはめかぶせると<簡便でおり、この際、管状体11
の外周に適宜接着を施してもよい。
For a fairly low angle arrangement like the initial value of 20° above]
Although the braiding operation on the outer periphery of the tubular body 11 is not necessarily easy, for example, a braided body obtained by a normal rubber hose braiding machine is stretched in the axial direction so as to match the above initial value. It is convenient to cover the outer periphery of the tubular body 11.
Adhesion may be applied to the outer periphery as appropriate.

さらにこの編組み補強構造12の外周には、適宜、耐候
性、耐外傷性保獲被膜の外皮を設けてもよい0 閉鎖部材1Bは1管状体110両端開口に緊密に、好着
しぐは接層剤を用い得る封止合着に供するニップル15
と、位置定め?司るフランジ10、さらには連結ビン孔
に6けたアイ又はクレビス端17とから′fX!l11
ニップル15の外周には、その先端に向う酸テーパーを
、反対向きの急チー・く−とともに形成する、抜は止め
用の環状突条18を設ける?可とするO閉鎖部材18の
一方は少くとモ片側で、ニップル15の長さ方向に形成
した孔19’(r介し管状体11の内部空洞20と連通
ずる接続孔21全4け、ここにフィンティング22を取
付ケる。ニップル15の内端において孔19i横切るよ
うに設けた掛止棒28にばばね24を掛合させ、このは
ね24により管状体11が収縮する方向にばね力を作用
させる。
Furthermore, the outer periphery of this braided reinforcing structure 12 may be provided with a weather-resistant, trauma-resistant protective coating as appropriate. Nipple 15 for sealing bonding that can use adhesive
And positioning? From the controlling flange 10 and the six-digit eye or clevis end 17 in the connecting bottle hole, 'f l11
On the outer periphery of the nipple 15, an annular protrusion 18 is provided to prevent the nipple from being pulled out, forming an acid taper toward the tip with a sharp tip in the opposite direction. At least on one side of the O-closing member 18, there are holes 19' formed in the length direction of the nipple 15 (a total of four connecting holes 21 communicating with the inner cavity 20 of the tubular body 11 through r). Attach the finting 22. A spring 24 is engaged with a retaining rod 28 provided across the hole 19i at the inner end of the nipple 15, and this spring 24 applies a spring force in the direction that the tubular body 11 contracts. let

かしめキャップ14は、フランジ16と係合して管状体
11の端部外周にかぶさり、とくに端縁にフレアー25
を形成した円筒状金物より成り、ニップル15に向けて
半径方向に局部押圧して閉鎖部材18を管状体11に封
止合着する。
The caulking cap 14 engages with the flange 16 and covers the outer periphery of the end of the tubular body 11, and in particular has a flare 25 on the end edge.
The closure member 18 is made of a cylindrical metal piece having a cylindrical shape formed therein, and is locally pressed in the radial direction toward the nipple 15 to sealingly bond the closure member 18 to the tubular body 11.

次に作用全説明する。Next, the entire operation will be explained.

(?) 弾性収縮体lはフィッティング22に図示しなイ操作圧
力源、例えばエアーコンプレッサヲ、8万弁を含む管路
により接続し、管状体11の内部空洞18内に制御圧力
を適用することにより、編組み構造12の編組み角θ。
(?) The elastic contractile body 1 is connected to the fitting 22 by an operating pressure source (not shown), such as an air compressor, through a conduit containing 80,000 valves, and applies a controlled pressure within the internal cavity 18 of the tubular body 11. Therefore, the braid angle θ of the braided structure 12.

のθ工に至る拡大つまり、パンタグラフ運動によって、
管状体11の膨径と、それに由来し交軸方向の収縮すな
わち閉鎖部材18の連結ビン孔間距離の縮少をも九らす
In other words, due to the pantograph movement,
The expansion diameter of the tubular body 11 and the contraction in the transverse direction resulting therefrom, that is, the reduction in the distance between the connecting holes of the closing member 18, are also reduced.

一方上記制御圧力の解放にて、内部空洞中のエアーは8
方弁を通して大気中に放散され、管状体lは、編組み補
強構造12の編組み角の減少の下に復元伸長するのはい
うまでもない0 次にこのような弾性収縮体lを用いた駆動装置全体のサ
ーボ機構としての作用を説明する。まず弾性収縮体IK
ばねが設けてない場合を考えて見るとその運動方程式は
次式のようになるOJ#+0>+ksθ=kpΔP ・
・・・・・・ (1)J:部材5における慣性モーメン
ト、o:プーリ8の等価粘性係数、ks :弾性収縮体
の弾性に(8) よるばね効果、kp:定数 この駆動装置をサーボ機構として高速で安定して位置制
御するためにはksを大きくし、C全適正に保つ必要が
ある。そのためにはプーリ8の位置と速度をフィードバ
ックすれば良い。すなわち位置のフィードバックゲイン
ik□とし速度のフィードバックゲインをに2とし、プ
ーリ3の角度の目標ヲ(1)式に代入すると次式のよう
になるCJθ+(G十に2kp)θ+(k8+に1kp
)θ=kp k 、θ −−−−<2)上式から明らか
なようVr−に工、に2により粘性係数およびばね定数
音質えることが出来るが、圧力制御の遅れ等のために1
t−大きくするには限界がらるO 次に本発明に基づいて弾性収縮体lにばねを設けた状態
におけるサーボ機構の運動方程式ケ求めると次式のよう
になる。
On the other hand, when the control pressure is released, the air in the internal cavity is reduced to 8
Needless to say, the tubular body 1 is released into the atmosphere through the valve, and the tubular body 1 recovers and expands as the braid angle of the braided reinforcing structure 12 decreases. The operation of the entire drive device as a servo mechanism will be explained. First, elastic contraction body IK
Considering the case where no spring is provided, the equation of motion is as follows: OJ#+0>+ksθ=kpΔP ・
...... (1) J: moment of inertia in member 5, o: equivalent viscosity coefficient of pulley 8, ks: spring effect due to the elasticity of the elastic contracting body (8), kp: constant This drive device is a servo mechanism. In order to perform stable position control at high speed, it is necessary to increase ks and keep C at an appropriate level. For this purpose, the position and speed of the pulley 8 may be fed back. In other words, by setting the position feedback gain ik□ and the speed feedback gain to 2, and substituting the target angle of pulley 3 into equation (1), the following equation becomes CJθ + (2 kp for G) θ + (1 kp for k8 +)
) θ=kp k , θ −−−−<2) As is clear from the above equation, the viscosity coefficient and spring constant sound quality can be improved by adjusting Vr− by 2, but due to delays in pressure control, etc.
There is a limit to increasing t.Next, based on the present invention, the equation of motion of the servo mechanism in a state where a spring is provided in the elastic contracting body l is determined as follows.

ここでKはばね要素を示す。また弾性収縮体1の収縮力
Fは次式のようになる P:圧力、D=初期径、θ。:初期コード角度、ε;収
縮率、ε。:ばねが自然長になる時の収縮率Oここで収
縮力Fと収縮率εとの関係を示すと第8図に示すように
なる。第8図において破線はばねを設けてない弾性収縮
体全示し、実線はばね金設けた弾性収縮体を示す。なお
a、 a’はl陽/♂の空気圧を加えた場合の特性を示
し、b、 b/は2吟/cm2.0.0′は8呻/α2
の空気圧を加えた場合全それぞれ示している。実線で示
したばねを設けた弾性収縮体ではばねによりアシストし
た分だけ収縮力が増加しており、また収縮力の増加分に
対する収縮率の増加は小さく、このことは弾性収縮体の
移動量に対し作用する力が大きくなるので駆動装置の剛
性を高くすることになる。これにより駆動装置の固有振
動数が高くなるので、駆動装置の駆動時間tもプーリ8
の角度θとの関係は第4図に示すようになる。実線は駆
動装置にばねを設けた本発明の特性を示し、破線はばね
?設けてない駆動装置の特性を示している。
K here indicates a spring element. The contractile force F of the elastic contractile body 1 is expressed by the following formula: P: pressure, D=initial diameter, θ. : initial cord angle, ε; contraction rate, ε. : Contraction rate O when the spring reaches its natural length The relationship between the contraction force F and the contraction rate ε is shown in FIG. 8. In FIG. 8, the broken line shows the entire elastic contracting body without a spring, and the solid line shows the elastic contracting body provided with a spring metal. Note that a and a' indicate the characteristics when applying an air pressure of lyo/♂, b and b/ are 2 gin/cm2, and 0.0' is 8 gin/α2
All cases are shown when air pressure is applied. In the elastic contractile body equipped with a spring shown by the solid line, the contractile force increases by the amount assisted by the spring, and the increase in contraction rate is small with respect to the increase in contractile force, which means that the amount of movement of the elastic contractile body increases. Since the applied force is increased, the rigidity of the drive device is increased. As a result, the natural frequency of the drive device increases, so the driving time t of the drive device also increases.
The relationship between the angle θ and the angle θ is shown in FIG. The solid line indicates the characteristics of the present invention in which a spring is provided in the drive device, and the broken line indicates the spring? It shows the characteristics of a drive device that is not provided.

このように駆動装f1t、にばね會設けた本発明のもの
では固有振動数が高いため駆動に際して生じる振動の振
幅がおさまる時間が短かいのでプーリ8を高速かつ安定
して位置制御することが可能となる。
As described above, in the drive device f1t of the present invention in which the spring assembly is provided, the natural frequency is high, so the time for the amplitude of the vibration generated during drive to subside is short, so it is possible to control the position of the pulley 8 at high speed and stably. becomes.

次に第5〜7図を参照して本発明の第2実施例を詳述す
る0この実施例の駆動装置はそれぞれ反対方向に作用す
るはね26.27’(+−プーリ8に設けたものである
0ばね26は固定部材28にその一端を掛止し1他端全
ブー98に固着しt揚上部材29に掛止させる。このば
ね26は第6図(a)の矢印方向にばね力を作用させる
。またはね27は第6図(b)にその詳aを示すように
固定部材28にその一端を掛止し、ブーIJ8に固層し
た掛止部材80にその他端を掛止する。第7図はこの実
施例の駆動装置に用いる弾性収縮体lの栴成全示す図(
11) でおるC第2図の弾性収縮体より掛止部28およびばね
24がないほかは同じ構成となっている。
A second embodiment of the invention will now be described in detail with reference to FIGS. One end of the spring 26 is hooked to the fixed member 28, the other end is fixed to the entire boot 98, and the other end is hooked to the lifting member 29.This spring 26 is moved in the direction of the arrow in FIG. 6(a). Alternatively, the spring 27 can be hooked at one end to the fixing member 28 and hooked at the other end to the hooking member 80 fixed to the boot IJ8, as shown in detail a in FIG. Fig. 7 is a diagram showing the complete construction of the elastic contracting body l used in the drive device of this embodiment.
11) Deru C has the same structure as the elastic contracting body shown in FIG. 2 except that the hook 28 and spring 24 are not present.

この実施例においてもこの駆動装置全サーボ機構として
用いる際の運動方程式は前述の(8)式と同じになり、
ばね26.27のばね力の分だけ駆動装置の剛性?高く
し、駆動装置の固有振動数を高くすることができるので
、前述の実施例と同様の効果を得ることができる。
In this embodiment as well, the equation of motion when using this drive device as an all-servo mechanism is the same as the equation (8) above,
Is the rigidity of the drive device equal to the spring force of springs 26 and 27? Since the natural frequency of the drive device can be increased, the same effects as in the above-mentioned embodiments can be obtained.

(効 果) 以上詳述したように本発明の弾性収縮体による駆動装置
は2個の弾性収縮体の間に連結した所定の部材を2個の
弾性収縮体の内圧差により駆動する駆動装置において、
それぞれ反対方向に作用する2個のばね全弾性収縮体の
一方から他方へ至る駆動経路に設けfc檜成としfcf
cめ・2個のばねによるばね力の分だけ弾性収縮体の剛
性を高くし、固有振動数を増加させることができるので
、駆動の際駆動装置に生じる振動がおさまる時間が短か
いので駆動装置による位置制御が高速で安定して(12
) 行なえるという利点を有しており、作製の速さと正確さ
とを要求されるマニプレータに用いるのに極めて有効な
駆動装置である。
(Effects) As described in detail above, the drive device using elastic contracting bodies of the present invention is a driving device that drives a predetermined member connected between two elastic contracting bodies by the internal pressure difference between the two elastic contracting bodies. ,
Two springs acting in opposite directions are provided in the drive path from one of the fully elastic contracting bodies to the other.
・Since the rigidity of the elastic contracting body can be increased by the spring force of the two springs and the natural frequency can be increased, the time for the vibrations generated in the drive device to subside during driving is short, so the drive device Position control is fast and stable (12
), and is an extremely effective drive device for use in manipulators that require high production speed and accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の弾性収縮体による駆動装置の一笑施例
の構成を示す平面図、 第2図は第1図の駆動装置に用いる弾性収縮体の構成を
示す一部断面平面図、 第8図は第2図の弾性収縮体と従来の弾性収縮体との収
縮力と収縮率との関係を示す特性図1第4図は第2図の
弾性収縮体と従来の弾性収縮体との作動時に生じる振動
と時間との関係會示す特性図、 第5図は本発明の他の実施例の構成を示す一部切欠き平
面図、 第6図(a)、中)は第5図に示した2個のばねの構成
を詳細に示した図、 第7図はag5.6図の駆動装置に用いる弾性収縮体の
構成を示す一部断面平面図でるる。 l・・・弾性収縮体 2・・・ワイヤ 8・・・プーリ 4・・・アーム 5・・・部材 11・・・管状体 ■2・・・編組み補強構造 18・・・閉鎖部材14・
・・かしめキャップ 15・・・ニップル16・・・フ
ランジ 17・・・クレビス端18・・・環状突条 1
9・・・孔 20・・・内部空洞 21・・・接続孔22・・・フィ
ッティング 28・・・掛止棒24・・・ffネ215
・・・フレアー〇特許出願人 株式会社 ブリヂストン へ へ 句 p L−L づ電や Φトー39収聚
FIG. 1 is a plan view showing the structure of an embodiment of a drive device using an elastic contractile body of the present invention; FIG. 2 is a partially sectional plan view showing the structure of an elastic contracture body used in the drive device of FIG. Figure 8 is a characteristic diagram showing the relationship between the contraction force and contraction rate of the elastic contraction body in Figure 2 and the conventional elastic contraction body. Figure 4 shows the relationship between the elastic contraction body in Figure 2 and the conventional elastic contraction body. A characteristic diagram showing the relationship between vibration generated during operation and time. Figure 5 is a partially cutaway plan view showing the configuration of another embodiment of the present invention. Figure 6 (a), middle) is shown in Figure 5. FIG. 7 is a partially sectional plan view showing the structure of the elastic contractile body used in the drive device shown in FIG. AG5.6. l... Elastic contraction body 2... Wire 8... Pulley 4... Arm 5... Member 11... Tubular body ■2... Braided reinforcement structure 18... Closing member 14.
...Crimp cap 15...Nipple 16...Flange 17...Crevice end 18...Annular protrusion 1
9... Hole 20... Internal cavity 21... Connection hole 22... Fitting 28... Hanging rod 24... ffne 215
...Flare〇 Patent Applicant Bridgestone Co., Ltd.Heph p L-L Zudenya ΦTo 39 Collection

Claims (1)

【特許請求の範囲】[Claims] L それぞれ一端を固定した2個の弾性収縮体と、これ
らの弾性収縮体の他端同志全連結する連結部材と、この
連結部材により駆動される被駆動部材とを具え、前記2
個の弾性収縮体の内圧変化による伸縮により前記被駆動
部材を駆動するようにした駆動装置において、それぞれ
反対方向に作用する2個のばねを前記弾性収縮体の一万
から他方へ至る駆動経路に設けたことを特徴とする弾性
収縮体による駆動装置。
L comprises two elastic contracting bodies each having one end fixed, a connecting member that fully connects the other ends of these elastic contracting bodies, and a driven member driven by the connecting member, and
In a drive device that drives the driven member by expansion and contraction due to changes in internal pressure of two elastic contracting bodies, two springs acting in opposite directions are connected to a driving path from one elastic contracting body to the other. A driving device using an elastic contracting body.
JP9010384A 1984-05-08 1984-05-08 Driver with elastic contracting member Pending JPS60234105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9010384A JPS60234105A (en) 1984-05-08 1984-05-08 Driver with elastic contracting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9010384A JPS60234105A (en) 1984-05-08 1984-05-08 Driver with elastic contracting member

Publications (1)

Publication Number Publication Date
JPS60234105A true JPS60234105A (en) 1985-11-20

Family

ID=13989179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9010384A Pending JPS60234105A (en) 1984-05-08 1984-05-08 Driver with elastic contracting member

Country Status (1)

Country Link
JP (1) JPS60234105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196484A4 (en) * 2014-09-12 2018-05-16 Advanced Telecommunications Research Institute International Actuator device, power assist robot, and humanoid robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196484A4 (en) * 2014-09-12 2018-05-16 Advanced Telecommunications Research Institute International Actuator device, power assist robot, and humanoid robot
US10881536B2 (en) 2014-09-12 2021-01-05 Advanced Telecommunications Research Institute International Actuator device, power assist robot and humanoid robot

Similar Documents

Publication Publication Date Title
EP0123558B1 (en) Pneumatic actuator for manipulator
EP0161750B1 (en) Actuator
US4843921A (en) Twisted cord actuator
JP2846344B2 (en) Actuator using elastic extension
JPH0348004A (en) Double-acting type actuator
US4841845A (en) Hydraulic or pneumatic drive device
US4664232A (en) Brake device for robot arm
CN108463315B (en) Drive mechanism, robot arm, robot system, and method of manufacturing product
US20040237154A1 (en) Painting robot with improved wrist conduit
JPS60234105A (en) Driver with elastic contracting member
JPS6165796A (en) Multi-joint arm
JPS6048283A (en) Pneumatic-actuator
JPS59209790A (en) Joint arm for manipulator
CA1231277A (en) Pneumatic actuator for manipulator
WO2024048299A1 (en) Actuator curved inner length measurement device and actuator curved inner length measurement method
US20190283243A1 (en) Robot
JPH0445318B2 (en)
JP2533477B2 (en) Positioning mechanism
JPS6241406A (en) Drive assembly using elastic shrinkage body
JPH05566B2 (en)
EP4129587A1 (en) Joint structure for robot
JPH0389006A (en) Driving device
JPH0546443B2 (en)
JPS61153007A (en) Driving unit
JPH0680321B2 (en) Double structure elastic contractor