JPS60233479A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS60233479A
JPS60233479A JP9164784A JP9164784A JPS60233479A JP S60233479 A JPS60233479 A JP S60233479A JP 9164784 A JP9164784 A JP 9164784A JP 9164784 A JP9164784 A JP 9164784A JP S60233479 A JPS60233479 A JP S60233479A
Authority
JP
Japan
Prior art keywords
temperature
compartment
cold air
refrigerator
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9164784A
Other languages
Japanese (ja)
Inventor
時雄 堀田
大越 四男
児玉 良夫
松本 説男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP9164784A priority Critical patent/JPS60233479A/en
Publication of JPS60233479A publication Critical patent/JPS60233479A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0653Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the mullion

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷却器によって冷却された冷気を庫内に循環す
る冷蔵庫に於いて庫内に区画室を形成したものに関する
。 (ロ)従来技術 従来此種冷蔵庫は例えば実開昭58−22678号公報
に示されている。該公報では冷蔵室内に密閉貯蔵室を形
成し、この貯蔵室の周囲に冷気通路を形成し、この冷気
通路に送風機からの冷気を導入して室内を乾燥させずに
冷却する様にしている。室内の温度制御はダンパー板に
よって冷気通路への冷気供給量を調節して達成されるも
のであるが、斯かる手動のダンパーによる正確な温度制
御は難しい。 また、従来此種区画室は冷凍室の如き凍結温度か、或い
は冷蔵室温度よりも若干低い+1 ’C乃至+2℃等の
温度で制御されて通常内や魚等の腐敗の速い食品を収納
保存するために用いられるが、凍結させるものでは食品
の長期保存は達成されるものの、調理の為解凍する際に
風味が損われる欠点があり、更に+l ’C乃至+2℃
の制御によるものでは風味は損われないものの、保存可
能期間が短い欠点がある。 (ハ)発明の目的 本発明は冷却器によって冷却された冷気を庫内に循環し
て冷却する冷蔵庫の庫内に区画室を形成して該室内を氷
温貯蔵温度に維持すると共に、この温度制御性を向上し
た冷蔵庫を提供する事にある。 (ロ)発明の構成 本発明は冷却器によって冷却された冷気を主送風機によ
って庫内に循環して冷却する冷蔵庫の庫内に区画室を形
成し、この区画室を冷却する為の冷気通路を構成すると
共に、前記冷気を冷気通路に強制循環する補助送風機を
設け、所定の温度制御装置を準備して、それによって補
助送風機を運転し1区画室内の温度を氷温貯蔵温度帯に
維持する様に構成したものである。。 (ホ)実施例 図面に於いて実施例を説明する。第8図は冷蔵庫(1)
の断面図を示している。冷蔵庫(1)は鋼板製の外箱(
2)内に間隔を存して合成樹脂製の内箱(3)を組み込
み、両箱(21(31間にウレタン断熱材(4)を発泡
充填して断熱箱体を形成している。冷蔵庫(1)の庫内
は内部に断熱材を充填した仕切壁(5)によって上下に
仕切られており、上方に凍結温度(例えば−20℃)に
冷却される冷凍室旧と、下方に氷点以上の冷蔵温度(例
えば+3°C)で維持される冷蔵室(8)とを形成して
いる。冷蔵庫(1)の庫内の一部である冷蔵室(旬の開
口縁には左右に渡って仕切前部材(8)が架設されてお
り、この仕切前部材(8)とこれと略同−高さで内箱(
3)に形成した凹溝(3a)とに支持されて断熱性の区
画板(9)が取り付けられ、この区画板(9)によって
冷蔵室(資)は上下に区画される31区画板(9)の上
方空間には仕切壁(5)下面、区画板(9)上面、内箱
(3)両側面及び後面と間隔を存して冷気通路lI〔を
形成して、金属等の熱良導部材で作られ前方に開口した
箱状のケース0])が組み込まれる。ケース(111の
開口縁は内箱(3)、仕切壁(5)及び区画板(9)に
当接せしめており、これによってこのケース01)内に
庫外のみに連通した区画室■が形成され、冷気通路0ω
の前端部は閉塞される。 仕切壁(5)の上方には間隔を存して下面に断熱材を有
した冷凍室[F]の底板−が設けられ、この底板(I3
1と仕切壁(5)間に冷却室側が形成される。この冷却
室I内に冷′凍サイクルに含まれる冷却器αつが収納設
置され、この冷却器(151後方に位置して主送風機a
eが設けられる。主送風機αeを駆動するモータ(16
M)は冷却室側の後方に位置して外箱(2)背面の内側
に取り付けられ断熱材(4)中に埋設された収納箱an
内に収納され、回転軸が収納箱(171,断熱材(4)
及び内箱(3)を貫通して冷却室I内に臨み、その先端
に送風ファン(16F)が取り付けられている1、主送
風機(161は回転して回転軸方向より冷気を吸引し、
半径方向に吹き出すものである。冷凍室[F]の底板0
31の後辺(13a)は内箱(3)後面と間隔を存して
上方に立上り、冷却室(+41後部と冷凍室(巧を連通
するダク) (1119を形成しており、主送風機Q6
1によって加速された冷気はダク)(181先端の吐出
口(18a)より冷凍室いに吐出される。、 ttts
は内箱(3)背面に取り付けられ、冷却室(14)後部
と冷蔵室(旬とを連通ずるダクト(涛を形成するダクト
部材で、主送風機Q61により加速された冷気はダクト
■を通り、冷蔵室(旬背面上部に形成した吐出口(20
a)より冷蔵室(船内に吐出される。冷気通路f101
後方の内箱(3)後面上部には冷気通路(101とダク
ト■の中途部を連通する吐出口(20b)が形成される
。 吐出口(2Oa)からの冷気吐出量は電磁ダンパーc3
5)によって調節される。電磁ダンパー6猾まケース(
ト)内に収納した図示しないプランジャーや電磁コイル
(35A)、プランジャーに取り付けたアームon先端
に固定されて吐出口(20a)を開閉するバッフル板(
至)とから成る。C3句は吐出口(20b)後方に設け
た補助送風機である。補助送風機−を駆動するモータ(
39M)は吐出口(20b)後方に位置して外箱(2)
背面の内側に取り付けられ断熱材(4)中に埋設された
収納箱(40内に収納され、回転軸が収納箱(40,断
熱材(4)及びダクト部材α鐘を貫通してダクトm内に
臨み、その先端に送風ファン(39F)が取り付けられ
ている。補助送風機国は回転してダクト(イ)を流下し
て来る冷気の一部を前方に吹き出し、吐出口(20b)
より冷気通路(101内に循環せしめる。この様にして
各室(Fl(R)及び冷気通路(1(11に冷気は吐出
され、冷凍室旧と冷気通路aαを循環する冷気は冷凍室
■を直接冷却により、また、区画室0はケース圓からの
間接冷却により冷却した後、冷却室a41前部に連通し
た冷気吸入口C!21 (23+よりそれぞれ冷却室I
に帰還する。冷蔵庫(1)の側壁の断熱材(4)中には
冷蔵室(2)と冷却室(+41前部を連通ずる帰還ダク
)(24)が形成されており、ここを通り冷蔵室(川内
の冷気は吸入口(ハ)から冷却室(1滲に帰還する。(
ト)は冷凍サイクルに含まれる圧縮機、@@翰はそれぞ
れ室イ0(旬の前方開口を開閉自在に閉じる扉である。 第2図は温度制御装置(TC)の電気回路図を示してい
る。(4υ(42(43はトライアックでそれぞれ圧縮
機モータ(26M)電磁ダンパー(39の電磁コイル(
35A)及び主送風機モータ(16M)と直列回路を構
成してそれぞれ交流電源(AC)に接続される。(旬は
トランジスタで補助送風機モータ(39M)と直列に直
流電源(■cc)に接続される。(4つは周知のマイク
ロコンピュータでありその出力端子(OUT+)(OU
T2)(0UT3 ) (0UT4 )にそれぞれトラ
イアック(4υ(421(431のゲート及びトランジ
スタ(44)のペースが接続される。(4604η(4
g1は演算増幅器から構成するコンパレータであり、そ
れぞれ出力端子をマイクロコンピュータ(4つの入力端
子(INI) (IN、) (IN、)に接続される。 (49)(50)511はそれぞれ区画室顛、冷凍室い
及び冷蔵室(8)内の温度を感知するセンサーとしての
サーミスタ(負性抵抗素子)でありサーミスタ(49)
60)(51)の端子電位(v+) (V2) (vs
)はそれぞれコンパレータ(461(4η(機の反転入
力端子Hに接続される。 マタ、コンパレータ(47)(4□□□の非反転入力端
子(ト)には設定電位(Vs ) (Va)が入力され
る。(r、) (r2)(r3)は抵抗で、直列に接続
され、セレクトスイッチ(SW2)が抵抗(r3〕に、
(SW、)が抵抗(r2)と(r3)とに並列接続され
(セレクトスイッチ(SW、)は図示しないが、スイッ
チC5w2)(SW3)を同時に開放するスイッチであ
る。)、その端子電位(v4)はコンパレータ顛の非反
転入力端子(1)に接続される。トライアック(4υ(
43(43)はマイクロコンピュータ(句によりゲート
をトリガされて導通してモータ(26M)、電磁コイル
(35A)及ヒモータ(16M)に通電すζ電磁コイル
(35A)が通電されて電磁ダンパー(ハ)は動作し、
吐出口(20a)を開放し、非通電状態では吐出口(2
0a)を閉じている。トランジスタ(44)は出力端子
(OUT、)が低電位(以下rAJと称す。)の間導通
してモータ(39M)を運転せしめるものである。コン
パレータ(461(4η(侶は所定のヒステリシスを有
しており、コンパレータ(46)は区画室■の温度(T
H,)が上昇して(V4)>(V、)となると出力が高
電位(以下rhJと称す。)となり、降下して(V、K
(V、)となって出力がrJJとなる。電位(V、)は
スイッチ(SW、) (SW2 ) (SW、)を切り
換える事によって三種類の値に変更される。コンパレー
タ(47)は冷凍室(Flの温度(TF、l)が上昇し
て(V、)>(V、)となって出力をrhJとし、下降
して(V、)<(V2)となって「l」とする。同様に
コンパレータ(4印は冷蔵室(R)(7)温度(T R
,)が上昇り、テ(Ve )>(Va)トなって出力な
rhJとし降下して(V、K(V3)でrJJとするも
のである。 第3図は温度制御装置(TC)の機能ブロック図を示し
ている。551 (511957)はそれぞれサーミス
タ(5ω(49)r51)等を含む冷凍室温度検出手段
、区画室温度検出手段及び冷蔵室温度検出手段であり、
ei81Gまスイッチ(SW、) (SW2) C8W
%)及び抵抗(r+)(r−)(r3)等を含む区画室
温度設定手段である。−11)@21 (631はそれ
ぞれトライアック(43(4υ、トランジスタ(44)
、トライアック(421等を含み、それぞれモータ(1
6M) (26M) (39M)、電磁コイル(35A
)を駆動するスイッチング手段である。コンパレータ(
47)は所定の設定値と冷凍室温度検出手段69からの
情報とを比較してスイッチング手段(6011υを動作
してモータ(16M)(26M)に通電する。コンパレ
ータ(4Glは区画室温度検出手段(ト)と区画室温度
設定手段15樽からの情報を比較してスイッチング手段
12を動作してモータ(39M)に通電する。コンパレ
ータ(481モ所定の設定値と冷蔵室温度検出手段57
)からの情報を比較してスイッチング手段(63)を動
作し電磁コイル(35A)に通電する。 第4図乃至第7図はマイクロコンピュータ(49のソフ
トウェアを示すフローチャートであり、これに沿って動
作を説明する。第4図は冷凍室(nの温度制御フローチ
ャートで、(TF、)は現在の冷凍室旧の温度で、(T
F、1)は前回のサンプリング時の温度であり、また、
サンプリングは電源投入時及び各設定温度を横切る時に
実行し、処理作業を実行した後、前回のサンプリング時
の温度(’rt’W−,)の代わりに現任の温度(TF
、)を記憶するものとする。以後冷蔵室(R1の温度(
TR)と区画室0の温度(TH)についても同様とする
。ステップ(S、)で現在の温度(TF、)が例えば−
18°C等の上限温度(TFo、)以上の時は(V5 
) > (Vt )トナッてマイクロコンピュータ(4
!9の入力端子(I N、 )がrhJであるのでステ
ップ(S2)に進み、出力端子(OUT、)(OUT3
)がrJJとなってトライアック(41)とトライアッ
ク(43をトリガして圧縮機弼と主送風機utuc−運
転し、冷却運転を実行する。この冷却運転によって温度
(TF、)が低下しくTF、、)より下がるとステップ
(Sl)からステップ(S、)に進み、ここで−22℃
等の下限温度(TF、、、)と比較し、それより高けれ
ばステップ(S、)に進み、前回のサンプリング時の温
度(TFN−、)と(T F ory )を比較する。 この時(T F、−1>は(TF、、l)以上であった
からステップ(S、)から(S、)に進んで冷却運転を
続行し、(TF)は低下し続けるがCTPOll>以下
となると、<■Z)>(V、)となり、入力端子(IN
、)がrlJとなるのでステップ(S、)に進み主送風
機αeと圧縮機のを停止する。その後、冷凍室(nの温
度(TF)が徐々に上昇して(TFory)以上となる
とステップ(S、)から(S4)へ進みこの時(T F
*−+ )は(TF、、、)以下であるからステップ(
Sl)へ進んで圧縮機(4)と主送風機(161は停止
したままである。 その後、更に上昇して(TF、、)以上となるとステッ
プ(S、)から(S2)へ進んで再び冷却運転が開始さ
れる。以上を繰り返して冷凍室(E内は平均例えば−2
0℃等に冷却される。 第5図は冷蔵室(旬の温度制御フローチャートで、ステ
ップ(S7)で現在の温度(T R* )が例えば+5
℃等の上限温度(TR,、)以上の時は(Ve)>(■
3)となって入力端子(INs)がrhJであるのでス
テップ(S、)に進み電磁ダンパーC15+を開いて冷
蔵室(和内に冷気を供給する。その後(TR,)が(T
RoN)以下となると(S、)から(S、O)に進み、
この時(T &−+ )は(TR,、)より上であるか
らステップ(S8)に進んで電磁ダンパーt3阻i開い
たままである。その後(TR,)が例えば+l ’C等
の(TROyr)以下となルト(v3)〉(V6)トナ
ッテ入力端子(INS)がrJJとなりステップ(S9
)から(8+1) に進んで出力端子(OUT2)がr
hJとなって電磁ダンパー(ハ)を閉じる。その後再び
(TR,)が(TR,、、)以上となっても(TR,1
−t)が(TR,、、)より下であったのでステップ(
Sso)から(So )に進んで電磁ダンノ<−aSは
閉じたままである。その後(TR,)が(TR,、)以
上となると(VIり>(Vs)となるのでステップ(S
、)から(S、)K進んで再び電磁ダンパー(ト)を開
く。これを繰り返して冷蔵室(R)内は+3℃等に維持
される。 次に第6図、第7図に於いて区画室Iの温度制御を説明
する。第7図は区画室■の設定温度を切換えるフローチ
ャートを示している。セレクトスイッチ(SWI )を
閉じるとステップ(S、2 )から(Sts )に進み
区画室0の設定温度(TH,)は果物用の温度(TH,
)となる。この時上限温度(THo、)は−1℃、下限
温度(TH,、、)は−2°Cで平均温度(TH,)は
−1,5℃となる。この−1,5℃はりんご等の果物の
氷温貯蔵温度である。次に(SW、 )を閉じるとステ
ップ(S、4 )から(S+ll)に進み(TH,)は
肉、鮮魚用の温度(THM)となる。この時上限温度(
THo、)は−0,5℃、下限温度(T Ho F F
 )は−1,5℃となり平均温度(THM)は−1℃と
なる。この−1℃は肉、鮮魚等の氷温貯蔵温度である。 (SW、)を閉じると(SW、 )(Sl2)は開いて
いるからステップ(814)から(S、、 )に進み(
TH,)は野菜用の温度(THv)となり、上限温度(
TH,、)は0℃、下限温度(TH,、、)は−1℃と
なり平均温度(TH,)は−0,5℃となる。この−0
,5℃は野菜の氷温貯蔵温度である。この様 −にして
氷温貯蔵空間が構成される。 ここで氷温貯蔵温度とは氷点下ではあるが物品が凍結し
ない温度帯の事であり、物品をこの温度にて貯蔵する事
によって風味を損わず、解凍する必要も無く、且つ長期
間(実験では一週間程度)保存する事ができるものであ
る。  次に第6図は区画室αl温度制御のフローチャートであ
る。ステップ(817) で現在の温度(TH,)が(
TH,、)以上の時は(V4)>(V、)で入力端子(
IN、)がrhJであるのでステップ(Sts ) に
進んで出力端子(OUT4)をr/Jとし、補助送風機
(3Iを運転する。その後(THN)が(TH,、)よ
り下がるとステップ(Stt)から(Sto ) (S
2゜)へ進み、この時(THN I)は(T Ha N
 )以上であったからステップ(S2.)から(S□)
に進む。その後(TH,)が(THoyy)以下となる
と(V、)>(V4)となるのでステップ(821)に
進んで補助送風機G!Jを停止せしめる。その後区画室
0内の温度(TH,)が上昇して(THo、、 )より
上になるとステップ(Sho )から(S20)に進む
が(T Hw −1)は(TH,、、)以下であったの
でステップ(Stt)に進んで補助送風機G引ま停止し
たままである。その後頁に温度(THN)が上昇して(
THo* )以上となるとステップ(s+’r )から
(S、A )に進み、補助送風機OIを運転し以後繰り
返えす。この様にして区画室0内はセレクトスイッチ(
SW、 ) (s’L) (SW3 )にて設定する所
望の設定温度(TH,)に平均して温度制御される事に
なる。 以上の如く区画室0内は冷気通路(1(Iからの間接冷
却によって氷温貯蔵温度に維持されるので食品の風味を
損う小魚く比較的長期間保存できる。また、間接冷却で
あるので食品の乾燥も抑制される。 更に区画室0は他の庫内空間と区画板(9)或いは仕切
壁(5)等によって断熱されており、しかも補助送風機
01を区画室Iの温度で制御するので比較的温度範囲の
狭い氷温貯蔵温度帯に区画室0の温度を安定して良好に
維持できる。更に、区画室B内の設定温度は収納食品の
種類忙よって変更でき、それぞれの氷温貯蔵温度に設定
できるので1食品は更に良好に保存できる様になるもの
である。また、区画室0の温度が上昇した時には補助送
風機OIのみを運転するので圧縮機(至)の停止中には
冷却器(151周囲の残溜冷気を有効に利用でき、消費
エネルギーの増加も最低限で抑えられる。 (へ)発明の効果 本発明によれば区画室内を氷点下ではあるが食品の凍結
しない温度、即ち氷温貯蔵温度とするので、食品の風味
を損う小魚(比較的長期間保存する事ができる。また、
区画室冷却用の補助送風機を設けて、これの運転を制御
して区画室の温度を制御するので比較的温度範囲の狭い
水温貯蔵温度帯に区画室内温度を良好に安定維持できろ
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigerator in which cold air cooled by a cooler is circulated within the refrigerator, with compartments formed inside the refrigerator. (b) Prior Art A conventional refrigerator of this type is disclosed in, for example, Japanese Utility Model Application Publication No. 58-22678. In this publication, a sealed storage chamber is formed within the refrigerator compartment, a cold air passage is formed around the storage chamber, and cold air from a blower is introduced into the cold air passage to cool the room without drying it. Indoor temperature control is achieved by adjusting the amount of cold air supplied to the cold air passages using a damper plate, but accurate temperature control using such a manual damper is difficult. In addition, conventionally, this type of compartment is controlled at a freezing temperature similar to that of a freezer room, or at a temperature of +1'C to +2°C, which is slightly lower than the temperature of a refrigerator room, and is usually used to store and preserve food that quickly spoils, such as food or fish. Although freezing foods can preserve food for a long time, it has the disadvantage that the flavor is lost when thawing it for cooking, and it also
Although the flavor is not impaired by this control, it has the disadvantage of a short shelf life. (C) Purpose of the Invention The present invention forms a compartment in the refrigerator which circulates cold air cooled by a cooler to cool the refrigerator, maintains the compartment at an ice storage temperature, and maintains the temperature at this temperature. The objective is to provide a refrigerator with improved controllability. (b) Structure of the Invention The present invention forms compartments in the interior of a refrigerator that circulates cold air cooled by a cooler into the compartment by a main blower, and provides a cold air passage for cooling the compartments. In addition, an auxiliary blower for forcibly circulating the cold air into the cold air passage is provided, and a predetermined temperature control device is provided so that the auxiliary blower is operated to maintain the temperature within the room in one compartment within the freezing temperature storage temperature range. It is composed of . (E) Embodiment An embodiment will be explained with reference to the drawings. Figure 8 is a refrigerator (1)
A cross-sectional view of the is shown. The refrigerator (1) has an outer box made of steel plate (
2) An inner box (3) made of synthetic resin is installed with a gap between the two boxes (21 (31), and a urethane insulating material (4) is foamed and filled between the two boxes (31) to form a heat insulating box. The interior of the refrigerator (1) is divided into upper and lower parts by a partition wall (5) filled with insulating material, with the upper part being the freezer compartment that is cooled to freezing temperatures (e.g. -20°C), and the lower part being above the freezing temperature. The refrigerator compartment (8) is maintained at a refrigerating temperature (for example, +3°C).The refrigerator compartment (8) is a part of the interior of the refrigerator (1). A partition front member (8) is installed, and an inner box (
A heat-insulating partition plate (9) is attached, supported by the groove (3a) formed in ) In the space above the partition wall (5), the lower surface of the partition plate (9), the upper surface of the partition plate (9), the inner box (3) both sides, and the rear surface are spaced apart to form a cold air passage lI, and a heat conductive material such as metal is formed. A box-shaped case 0]) made of materials and opened at the front is incorporated. The opening edge of the case (111) is brought into contact with the inner box (3), the partition wall (5), and the partition plate (9), thereby forming a compartment ■ in this case 01 that communicates only with the outside of the refrigerator. and cold air passage 0Ω
The front end of is occluded. Above the partition wall (5), a bottom plate of the freezer compartment [F] having a heat insulating material on the lower surface is provided with a gap, and this bottom plate (I3
A cooling chamber side is formed between 1 and the partition wall (5). In this cooling chamber I, two coolers included in the refrigeration cycle are housed and installed, and this cooler (151 located behind the main blower
e is provided. Motor (16) that drives the main blower αe
M) is a storage box located at the rear of the cooling room side, attached to the inside of the back of the outer box (2), and embedded in the insulation material (4).
The rotating shaft is stored inside the storage box (171, insulation material (4)
The main blower (161 rotates and sucks cold air from the direction of the rotation axis,
It blows out in the radial direction. Freezer compartment [F] bottom plate 0
The rear side (13a) of 31 rises upward with a gap from the rear surface of the inner box (3), and forms a duct (1119) that communicates the rear of the cooling chamber (+41) and the freezer compartment (1119), and connects the main blower Q6.
The cold air accelerated by duct 1 is discharged into the freezer compartment from the discharge port (18a) at the tip of duct 181.
is attached to the back of the inner box (3), and connects the rear part of the cooling chamber (14) with the refrigerator compartment (a duct member that forms a wave. The cold air accelerated by the main blower Q61 passes through the duct ■, Refrigerator room (discharge port (20
a) From the cold storage room (discharged into the ship.Cold air passage f101
A discharge port (20b) that communicates the cold air passage (101) with the middle part of the duct (2) is formed at the upper rear surface of the rear inner box (3).The amount of cold air discharged from the discharge port (2Oa) is determined by the electromagnetic damper c3.
5). Electromagnetic damper 6 cases (
A plunger (not shown) and an electromagnetic coil (35A), which are not shown, are housed in a baffle plate (20a) that is fixed to the tip of an arm attached to the plunger and opens and closes the discharge port (20a).
to). Clause C3 is an auxiliary blower provided behind the discharge port (20b). The motor that drives the auxiliary blower (
39M) is located behind the discharge port (20b) and the outer box (2)
It is stored inside the storage box (40) attached to the inside of the back and embedded in the insulation material (4), and the rotating shaft passes through the storage box (40, the insulation material (4) and the duct member α) and is inserted into the duct m. A blower fan (39F) is attached to the tip of the fan.The auxiliary blower rotates and blows out some of the cold air flowing down the duct (A) forward, and connects it to the outlet (20b).
The cold air is circulated through the cold air passage (101).In this way, the cold air is discharged into each chamber (Fl(R) and the cold air passage (11), and the cold air circulating through the freezer compartment old and the cold air passage aα is circulated through the freezer compartment (2). After the compartment 0 is cooled by direct cooling, and the compartment 0 is cooled by indirect cooling from the case circle, the cold air intake port C!21 (from 23+, respectively,
to return to. A return duct (24) that communicates the refrigerator compartment (2) and the cooling compartment (+41 front part) is formed in the insulation material (4) on the side wall of the refrigerator (1). The cold air returns to the cooling chamber (1) from the inlet (c).
G) is a compressor included in the refrigeration cycle, and @@翰 is a door that can freely open and close the front opening of chamber I0. Figure 2 shows the electrical circuit diagram of the temperature control device (TC). (4υ (42 (43 is a triac), each includes a compressor motor (26M), an electromagnetic damper (39 electromagnetic coils)
35A) and the main blower motor (16M), each connected to an alternating current power source (AC). (The auxiliary blower motor (39M) is connected to the DC power supply (cc) in series with a transistor. (The four terminals are well-known microcomputers, and their output terminals (OUT+)
The gate of the triac (4υ(421(431) and the pace of the transistor (44) are connected to T2)(0UT3)(0UT4).(4604η(4)
g1 is a comparator composed of an operational amplifier, and its output terminal is connected to the microcomputer (four input terminals (INI) (IN,) (IN,). Thermistor (49) is a thermistor (negative resistance element) as a sensor that detects the temperature in the freezer compartment and refrigerator compartment (8).
60) (51) terminal potential (v+) (V2) (vs
) are respectively connected to the inverting input terminal H of the comparator (461 (4η)). (r,) (r2) (r3) are resistors connected in series, and the select switch (SW2) is connected to the resistor (r3).
(SW, ) is connected in parallel to resistors (r2) and (r3) (select switch (SW, ) is not shown, but it is a switch that simultaneously opens switches C5w2 and (SW3). ), its terminal potential (v4) is connected to the non-inverting input terminal (1) of the comparator. Triac (4υ(
43 (43) is a microcomputer (phrase) that triggers the gate to conduct and energize the motor (26M), electromagnetic coil (35A), and motor (16M).The electromagnetic coil (35A) is energized and the electromagnetic damper (ha) ) works and
The discharge port (20a) is opened, and the discharge port (20a) is closed in the de-energized state.
0a) is closed. The transistor (44) is conductive while the output terminal (OUT) is at a low potential (hereinafter referred to as rAJ) to operate the motor (39M). The comparator (461 (4η) has a predetermined hysteresis, and the comparator (46) has a temperature (T
When H, ) rises and becomes (V4) > (V, ), the output becomes a high potential (hereinafter referred to as rhJ) and falls to (V, K
(V, ), and the output becomes rJJ. The potential (V,) is changed to three types of values by switching the switches (SW,) (SW2) (SW,). The comparator (47) causes the temperature (TF, l) of the freezer compartment (Fl) to rise and become (V,)>(V,), making the output rhJ, and then decrease to become (V,)<(V2). Similarly, the comparator (mark 4 is the refrigerator compartment (R)) (7) temperature (T R
, ) rises, Te (Ve ) > (Va) becomes higher, and the output becomes rhJ, and it falls, and (V, K (V3) becomes rJJ. Figure 3 shows the temperature control device (TC). A functional block diagram is shown. 551 (511957) is a freezing room temperature detecting means, a compartment room temperature detecting means, and a refrigerator room temperature detecting means, each including a thermistor (5ω(49)r51) etc.
ei81G switch (SW,) (SW2) C8W
%) and resistances (r+) (r-) (r3), etc. -11) @21 (631 is a triac (43 (4υ), transistor (44)
, triac (421 etc.), each motor (1
6M) (26M) (39M), electromagnetic coil (35A
). comparator(
47) compares a predetermined set value with the information from the freezer compartment temperature detection means 69 and operates the switching means (6011υ to energize the motors (16M) (26M). The comparator (4Gl is the compartment temperature detection means) (g) and the information from the compartment temperature setting means 15 and operating the switching means 12 to energize the motor (39M).
) and operates the switching means (63) to energize the electromagnetic coil (35A). Figures 4 to 7 are flowcharts showing the software of the microcomputer (49), and the operation will be explained along these lines. Figure 4 is a temperature control flowchart of the freezer compartment (n), and (TF,) At the old temperature of the freezer compartment, (T
F,1) is the temperature at the previous sampling time, and
Sampling is performed at power-on and when each set temperature is crossed, and after performing processing operations, the current temperature (TF
, ) shall be stored. From then on, the temperature of the refrigerator compartment (R1)
The same applies to TR) and the temperature of compartment 0 (TH). For example, if the current temperature (TF,) in step (S,) is −
When the temperature is higher than the upper limit temperature (TFo, ) such as 18°C, (V5
) > (Vt) Tonatte microcomputer (4
! Since the input terminal (IN, ) of 9 is rhJ, the process proceeds to step (S2) and the output terminal (OUT, ) (OUT3
) becomes rJJ and triggers the triac (41) and triac (43) to operate the compressor and the main blower utuc- to perform a cooling operation.This cooling operation causes the temperature (TF, ) to drop and TF, ), the process progresses from step (Sl) to step (S, ), where -22℃
If it is higher than the lower limit temperature (TF, , ), the process proceeds to step (S,) and compares the temperature (TFN-,) at the previous sampling time with (TF ory ). At this time, (TF, -1> was greater than or equal to (TF,,l), so proceed from step (S,) to (S,) to continue cooling operation, and although (TF) continued to decrease, CTPOll> or less Then, <■Z)>(V, ), and the input terminal (IN
, ) becomes rlJ, the process proceeds to step (S,) and the main blower αe and compressor are stopped. After that, when the temperature (TF) of the freezer compartment (n) gradually rises and exceeds (TFory), the process proceeds from step (S,) to (S4).
*−+ ) is less than or equal to (TF,,,), so the step (
The compressor (4) and the main blower (161 remain stopped).Then, when the temperature rises further and the temperature exceeds (TF, ,), the process advances from step (S,) to (S2) and cools down again. Operation is started.Repeat the above steps until the freezer compartment (inside E is on average, for example -2
It is cooled to 0°C or the like. FIG. 5 is a temperature control flowchart for the refrigerator room (temperature control). In step (S7), the current temperature (T R *)
When the temperature is higher than the upper limit temperature (TR, , ) such as °C, (Ve)>(■
3), and the input terminal (INs) is rhJ, so proceed to step (S,), open the electromagnetic damper C15+, and supply cold air to the refrigerator compartment (Winai). After that, (TR,) becomes (T
RoN) or lower, proceed from (S,) to (S, O),
At this time, since (T &-+) is higher than (TR,,), the process proceeds to step (S8) and the electromagnetic damper t3 remains open. After that, when (TR,) becomes less than (TROyr) such as +l'C, the input terminal (INS) becomes rJJ and step (S9
) to (8+1) and the output terminal (OUT2) is r
hJ and close the electromagnetic damper (c). After that, even if (TR,) becomes more than (TR,,,) again, (TR,1
-t) was below (TR,,,), so step (
Proceeding from Sso) to (So), electromagnetic Danno<-aS remains closed. After that, when (TR,) becomes more than (TR,,), (VI ri>(Vs)), so step (S
, ) to (S,)K and open the electromagnetic damper (g) again. By repeating this, the inside of the refrigerator compartment (R) is maintained at +3°C or the like. Next, temperature control of compartment I will be explained with reference to FIGS. 6 and 7. FIG. 7 shows a flowchart for switching the set temperature of the compartment (2). When the select switch (SWI) is closed, the process advances from step (S, 2) to (Sts), and the set temperature (TH,) of compartment 0 is changed to the fruit temperature (TH,
). At this time, the upper limit temperature (THo,) is -1°C, the lower limit temperature (TH, , ) is -2°C, and the average temperature (TH,) is -1.5°C. This -1.5°C is the freezing storage temperature of fruits such as apples. Next, when (SW, ) is closed, the process proceeds from step (S, 4) to (S+ll), and (TH,) becomes the temperature for meat and fresh fish (THM). At this time, the upper limit temperature (
THo,) is -0.5℃, lower limit temperature (THo F F
) is -1.5°C, and the average temperature (THM) is -1°C. This -1°C is the freezing storage temperature for meat, fresh fish, etc. When (SW, ) is closed, (SW, ) (Sl2) is open, so proceed from step (814) to (S,, ) and (
TH,) is the temperature for vegetables (THv), and the upper limit temperature (
TH,,) is 0°C, the lower limit temperature (TH,,) is -1°C, and the average temperature (TH,) is -0.5°C. This -0
, 5℃ is the freezing storage temperature of vegetables. In this way, an ice temperature storage space is constructed. Here, the freezing temperature storage temperature is a temperature range that is below freezing but does not freeze the product. By storing the product at this temperature, the flavor will not be lost, there is no need to thaw it, and the product can be stored for a long period of time (experimental experiments). It can be stored for about a week. Next, FIG. 6 is a flowchart of the temperature control of the compartment αl. In step (817), the current temperature (TH,) is (
When the voltage is above TH, , ), the input terminal (
Since IN,) is rhJ, proceed to step (Sts), set the output terminal (OUT4) to r/J, and operate the auxiliary blower (3I).After that, when (THN) falls below (TH,,), step (Sts ) to (Sto) (S
2゜), and at this time (THN I) becomes (T Ha N
), so from step (S2.) to (S□)
Proceed to. After that, when (TH,) becomes less than (THoyy), (V,)>(V4), so proceed to step (821) and turn on the auxiliary blower G! Stop J. After that, when the temperature (TH,) in compartment 0 rises and becomes higher than (THo,, ), the process proceeds from step (Sho) to (S20), but (THw -1) is less than (TH,,, ). Since there was, I proceeded to step (Stt) and pulled the auxiliary blower G and kept it stopped. After that, the temperature (THN) increases on the page (
When the temperature exceeds THo*), the process proceeds from step (s+'r) to (S,A), the auxiliary blower OI is operated, and the process is repeated thereafter. In this way, the selection switch (
The temperature is controlled on average to the desired set temperature (TH,) set by SW, ) (s'L) (SW3). As mentioned above, the inside of compartment 0 is maintained at freezing temperature storage temperature by indirect cooling from cold air passage (1). Therefore, drying of the food is also suppressed.Furthermore, compartment 0 is insulated from other internal spaces by a partition plate (9) or a partition wall (5), etc., and the auxiliary fan 01 is controlled by the temperature of compartment I. Therefore, the temperature of compartment 0 can be maintained stably and well in the relatively narrow ice temperature storage temperature range.Furthermore, the set temperature in compartment B can be changed depending on the type of food stored, and each ice Since it can be set to a warm storage temperature, food can be stored even better.Furthermore, when the temperature in compartment 0 rises, only the auxiliary blower OI is operated, so it can be used while the compressor is stopped. The cooler (151) can effectively utilize the residual cold air around it, and the increase in energy consumption can be kept to a minimum. In other words, since the storage temperature is at freezing temperature, small fish that impair the flavor of the food (can be stored for a relatively long period of time.
An auxiliary blower is provided for cooling the compartment, and its operation is controlled to control the temperature of the compartment, so the temperature inside the compartment can be maintained stably within a relatively narrow water temperature storage temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は不発明の実施例を示したもので、第
1図は区画室後部の拡大断面図、第2図は電気回路図、
第3図は第2図の機能ブロック図、第4図乃至第7図は
マイクロコンピュータのソフトウェアを示すフローチャ
ートの図、第8図は冷蔵庫の概略側断面図である。 (1B・・・冷気通路、 +151・・・冷却器、 (
161・・・主送風機、(31・・・補助送風機、 ■
・・・区画室、(TC)・・・温度制御装置。 出願人 三洋電機株式会社 外1名 代理人 弁理士 佐 野 静 夫 第1図
Figures 1 to 8 show an embodiment of the invention, in which Figure 1 is an enlarged sectional view of the rear part of the compartment, Figure 2 is an electric circuit diagram,
FIG. 3 is a functional block diagram of FIG. 2, FIGS. 4 to 7 are flowcharts showing the software of the microcomputer, and FIG. 8 is a schematic side sectional view of the refrigerator. (1B...cold air passage, +151...cooler, (
161... Main blower, (31... Auxiliary blower, ■
... Compartment, (TC) ... Temperature control device. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Shizuo Sano Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、冷却器によって冷却された冷気を主送風機によって
庫内に循環して冷却する冷蔵庫に於いて、前記庫内に区
画形成された区画室と、該区画室を冷却する為の冷気通
路と、該冷気通路に前記冷気を強制循環せしめる補助送
風機とを有しており、所定の温度制御装置にて前記補助
送風機を運転する事により前記区画室内の温度を氷温貯
蔵温度帯に維持する様に構成した冷蔵庫。
1. In a refrigerator in which cold air cooled by a cooler is circulated into the refrigerator by a main blower, a compartment is formed in the refrigerator, and a cold air passage for cooling the compartment; The cold air passage has an auxiliary blower for forcibly circulating the cold air, and by operating the auxiliary blower with a predetermined temperature control device, the temperature inside the compartment is maintained in the freezing temperature storage temperature range. Refrigerator configured.
JP9164784A 1984-05-07 1984-05-07 Refrigerator Pending JPS60233479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9164784A JPS60233479A (en) 1984-05-07 1984-05-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9164784A JPS60233479A (en) 1984-05-07 1984-05-07 Refrigerator

Publications (1)

Publication Number Publication Date
JPS60233479A true JPS60233479A (en) 1985-11-20

Family

ID=14032308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9164784A Pending JPS60233479A (en) 1984-05-07 1984-05-07 Refrigerator

Country Status (1)

Country Link
JP (1) JPS60233479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133251A (en) * 2015-01-19 2016-07-25 株式会社東芝 refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133251A (en) * 2015-01-19 2016-07-25 株式会社東芝 refrigerator

Similar Documents

Publication Publication Date Title
US4569205A (en) Electric refrigerator having improved freezing and defrosting characteristics
US3449919A (en) Refrigerator with automatic ice cube maker
JPS60233479A (en) Refrigerator
JPS60216167A (en) Refrigerator
JPH10288441A (en) Refrigerator
JPH0610576B2 (en) refrigerator
JPS60216164A (en) Refrigerator
JPS60216168A (en) Freezing refrigerator
JPH0445013Y2 (en)
JPS60216165A (en) Refrigerator
JPS60205163A (en) Refrigerator
US2356612A (en) Temperature-responsive control mechanism, especially for refrigerating apparatus
KR890004525B1 (en) Refrigerator with freezing chamber
JP2516932B2 (en) refrigerator
JPH10332242A (en) Refrigerator
JPS60216161A (en) Freezing refrigerator
JPS60232468A (en) Refrigerator
JPS60223977A (en) Refrigerator
JPS60218571A (en) Refrigerator
JPH0427475B2 (en)
JPS60216166A (en) Refrigerator
JPS60218570A (en) Refrigerator
JPS60216162A (en) Refrigerator
JPS60223978A (en) Refrigerator
JPH0117021Y2 (en)