JPS60232827A - Wire electric discharge machine - Google Patents

Wire electric discharge machine

Info

Publication number
JPS60232827A
JPS60232827A JP8862684A JP8862684A JPS60232827A JP S60232827 A JPS60232827 A JP S60232827A JP 8862684 A JP8862684 A JP 8862684A JP 8862684 A JP8862684 A JP 8862684A JP S60232827 A JPS60232827 A JP S60232827A
Authority
JP
Japan
Prior art keywords
axis
workpiece
magnifications
wire
multiplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8862684A
Other languages
Japanese (ja)
Inventor
Masashi Koyama
雅司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8862684A priority Critical patent/JPS60232827A/en
Publication of JPS60232827A publication Critical patent/JPS60232827A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • B23H7/065Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To facilitate amendment of the finishing dimensions of a workpiece having different shrinkage rates in the X axis and in the Y axis by multiplying driving shafts of a driving unit for controlling relative movement between a wire electrode and a workpiece by magnifications specific to the respective shafts. CONSTITUTION:In a wire discharging machine, when calculation of each shaft travel data is performed, magnifications are independently determined for the X axis and y axis, and travel information, after divided, is multiplied by the magnifications. In other words, when an input graph is to be machined at an S1 magnification in the X axis and at an S2 magnification in the Y axis, the input travel information is at first divided into minute sections and then the information in the X axis is multiplied by S1 to be sent to a pulse distributing circuit. Thus constructed in such a way as to multiply driving shafts of a driving unit for controlling relative movement between a wire electrode and workpiece by magnifications specific to the respective shafts, amendment of the finishing dimensions of the workpiece having different shrinkage rates in the X axis and Y axis can be easily executed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、被加工物に対して、ワイヤ電Wk微少間隙
を介して対向させ、被加工物とワイヤ電極との間にパル
ス性の放電を繰り返し発生させ、放電エネルギーにより
被加工物を切断加工するワイヤ放電加工装置に関し、特
に、ワイヤ電極と被加工物との相対移動?司どる駆呻装
置の駆動軸に各軸独立な倍率機能を備えたワイヤ放電加
工装置に関するものである、 〔従来技術〕 ワイヤ放電加工装置は、硬い金属等の複雑な切断加工を
精度良く容易に行うことができる利点を有するものとし
て周知であり、第1図はその概略図である。同図の装部
において、テーブル(1)は、被加工物(2)を搭載し
、ワイヤ電極(3)に対して相対運動?与えるサーボモ
ータ(4)及び送りねじ(一般的にはポールネジ(5)
が使用される)が連結されている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to a method in which a wire electrode Wk is opposed to a workpiece through a small gap, and a pulsed electric discharge is generated between the workpiece and the wire electrode. Regarding wire electrical discharge machining equipment that repeatedly generates electrical discharge energy to cut a workpiece, in particular, is there any relative movement between the wire electrode and the workpiece? This relates to a wire electrical discharge machining device that has an independent magnification function for each axis of the driving shaft of the controlling drive device. [Prior art] The wire electrical discharge machining device can easily perform complex cutting operations on hard metals, etc. with high precision. It is well known as having the advantage that it can be carried out, and FIG. 1 is a schematic diagram thereof. In the mounting section shown in the figure, the table (1) carries the workpiece (2) and moves relative to the wire electrode (3). A feeding servo motor (4) and a feed screw (generally a pole screw (5)
) are concatenated.

そして、数値制御装置(6)の移動指令によってXY?
’[11方向に移動する。なお、第1図の装置はセミク
ローズド方式であり1回転角位置検出器(7)の出力が
数笛制御!@(6)にフィードバックする方式である。
Then, by the movement command of the numerical control device (6), the XY?
'[Move in 11 directions. The device shown in Figure 1 is a semi-closed system, and the output of the one-rotation angle position detector (7) is controlled by several whistles! This is a method of feeding back to @(6).

XYテーブルの移動に際しては第2図に示すように情報
を読み込み、その情報が移動指令の場合には各軸の移動
指令を演算する。テーブル0ηの移動距離はパルス分配
回路(8)からの指令ノくルス数に比例する。そこで、
従来の各軸同一倍率機能を用いて入力図形を8倍した図
形の切断加工をする場合にはパルス分配回路(8)より
X軸、Y軸各々S倍の指令パルスを出力するように各軸
移動データ演算段階(Pl)で処理する。そして、パル
ス分配器(8)からの出力をディジタル位相変調回路(
9)で貧訳し1回転角位置検出器(7)との位相が一致
するまで、サーホ増巾器α0で信号を増巾し、サーボモ
ータ(4)を駆動してXYテーブルαηを動がし、入力
図形の8倍の図形を切断加工する。
When moving the XY table, information is read as shown in FIG. 2, and if the information is a movement command, movement commands for each axis are calculated. The moving distance of the table 0η is proportional to the number of command pulses from the pulse distribution circuit (8). Therefore,
When cutting a figure that is 8 times the input figure using the conventional same magnification function for each axis, the pulse distribution circuit (8) outputs command pulses S times as many for the X and Y axes for each axis. It is processed in the movement data calculation stage (Pl). Then, the output from the pulse distributor (8) is transferred to the digital phase modulation circuit (
9), amplify the signal with the servo amplifier α0 until the signal matches the phase with the one-rotation angle position detector (7), and drive the servo motor (4) to move the XY table αη. , cuts a figure eight times the size of the input figure.

第8図は第2図中の各軸移動データ演算(Pl)の部分
で処理される内容を図示したものである、入力図形Is
倍して加工する際には第8図(a)のように入力された
移動情報をX軸方向、Y軸方向にそれぞれ8倍する。次
にその移動情報を等間隔の微小移動情報に分割し、パル
ス分配回路(8)に入力する。第8図(ロ)は四角形の
場合であるが、入力(2)形(斜線部分)の8倍の図形
を加工する際には、X、Yをそれぞれ8倍したSX、S
Y2等間隔のΔlに分割し、パルス分配回路(8)に入
力する。第8図(Q)は円弧の場合であるが、入力円弧
Ll 1ff:8倍し、加工内張L2とする。その円弧
を微小中心角Δθで分割し、等間隔のΔlに分割して、
パルス分配回路(8)に入力する。
FIG. 8 illustrates the contents processed in the movement data calculation (Pl) part of each axis in FIG. 2.
When processing by multiplying, the movement information inputted as shown in FIG. 8(a) is multiplied by eight in the X-axis direction and the Y-axis direction, respectively. Next, the movement information is divided into minute movement information at equal intervals and input to the pulse distribution circuit (8). Figure 8 (b) shows the case of a rectangle, but when processing a figure that is 8 times the size of the input (2) shape (shaded area),
The signal is divided into Y2 equal intervals Δl and input to the pulse distribution circuit (8). FIG. 8(Q) shows the case of a circular arc, and the input circular arc Ll 1ff is multiplied by 8 and set as the machining lining L2. Divide the arc by a small central angle Δθ, divide it into equally spaced Δl,
Input to pulse distribution circuit (8).

従来の装置は以上のようにワイヤ電極と被加工物との相
対移動を司どる駆動装置の駆動軸に対し、各軸(X軸、
Y軸)とも同一の倍率機能であり。
As described above, in the conventional device, each axis (X-axis,
(Y-axis) have the same magnification function.

各軸独立に倍率を設定できず、被加工物の残留応力によ
る変形あるいは被加工物が方向性を持ち収縮率が異なる
際には被加工物の仕上がり寸法がX方向とY方向で異な
るなどの問題があった。
It is not possible to set the magnification independently for each axis, and if the workpiece is deformed due to residual stress or the workpiece has directionality and the shrinkage rate is different, the finished dimensions of the workpiece may be different in the X and Y directions. There was a problem.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来の問題点を除去するために
なされたもので、ワイヤ電極と被加工物との相対移動を
司どる駆動装置の駆動軸に対し、各軸独立に倍率を掛け
ることにより、被加工物の残留応力による変形の補正あ
るいはX軸方向とY軸方向で収縮率が異なる被加工物の
仕上がり寸法の補正を容易にできる放電加工装置を提供
するものである。
This invention was made in order to eliminate the above-mentioned conventional problems, and it involves multiplying the drive shafts of the drive device that controls the relative movement between the wire electrode and the workpiece by multiplying each axis independently. Accordingly, it is an object of the present invention to provide an electric discharge machining apparatus that can easily correct deformation of a workpiece due to residual stress or correct the finished dimensions of a workpiece whose shrinkage rates differ in the X-axis direction and the Y-axis direction.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明による装置の実施例であり、第8図と
同様、第2図中の各軸移動データ演算(Pl)部分での
処理内容を示す。
FIG. 4 shows an embodiment of the apparatus according to the present invention, and similarly to FIG. 8, it shows the processing contents in the axes movement data calculation (Pl) portion in FIG. 2.

第4図(へ)は、X軸方向とY軸方向の2方向に独立の
倍率を設けていること及び、移動情報を分割した後に1
倍率を掛けている点が従来方式の第8図(a)と相異す
る。即ち、入力図形f:x軸方向にS+倍、Y軸方向に
82倍して加工する際には、入力された移動情報を初め
に微小区間に分割し、次にX軸方向に81倍、Y軸方向
に82倍してパルス分配回路(8)に入力する。
Figure 4 (f) shows that independent magnification is provided in two directions, the X-axis direction and the Y-axis direction, and that after dividing the movement information,
This differs from the conventional method shown in FIG. 8(a) in that it is multiplied by a magnification. That is, when processing the input figure f: multiplying by S+ in the x-axis direction and 82 times in the Y-axis direction, the input movement information is first divided into minute sections, then 81 times in the X-axis direction, The signal is multiplied by 82 in the Y-axis direction and input to the pulse distribution circuit (8).

第4図(至)は四角形の場合であるが、入力図形(斜線
部分)IX軸方向、Y軸方向に各々S1.S2倍した固
形を加工する際には、X、Yをそれぞれ等間隔Δ(1+
 / に分割した後、Δl+/ をX軸方向にS+倍、
Y軸方向に82倍したΔZ’+Δ12の分割された移動
情報ケパルス分配回路(8)に入力する。
FIG. 4 (to) shows the case of a rectangle, and the input figure (hatched area) has S1. When processing a solid that is multiplied by S2, set X and Y at equal intervals Δ(1+
/ After dividing, Δl+/ is multiplied by S+ in the X-axis direction,
The movement information divided by ΔZ'+Δ12 multiplied by 82 in the Y-axis direction is input to the kepulse distribution circuit (8).

第4図<a)は円弧の場合であり、円弧Ll 1kX軸
方向に81倍、Y軸方向に81倍した線分L2を加工す
る際には円弧を微小中心角Δθで分配し、等間隔の円弧
Δl′に分割した後、X軸方向に81倍、Y軸方向に8
2倍して線分Δ11.Δ12とする。
Fig. 4<a) shows the case of a circular arc. When processing the line segment L2, which is 81 times the arc Ll 1k in the X-axis direction and 81 times the Y-axis direction, the arc is divided by minute central angles Δθ and spaced at equal intervals. After dividing into arcs Δl', 81 times in the X-axis direction and 8 times in the Y-axis direction
Double the line segment Δ11. Let it be Δ12.

そして、この分割された移動指令をパルス分配回路(8
)に入力する。
Then, this divided movement command is sent to a pulse distribution circuit (8
).

以上のような方法によF)X、−f軸独立の倍率機能を
もたせることができる。
By the method described above, it is possible to provide independent magnification functions for the F)X and -f axes.

なお、第4(2)(a)の方法ではなく、第3図6)の
従来方式によりxY各軸独立に倍率様能を設けた場合、
四角形は同様に処理可能であるが円弧の場合には問題と
なる。即ち、円弧をX軸方向、Y軸方向に各々S+ 、
 81倍(S+H32)すると楕円軌跡上の線分となる
がこれを円弧のアルゴリズムで、微小線分に分割する処
理が不可能となる。
In addition, if the magnification function is provided independently for each of the x and y axes using the conventional method shown in Fig. 3, 6), instead of using the method described in Section 4 (2) (a),
Rectangles can be processed in the same way, but circular arcs pose a problem. That is, the arc is S+ in the X-axis direction and the Y-axis direction, respectively.
Multiplying by 81 (S+H32) results in a line segment on an elliptical locus, but it is impossible to divide this into minute line segments using the arc algorithm.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ワイヤ電lと被加工
物との相対移l!Iを司どる駆動装置の駆動軸に対し、
各軸独立に倍率を掛けるように構成したので被加工物の
残留応力による変形あるいは軸方向により収縮率の異な
る被加工物の仕上がり寸法の補正を容易にし1円滑に切
断加工を実施できる効果がある。
As described above, according to the present invention, the relative displacement l between the wire electric current l and the workpiece is l! For the drive shaft of the drive device that controls I,
Since the magnification is applied independently to each axis, it is easy to correct the deformation of the workpiece due to residual stress or the finished dimensions of the workpiece, which has different shrinkage rates depending on the axial direction. 1. This has the effect of allowing smooth cutting. .

【図面の簡単な説明】[Brief explanation of drawings]

@1図は放電加工装置の概略構成図、第2図はCNC動
作フローチャート、第8図は従来の各軸移動データ演算
の処理方向及び説明図、第4図1はこの発明の賽施例に
よる各軸移動データ演算の処理方法及び監;開口である
。 図中、(1)はデープル、(2)は被1TJI物、(3
)はワイヤ電極、(4)はサーボモータ、(5)はポー
にネジ、 (fI)は数値制御装置、(7)は回転角位
置検出器、(8)はパルス分配回路、(9)はディジタ
ル位相V調回路、α0はサーボ増巾器、09はXYテー
ブル、(2)は各軸移動処理である。 代罪人 大岩増雄 第2図 第3図 第4図 (αン (0−ン (し) (b) (() (C)
@Figure 1 is a schematic configuration diagram of the electric discharge machining device, Figure 2 is a CNC operation flowchart, Figure 8 is a diagram showing the processing direction and explanatory diagram of the conventional movement data calculation for each axis, and Figure 4 Figure 1 is an example of the present invention. Processing method and supervision of each axis movement data calculation; opening. In the figure, (1) is a daple, (2) is a TJI object, (3
) is the wire electrode, (4) is the servo motor, (5) is the screw on the port, (fI) is the numerical controller, (7) is the rotation angle position detector, (8) is the pulse distribution circuit, (9) is A digital phase V adjustment circuit, α0 is a servo amplifier, 09 is an XY table, and (2) is each axis movement process. Representative sinner Masuo Oiwa Figure 2 Figure 3 Figure 4 (αn (0-n (shi) (b) (() (C)

Claims (1)

【特許請求の範囲】[Claims] 被加工物に対してワイヤ電gi!を微少間it介して対
向させ、所定の移動パルスに基づいて被加工物とワイヤ
電衝とを相対移動させながら、放電エネルギーによフ被
加工物を切断加工するワイヤ放電加工装置において、上
記ワイヤ電極と被加工物との相対移動を司どる駆動装置
の駆動軸に各軸独立な倍率機能をもたせたことを特徴と
するワイヤ放電加工装置。
Wire electric gi to the workpiece! In the wire electrical discharge machining apparatus, the wire electrical discharge machining apparatus cuts a workpiece using electrical discharge energy while relatively moving the workpiece and the wire electric shock based on a predetermined movement pulse. A wire electric discharge machining device characterized in that a drive shaft of a drive device that controls relative movement between an electrode and a workpiece is provided with an independent magnification function for each axis.
JP8862684A 1984-05-02 1984-05-02 Wire electric discharge machine Pending JPS60232827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8862684A JPS60232827A (en) 1984-05-02 1984-05-02 Wire electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8862684A JPS60232827A (en) 1984-05-02 1984-05-02 Wire electric discharge machine

Publications (1)

Publication Number Publication Date
JPS60232827A true JPS60232827A (en) 1985-11-19

Family

ID=13948012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8862684A Pending JPS60232827A (en) 1984-05-02 1984-05-02 Wire electric discharge machine

Country Status (1)

Country Link
JP (1) JPS60232827A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145989A (en) * 1974-04-22 1975-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145989A (en) * 1974-04-22 1975-11-22

Similar Documents

Publication Publication Date Title
EP0440805B1 (en) Feed speed control method of numeric controller
JPH11149306A (en) Controller for finishing machine
JPH01197084A (en) Power control method for cnc laser beam machine
US4476369A (en) EDM Method of and apparatus for machining cavities using a plurality of independently movable segmented electrodes
WO1988010171A1 (en) Acceleration/deceleration controller
EP0851328B1 (en) Superposition control method using numerical controller
JPH01257545A (en) Method and device for controlling position of tool capable of being moved along linear axis
JPS60232827A (en) Wire electric discharge machine
JP2914101B2 (en) Wire electric discharge machining method and apparatus
EP0068819B1 (en) Method and apparatus for controlling an electric discharge machine
JPS59227327A (en) Electrode backward control system for electric discharge machine
JPH07152417A (en) Tool path and tool feeding speed control system for numerical controller
JPS639931B2 (en)
JPH07210225A (en) Numerical controller
JPH04764B2 (en)
JPH02179373A (en) Nc controller for laser beam machine
JPS6354487B2 (en)
JPH01135429A (en) Speed control of numerical control device
JPH03117519A (en) Wire electric discharge machining
EP0098126A2 (en) Method and apparatus for controlling direction reversal in electric discharge machines
JPH0761557B2 (en) Laser processing equipment
JPS60160407A (en) Numerical controller
JPS61146419A (en) Electric discharge machine
JPH1076429A (en) Wire electrical discharge machining device and machining method thereof
JP2640467B2 (en) Numerical control unit