JPS6023193A - Method of thermally filling non-carbonated beverage - Google Patents

Method of thermally filling non-carbonated beverage

Info

Publication number
JPS6023193A
JPS6023193A JP58124366A JP12436683A JPS6023193A JP S6023193 A JPS6023193 A JP S6023193A JP 58124366 A JP58124366 A JP 58124366A JP 12436683 A JP12436683 A JP 12436683A JP S6023193 A JPS6023193 A JP S6023193A
Authority
JP
Japan
Prior art keywords
pressure
gas
filling
temperature
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58124366A
Other languages
Japanese (ja)
Inventor
菊池 靖
林 晴夫
大草 昭
亀田 敏典
富川 幸郎
正幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP58124366A priority Critical patent/JPS6023193A/en
Publication of JPS6023193A publication Critical patent/JPS6023193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 技術分野 本発明は果汁、コーヒー、ワイン、ココア、紅茶、日本
酒、スープ、茶、麦茶、スポーツドリンク、ミネラルウ
ォーター等の非炭酸飲料、いわゆるノンガスの飲料をア
ルミ缶等の軟質缶に比較的高温にて充填する方法に関す
る。
[Detailed Description of the Invention] Technical Field The present invention provides non-carbonated beverages such as fruit juice, coffee, wine, cocoa, black tea, Japanese sake, soup, tea, barley tea, sports drinks, and mineral water, so-called non-gas beverages, in aluminum cans and the like. This invention relates to a method for filling soft cans at relatively high temperatures.

従来技術 一般に、軟質缶、典型的にはアルi 製D s缶はスチ
ール缶に比べて缶重量が大幅に軽減され、また2ピ一ス
缶による積重ね形状(スタック。
Prior Art In general, soft cans, typically aluminum Ds cans, are significantly lighter in can weight than steel cans, and can also be stacked with two-piece cans.

イン)やネックイン加工が容易であり、回収再資源化の
効率が高く、さらには製品品質の向上が期待できるとこ
ろから、ビール、サイダー等の多量の炭酸ガスを含有す
る炭酸飲料用としてスチール、ブリキ裂の缶Kかわって
多用されている。しかしながら、これらアルミ缶等の軟
質缶は炭酸飲料を充填する場合にあってはこれら飲料中
に多量に含まれる炭酸ガスの分圧により光」1巻締後の
缶内圧力が飲用時の冷却温度においてもかなり高くなっ
ており、この炭酸ガスの分圧が大気圧に抗して缶の形状
を保持することができるが、非炭酸飲料用容器として使
用する場合には炭酸飲料におけるような分圧が期待でき
ないことから充填巻締後の冷却に伴って缶内圧力が明ら
かに大気圧以下となってしまい、耐圧強度の小さいアル
ミ缶等の軟質缶の弱点が露呈され、缶形状を保持し得な
くなって変形が生じ、あるいは握持した時の指圧により
容易に変形する欠点を有するものである。従って、特に
アルミ缶等は種々の利点があるにも拘らず、非炭酸飲料
用容器として一般に使用されるまでには至っていない現
状にある。
Steel is used for carbonated beverages containing a large amount of carbon dioxide such as beer and cider because it is easy to perform neck-in processing and has high recovery and recycling efficiency, and can also be expected to improve product quality. It is often used in place of the tin-split can K. However, when these soft cans such as aluminum cans are filled with carbonated beverages, the partial pressure of carbon dioxide gas contained in large amounts in these beverages causes the internal pressure after one roll to rise to the cooling temperature at the time of drinking. The partial pressure of carbon dioxide gas is able to maintain the shape of the can against atmospheric pressure, but when used as a container for non-carbonated beverages, the partial pressure As a result, the pressure inside the can clearly drops below atmospheric pressure as it cools down after filling and seaming, exposing the weaknesses of soft cans such as aluminum cans, which have low pressure resistance, and are unable to maintain their can shape. It has the disadvantage that it becomes deformed when it is lost, or that it easily deforms due to finger pressure when gripped. Therefore, although aluminum cans and the like in particular have various advantages, they are not yet commonly used as containers for non-carbonated beverages.

これに対し、非炭酸飲料をアルミ缶等の軟質缶に充填す
るだめの試みが散見される。これらの試みとして例えば
、稠合した非炭酸飲料を95℃前後の温度で殺菌加熱し
た後、飲料を5℃以下に冷却し、この冷却した温度でN
、ガスを溶解せしめて充填巻締し、次いで60℃に再加
熱してカビ、細菌を滅菌する方法が挙げられている(特
開昭56−72675号公報)。しかし、この発明は飲
料に穐ガスを溶解せしめ、この飲料を缶に充填するのに
5℃以下という極めて低い充填温度で行わなければなら
ず、しかも充填巻締後に滅菌のため再加熱しなければな
らず、省エネルギー的にもロスが大きく実用的なもので
はない。
In response, attempts have been made to fill non-carbonated beverages into soft cans such as aluminum cans. In these attempts, for example, after sterilizing and heating a concentrated non-carbonated beverage at a temperature of around 95°C, the beverage is cooled to below 5°C, and at this cooled temperature, N
, a method is mentioned in which gas is dissolved, filled and sealed, and then reheated to 60° C. to sterilize mold and bacteria (Japanese Patent Application Laid-open No. 72675/1983). However, in this invention, the beverage has to be dissolved with sulfur gas, and the beverage must be filled into cans at an extremely low filling temperature of 5°C or less, and furthermore, it must be reheated for sterilization after filling and sealing. Moreover, it is not practical because it causes a large loss in terms of energy saving.

また、飲料を充填した巻締前の缶体内へ液化N、を滴下
するとともにN。ガスを吹き付け、巻締する方法も提案
されている( %開閉56−4521号公@)が、この
発明では液化N、の制御が田畑であり、当該技術分野に
おいて工業的には全〈実施されていない。
In addition, liquefied N was dripped into the can filled with the beverage before it was sealed. A method of blowing gas and tightening has also been proposed (% Opening and Closing Publication No. 56-4521@), but in this invention, the control of liquefied N is difficult, and it has not been fully implemented industrially in the technical field. Not yet.

さらに本件の発明者らの一部はN、ガスとともに極く微
量のCO,ガスを混合した混合ガスを溶解せしめる充填
方法な先に提案した(特開昭52−99183号公報)
e、シかしながら、この発明では単に飲料に溶解−)]
:LめるガスとしてN!ガスに微量のCO!ガスを混合
した混合ガスを用いることによりこの微量含有したCO
,ガスによる分圧を利用して缶内圧力を高め、大気圧下
でも缶体の変形が防止し得るのではないかとの推111
jに基づく着想の域を出ず、またこの方法ではその具体
的充填条件1例えば充填温度、混合ガス中のC偽比率、
あるいは混合ガスの溶解時における加圧力等については
全く未知であり、工業的に実施し得るまでには至ってい
ないものである。
Furthermore, some of the inventors of the present invention have previously proposed a filling method in which a mixed gas consisting of a very small amount of CO and gas is dissolved together with N and gas (Japanese Patent Laid-Open No. 52-99183).
However, in this invention, it is simply dissolved in the beverage.
:L as a gas! Trace amount of CO in gas! By using a mixed gas, this trace amount of CO contained can be removed.
, it is speculated that it is possible to increase the pressure inside the can using the partial pressure caused by the gas and prevent the deformation of the can even under atmospheric pressure111
In this method, specific filling conditions 1 such as filling temperature, carbon false ratio in the mixed gas,
In addition, the pressure applied when the mixed gas is dissolved is completely unknown, and it has not yet been possible to implement it industrially.

このような現状に鑑み、本発明者らは非炭酸飲料をアル
ミ缶等の軟質缶に充填するに際し、iJ、i1合後、加
熱滅菌した飲料にN、ガスと加圧溶解後に非炭酸飲料の
範晴に入る味覚間値内に収まる微匍二のCO,ガスとを
溶存させて充填うることにより巻締後に缶体の形状を保
持しイυる充填時の合目的条件並びにその方法を提案し
、出願した(特願昭58−19157号)。
In view of this current situation, the present inventors have proposed that when filling non-carbonated beverages into soft cans such as aluminum cans, after iJ and i1, heat-sterilized beverages are dissolved with N and gas under pressure, and then the non-carbonated beverages are dissolved. We propose a suitable filling condition and method that will maintain the shape of the can body after seaming by filling with a small amount of dissolved CO and gas within the average taste value. and filed an application (Japanese Patent Application No. 58-19157).

この方法によれば、非炭酸飲料の軟質缶への充填に際し
、N、ガスおよび001カスの飲料中・\の加圧溶解時
の各条件を容易に設定することができるが、ガスの加圧
溶解時の加圧力が充填ラインのすべてに負荷されるため
、炭酸飲料充填ラインの耐圧限度を越える圧力を選択す
るには充填ラインの各工程部材5例えばザージタンク、
途中の各ライン、バルブ等の部材すべてをこれら圧力に
耐え得る耐圧容器もしくは部材とし1’Lければならな
かった。従って、この方法を特別な耐圧構造としたライ
ンを用いずに通常の炭酸飲料充填ラインに適用する場合
には、いきおいガスの溶解時用圧力を比較的低圧、例え
ば4aLm程度としなげればならず、このような溶解時
用圧力によればガス溶解時の飲料温度、換言すれば充填
温度も必然的に低温度としなけれはならなくなり、所期
の高温(熱)充填による熱効率の向上は必ずしも充分満
足すべきものとはいえなかった、 発明の目的 しかして本発明の目的は、調合後、加熱滅菌した非炭酸
飲料にN、ガスと加圧溶解後に非炭酸飲料の範躊に入る
味覚1’4]値内に収する微量のCo、ガスとを比較的
高温度で溶解し得る温度、溶解時用圧力、ガスのCO2
比率の各合目的条件を設定し得、充填巻締後に缶体の形
状を保持し得る熱充填方法を提供することにある。
According to this method, when filling soft cans with non-carbonated beverages, it is possible to easily set conditions for dissolving N, gas, and 001 residue in the beverage under pressure. Since the pressurizing force during melting is applied to all the filling lines, in order to select a pressure that exceeds the pressure limit of the carbonated beverage filling line, each process member 5 of the filling line, such as a serge tank,
All lines, valves, and other members along the way had to be made into pressure-resistant containers or members of 1'L that could withstand these pressures. Therefore, when applying this method to a normal carbonated beverage filling line without using a line with a special pressure-resistant structure, the pressure for dissolving the vital gas must be kept at a relatively low pressure, for example, about 4 aLm. According to such melting pressure, the beverage temperature during gas dissolution, or in other words, the filling temperature, must necessarily be kept low, and the improvement in thermal efficiency due to the desired high temperature (thermal) filling is not necessarily sufficient. However, the object of the present invention is to create a taste that falls within the category of non-carbonated beverages by dissolving N and gas under pressure in a heat-sterilized non-carbonated beverage after preparation. ] The temperature at which the trace amount of Co and gas can be dissolved at a relatively high temperature, the pressure for melting, and the CO2 of the gas
It is an object of the present invention to provide a hot filling method that can set appropriate ratio conditions and maintain the shape of the can body after filling and seaming.

本発明の他の目的はより高温充填を可能ならしめ、それ
により加熱滅菌工程、充填巻締工程およびその後の後殺
菌工程における熱損失を可及的に少くし、場合によって
は後殺菌工程を不要とし、省エネルギーを図り得る方法
を提供することにある。
Another object of the present invention is to enable higher temperature filling, thereby minimizing heat loss during the heat sterilization process, the filling and sealing process, and the subsequent post-sterilization process, thereby eliminating the need for a post-sterilization process in some cases. The objective is to provide a method that can save energy.

本発明の別の目的は特殊の設備を設けることなく、従来
の炭酸飲料充填機および充填ラインをそのtt利用し得
る方法を提供することにあり、それにより設備の有効利
用を図るとともに炭酸飲料訃よび非炭酸飲料の充填ライ
ン並びに缶の統一を図る妊ある。
Another object of the present invention is to provide a method that allows the use of conventional carbonated beverage filling machines and filling lines without the need for special equipment. There are plans to unify filling lines and cans for non-carbonated beverages and non-carbonated beverages.

構成 これら本発明の目的ないし課題は、円台後、加熱滅菌し
た非炭酸飲料に馬ガスおよびCO,ガスをそのCO,ガ
ス量が飲料の重量比”/10000以下の量で加圧溶解
せしめた後、この飲料を軟質缶に充填するに際し、充填
巻締後の缶内圧力と温度とを軸とする座標にプロットし
た場合の缶内圧力が5℃にて1.1atmO点を通る缶
内圧一温度曲線以上であり、且つ缶内に付着する菌の殺
菌温度において缶内圧力が8 atmの点を通る缶内圧
一温度曲線以下の缶内圧一温度曲線範囲を設定し、飲料
中に溶解せしめるガスのN、に対するCO,比率および
これらガスの飲料中への溶解時用圧力を変化させて充填
巻締した後の缶内圧力を前記座標にプロットし、前記缶
内圧一温度曲線範囲内に収する各温度、Co、比率pよ
び溶解時用圧力を予め選定して、これら湿度、CQ、比
率2工び溶解時用圧力にてガスをル(料中に溶解せしめ
、しかる後に充填ラインの途中に設けられた減圧部材に
より前記温度のまま減圧し、この温度にて飲料を充填し
、充填後、巻締工程までの間N、ガスもしくはco、ガ
スを含む不活性ガスを缶上面に吹き付はヘッドスペース
ノ領域をこれらガスに置換後、巻締めする方法により達
成される。
Structure The purpose or problem of the present invention is to dissolve horse gas and CO under pressure into a non-carbonated beverage that has been sterilized by heating after a round stand, in an amount where the amount of CO and gas is less than the weight ratio of the beverage "/10000". Then, when filling soft cans with this beverage, when the can internal pressure after filling and sealing is plotted on a coordinate axis with the can internal pressure and temperature as axes, the can internal pressure passes through the 1.1 atmO point at 5°C. The range of the can internal pressure-temperature curve is set to be above the temperature curve and below the can internal pressure-temperature curve passing through the point where the can internal pressure is 8 atm at the temperature for sterilizing bacteria adhering to the can, and the gas to be dissolved in the beverage is Plot the can internal pressure after filling and sealing by changing the ratio of CO to N and the pressure for dissolving these gases in the beverage on the above coordinates, and keep it within the range of the can internal pressure-temperature curve. Each temperature, Co, ratio p, and melting pressure are selected in advance, and the gas is dissolved in the material at these humidity, CQ, ratio 2, and melting pressure, and then placed in the middle of the filling line. The pressure is reduced at the above temperature using the provided pressure reducing member, and the beverage is filled at this temperature. After filling, an inert gas containing N, gas, or cobalt gas is not sprayed onto the top of the can until the seaming process. This is achieved by replacing the headspace region with these gases and then tightening the headspace.

本発明の好ましい態様によれば、非炭酸飲料中・\のガ
スの加圧溶解時に温度50〜93℃、好ましくは60〜
85℃、co1比率8〜12%、溶解時加圧力6〜11
 ptmの範囲内の条件を剋定し、その後、ライン途中
に設けられた減圧部材により圧力を1〜8 atmに低
下させ、これを充填し、巻締工程までの間K N、ガス
もしくはCO,ガスを含む不活性ガスを吹き付は巻締す
るものである。
According to a preferred embodiment of the present invention, the temperature during pressurized dissolution of the gas in the non-carbonated beverage is 50 to 93°C, preferably 60 to 93°C.
85℃, CO1 ratio 8-12%, pressure during melting 6-11
After determining the conditions within the range of ptm, the pressure is lowered to 1 to 8 atm by a pressure reducing member installed in the middle of the line, and filled with KN, gas or CO, until the seaming process. Spraying with an inert gas containing gas is used to tighten the seam.

このように本発明においては、非炭酸飲料を軟質缶に充
填し、巻締した後に缶体の形状を保持し得るガス々i解
時の合目的条件下においてガスを加圧溶解後、その圧力
を減圧部材により急激に低下させても飲料中に溶解した
ガスはすぐには蒸発もしくは噴出しないという従来の技
術常識からは全り卒期し得ILい過飽和平衡の現象を見
い出し、これら知見に基づき本発明をなすに至ったもの
である。
In this way, in the present invention, after filling a soft can with a non-carbonated beverage and sealing the can, a gas that can maintain the shape of the can is dissolved under pressure under the desired conditions. Based on these findings, we discovered the phenomenon of supersaturated equilibrium, which is completely different from the conventional technical knowledge that the gas dissolved in the beverage does not evaporate or blow out immediately even if it is rapidly reduced by a pressure reducing member. This led to the invention.

本発明において、充填の対象とするのは果汁、コーヒー
、紅茶、ココア、ワイン、日本酒、スープ、茶、麦茶、
スポーツドリン久ミネラルウォーメー等の非炭酸飲料、
いわゆるノンガスの飲料である。そしてこれら非炭酸飲
料は典型的にはアルミ缶である軟質缶に充填する。この
ように本発明で充填の対象とする飲料はあく才でも非炭
酸飲料であり、従って飲料中圧加圧溶解せしめるCO,
ガス量には自ずと制限がある。本発明は飲料中に加JE
溶解させるCO,ガスの飲料中への溶解針の上限を味覚
的に非炭酸飲料の範噂に入る辰、すなわち飲料に対し重
量比15/’1oooo以下とする。好ましくは重量比
5/10000以下とする。
In the present invention, the objects to be filled are fruit juice, coffee, black tea, cocoa, wine, sake, soup, tea, barley tea,
Non-carbonated drinks such as sports drink Kyu Mineral Warme,
It is a so-called non-gas beverage. These non-carbonated beverages are then filled into soft cans, typically aluminum cans. In this way, the beverage targeted for filling in the present invention is a non-carbonated beverage, and therefore CO, which is dissolved under pressure in the beverage, is
There is naturally a limit to the amount of gas. The present invention adds JE to beverages.
The upper limit of the dissolution needle of CO and gas to be dissolved into the beverage is set to be less than 15/'1oooo by weight relative to the beverage that is considered to be in the category of non-carbonated beverages in terms of taste. Preferably, the weight ratio is 5/10000 or less.

構成の説明 以下に本発明を実施する場合の一例を糸付の概略工程説
明図に基づいて説明する。
DESCRIPTION OF CONFIGURATION An example of the case where the present invention is implemented will be explained below based on a schematic process explanatory drawing with a thread attached.

第1図において、果汁等の非炭酸飲料はデアレータ−1
から調合タンク2・\送られ、そこで調合された後、熱
交換器3等により、例えば果汁の場合には通常80〜9
5℃程度の温度範囲で加熱滅菌された後、す千ニレータ
ー4へと送られる。一方、CO1発生器5′j?よびN
2発生器6から供給されるCO,ガスおよびN、ガスは
混合ガスとして供給される場合にはそれぞれ弁7,81
・゛よび加IW!1lIIIによりそのtRI(Cおよ
び賛を調節され11壱合器9により所定割合に混合され
、この混合ガスは自動圧力m節弁10により所定の圧力
が負荷されてサチュレータ−4へ送られる。またCO,
ガスおよびN、ガスがそれぞれ別個に供給はれる場合に
はそれぞれのガスに所定の圧力が負荷されてサチュレー
タ−4へ送られる。なお、この場合N、ガスはサチュレ
ータ−4より前段の適当1.c流路中に供給されてもよ
い。飲料中にCO,カスおよびN、ガスが加圧溶解せし
められた飲淳二1はザチュレーター4からサージタンク
11へ送られる流路途中に設けられた減圧部材12によ
りその圧力が低下せしめられる。
In Figure 1, non-carbonated beverages such as fruit juice are represented by dealator-1.
For example, in the case of fruit juice, it is usually 80 to 9
After being heat sterilized at a temperature range of about 5°C, it is sent to Susenilator 4. On the other hand, CO1 generator 5′j? and N
CO, gas, and N supplied from the 2 generator 6 are supplied as a mixed gas by the valves 7 and 81, respectively.
・゛Yoto IW! 1lIII adjusts its tRI (C and Δ) and mixes it at a predetermined ratio in a mixer 9, and this mixed gas is loaded with a predetermined pressure by an automatic pressure control valve 10 and sent to the saturator 4. ,
When gas, N, and gas are supplied separately, each gas is loaded with a predetermined pressure and sent to the saturator 4. In this case, N and gas are supplied to the appropriate 1. c may be supplied into the flow path. The pressure of the drink 1 in which CO, dregs, N, and gas are dissolved under pressure is lowered by a pressure reducing member 12 provided in the middle of the flow path from the zaturator 4 to the surge tank 11.

減圧部材12は高温、高圧でガスが溶解された飲料の温
度を低下させずに圧力のみを低下せしめ得るものであれ
ば特に制限はなく、減圧弁もしくは抵抗管方式のもの等
が適用可能である一減圧弁としては通常の電磁減圧弁等
が好才しく使用でき、これら減圧弁を用いる場合にあっ
ては減圧弁をラインに対し内列に多段に設けるようKし
てもよい。また、抵抗管方式の減圧部利にあっては、配
管抵抗heは管長tおよび流速Vに比例し、管径dに反
比例するから で表わされ、この式から飲料の流速V Z−よび管径d
を選定することKより′θ長りが決定され、所望の減圧
程度圧対応し得ることになる。
The pressure reducing member 12 is not particularly limited as long as it can reduce only the pressure without reducing the temperature of the beverage in which gas is dissolved at high temperature and high pressure, and a pressure reducing valve or resistance pipe type can be used. As a pressure reducing valve, a normal electromagnetic pressure reducing valve or the like can be conveniently used, and when these pressure reducing valves are used, the pressure reducing valves may be provided in multiple stages in an inner row with respect to the line. In addition, in the pressure reducing section of the resistance pipe system, the pipe resistance he is proportional to the pipe length t and the flow velocity V, and is inversely proportional to the pipe diameter d, so from this equation, the beverage flow velocity V Z- and the pipe Diameter d
By selecting K, the length 'θ is determined and can correspond to the desired degree of pressure reduction.

減圧部材12により圧力が低下された飲料はサージメン
11を経て、そこからさらにヲd填機131C送られ、
充填機13により軟質缶に充填される。充填後、大気開
放されて巻締機14により上蓋が巻締められるまでの間
、N!ガスもしくはCOlを含む不活性ガスとの混合ガ
スが飲料の充填された缶上面に吹き付けられ、これによ
り缶上部のヘッドスペースの領域がこれらガスにより空
気と置換されることになり、その後、巻締機14により
缶鞠が巻締られる。この缶上面に吹き伺けるガスとして
はN、ガス単独としてもよく、あるいはCO,カスを含
む不活性なガスとしてもよい。
The beverage whose pressure has been reduced by the pressure reducing member 12 passes through the surge men 11, and from there is further sent to a filling machine 131C.
The filling machine 13 fills soft cans. After filling, the N! Gases or gas mixtures with inert gases containing COl are blown onto the top of the can filled with beverage, so that the area of the headspace at the top of the can is replaced with air by these gases, which are then sealed. The can ball is tightened by the machine 14. The gas that can be blown onto the top surface of the can may be N or gas alone, or it may be an inert gas containing CO or dregs.

8< を図では減圧部材12がサチュレータ−4とザー
ジタンク11との間の流路途中に設けられているため、
この減圧部材12より下流側流路および部材は減圧後の
飲料を扱うことになり1iij圧部材を使用する必要が
なく、通常の炭酸飲料tE Jlt(ラインがそのまま
使用できることになる。
8< In the figure, since the pressure reducing member 12 is provided in the middle of the flow path between the saturator 4 and the surge tank 11,
The flow path and members downstream of this pressure reducing member 12 handle the beverage after the pressure has been reduced, so there is no need to use a pressure member, and the normal carbonated beverage line can be used as is.

従って、ン戊圧部材12はできるだけサチュレータ−4
に近い上流側ラインに設けることが設備的に有利である
が、サージメンク11を耐圧部材とすることが詐される
ならば、減圧部材12はザージタンク11より下流側に
設置するととKより飲料中からのガス抜けが可及的に少
くなる。
Therefore, the pressure member 12 is as close to the saturator 4 as possible.
It is advantageous in terms of equipment to install it on the upstream line close to the surge tank 11, but if it is not possible to use the surge tank 11 as a pressure-resistant member, installing the pressure reducing member 12 downstream of the surge tank 11 will prevent water from entering the drink. gas leakage is reduced as much as possible.

上記したような工程により、非炭酸飲料の範躊に入る量
のCO!ガスをN、ガスとともに加圧溶解せしめ、その
後圧力を低下させた飲料を軟質缶に充填巻締した後の缶
内圧力の制限とし、本発明で対象とする軟質缶のうち特
に強度的に最も弱く、かつ実用性の高い炭酸飲料用缶と
して多用されているアルミ製DI缶(缶胴厚さ0.14
龍、底板厚さ0.42朋)を充填用容器として用い、こ
れについて缶変形の有無を判定する基準とした。このこ
とは換言すれば、かかるアルミmDI缶による缶変形が
生じない条件設定を行えばアルミ製DI缶以外の通常の
軟質缶を用いる場合には当然に缶変形は生じないとの前
提に立脚し検討を進めたものである。しかして上記の如
きアルミ襲DI缶において、缶内に付着する菌の殺菌温
度、例えば大腸菌、酵母菌、カビ、フラットサワー菌等
では60℃、バクテリY1酢酸菌、乳酸菌等では85℃
のように充填飲料により、あるいは充填環境によって缶
に存在するpそれのある菌を殺菌するに足る温度におい
て前記アルミ製T) I缶の缶内圧力が該缶の耐圧強度
の限界である8atmJ2J、Je下となるようにしな
ければ/、(らない。もつともこれら閑の殺菌に際して
は温度のみでなく、殺m時間も考慮されるべきであるが
、前記殺菌温度は比較的長時間その温度に保持し得る場
合を示すものである。
Through the process described above, CO2 is produced in an amount that falls within the category of non-carbonated beverages! The pressure inside the can is limited after the soft can is filled with the beverage, which is dissolved under pressure with N and the gas and then sealed, and the soft can is particularly strong among the soft cans targeted by the present invention. Aluminum DI cans (can body thickness: 0.14
A container with a bottom plate thickness of 0.42mm) was used as a filling container, and was used as a standard for determining the presence or absence of can deformation. In other words, this is based on the premise that if conditions are set so that can deformation does not occur due to such aluminum mDI cans, can deformation will naturally not occur when using ordinary soft cans other than aluminum DI cans. This is what we have been considering. However, in aluminum DI cans such as those mentioned above, the sterilization temperature for bacteria adhering to the inside of the can is 60°C for Escherichia coli, yeast, mold, flat sour bacteria, etc., and 85°C for bacteria Y1 acetic acid bacteria, lactic acid bacteria, etc.
8atmJ2J, where the internal pressure of the aluminum can is the limit of the pressure resistance of the can at a temperature sufficient to sterilize any bacteria present in the can due to the filled beverage or the filling environment, such as Unless the sterilization temperature is maintained at that temperature for a relatively long period of time, the sterilization temperature should be kept at that temperature for a relatively long period of time. This shows possible cases.

従って、飲料の充填温度が菌の殺W4温度を上回る場合
にはこれら飲料により缶内面に付着した菌が殺菌され、
後殺菌工程が不要となる。このように充JIl!飲料に
より殺菌が行われる場合には充填巻締後に飲料が室温ま
で自然空冷されるまでの間の高温保持時間が殺菌に寄与
することになるが、一方、バクテリヤ等のように比較的
高温度での殺菌が必要な場合、飲料の充填温度がこれら
菌の死滅温度以上であれば上記と同様にし又後殺菌工程
が不要となるが、飲料の充JDi温度がこれより低温の
場合、後段1■工程が必要となり、この場合には後殺菌
時間を短くするため、例えば120℃程度で殺菌を行う
ようにする。
Therefore, if the filling temperature of the beverage exceeds the bacteria-killing W4 temperature, the bacteria attached to the inside of the can will be sterilized by these beverages.
No post-sterilization step is required. Like this! When sterilizing beverages, the high-temperature holding time after filling and sealing until the beverage is naturally air-cooled to room temperature contributes to sterilization, but on the other hand, bacteria, etc. If it is necessary to sterilize the beverage, if the beverage filling temperature is above the killing temperature of these bacteria, the same as above and the post-sterilization step is not necessary, but if the beverage charging JDi temperature is lower than this, the second step 1. In this case, in order to shorten the post-sterilization time, sterilization is performed at, for example, about 120°C.

本発明では上記のような殺菌温度に訃ける充填巻締後の
缶内圧が8 atm以下と1.cるようにするとともに
、飲用に適した通常5℃程度の低温度にまで冷却した時
に缶内圧力が大気圧に抗して缶形状を保持して指圧等に
よっても変形しない圧力、すなわち5℃にて1.1 a
tm以上、好ましくは1.4 atm以上の缶内圧力を
保持−するよ5にしなければならない。
In the present invention, the internal pressure of the can after filling and sealing at the above-mentioned sterilization temperature is 8 atm or less and 1. In addition, when the can is cooled to a low temperature suitable for drinking, usually around 5°C, the pressure inside the can resists atmospheric pressure and maintains the can shape, and the pressure is such that it does not deform even with finger pressure etc., i.e. 5°C. At 1.1 a
5 to maintain an internal pressure of at least 1.4 atm, preferably at least 1.4 atm.

今ここで、充填巻締後の缶内平衡比力と温度とを軸とす
る座標に各温度における缶内圧力を算出し、プロットす
ると、第2図に示されるように圧力上限線を示す缶内圧
力一温度曲線A(60℃殺菌温度にて缶内圧8 atm
の点を通る曲線)および圧力下限線を示す缶内圧力一温
度曲線B(5℃にて1゜4atm4’)点を通る曲線)
が作図されることになる。
Now, if we calculate and plot the can internal pressure at each temperature on coordinates with the axis of internal equilibrium specific force and temperature after filling and seaming, we can see the can showing the upper limit line of pressure as shown in Figure 2. Internal pressure-temperature curve A (can internal pressure 8 atm at 60℃ sterilization temperature)
) and the pressure-temperature curve in the can showing the lower pressure limit line (curve passing through the point 1°4atm4' at 5°C)
will be drawn.

この各圧力上限線および圧力下限線を作成−号る場合の
各プロットの算出例を示す。Ail提条件として飲料充
填量が500m/用のアルミ缶にてヘットスペースが2
7.8 m、l、飲料中のCO,@度は爪皺比/ 以下
、飲料充填後は缶内での0000 化学変化はない、缶体は内圧の変化により膨張。
An example of calculating each plot when creating each pressure upper limit line and pressure lower limit line will be shown. Ail requirements are aluminum cans with a beverage filling volume of 500 m/cm and a head space of 2.
7.8 m, liter, CO in the beverage is below the nail crease ratio/0000 after filling the beverage.There is no chemical change, but the can body expands due to changes in internal pressure.

収縮しないものとする、充填後、巻締までのN!ガスも
しくはCO,ガスを含む不活性ガスの缶上面・\の吹き
付けにより20℃における残存空気−1l−3,0mと
しこの中のN!ガスはN、ガスとして加算しその体積は
空気の8割とする、また空気中のOt&’;l 2割と
し飲料中への溶解は無視する、かつ充填工程と巻締工程
の間で大気開放されても、加圧溶解されたガスは大気放
出しないものとした。
Assuming no shrinkage, N from filling to seaming! Gas or CO, by spraying \ on the top of the can of inert gas containing gas, the remaining air at 20°C -1l-3.0m and the N in this! The gas is N, added as a gas, and its volume is 80% of air, and Ot&';l in the air is 20%, ignoring dissolution in the beverage, and it is opened to the atmosphere between the filling process and the seaming process. Even if the gas was dissolved under pressure, it was assumed that the gas dissolved under pressure would not be released into the atmosphere.

このような前提のもとに缶内圧力上限線訃よび圧力下限
線を算出する計算例を次に示す。
A calculation example for calculating the in-can pressure upper limit line and the pressure lower limit line based on such a premise is shown below.

圧力上限線および圧力下限線の算出例 ※計算に必要な諸要因(充填tJ、 20℃にて500
rnj、空寸27.8m7.空気3d混入とする。) 1−1 温度による体積変化 1−2 各温度に2けるブンゼン(HUNZEN )吸
収係数、水の蒸気圧、残存空気の 缶内06分圧 缶内ヘッドスペース中00.分圧計算例(20℃)27
3+20 273 。
Calculation example of upper pressure limit line and lower pressure limit line *Various factors necessary for calculation (filling tJ, 500 at 20℃
rnj, empty size 27.8m7. Assume that 3d of air is mixed in. ) 1-1 Volume change due to temperature 1-2 HUNZEN absorption coefficient at each temperature, vapor pressure of water, residual air partial pressure in the can 00. Partial pressure calculation example (20℃) 27
3+20 273.

■ 圧力下限線の算出例 圧力下限線とは5℃に冷却した場合に缶内圧により缶形
状を保持し得る充填巻締後の温度と缶内圧力との関係を
示し、ここでは5℃にて内圧が1.4 atm以上を保
持し得る下限線をめる。またCO,含量は重量比5/ 
とすることから、そのガスVOI/ 0000 vol(0℃、latmの換算値)は 5 22400 0 □× □ 10000 44 = 0.2545 Vol/Vol ■−1次に5℃、1.4 atmの缶内ガス状況を算出
1−る。
■ Calculation example of the pressure lower limit line The pressure lower limit line indicates the relationship between the temperature after filling and seaming that can maintain the shape of the can due to the internal pressure when the can is cooled to 5°C, and the internal pressure at 5°C. Determine the lower limit line at which the internal pressure can be maintained at 1.4 atm or higher. Also, CO, content is weight ratio 5/
Therefore, the gas VOI/ 0000 vol (0℃, latm conversion value) is 5 22400 0 □× □ 10000 44 = 0.2545 Vol/Vol ■-1 Next, 5℃, 1.4 atm can Calculate the internal gas situation.

(1co、ガスの分圧 ヘンリーの法則から 5”C,Co、)B[JNZENII&&係数0.25
45 1.424 = 0.179 atm ■ N、ガスの分圧 N、ガス分圧−缶内圧−(Go、+7J蛎十〇、)分圧
= 1.4−(0,179+0.006+0.0020
 )= 1.195 atm θ 缶内のN、総i(0℃、1 atm換算)缶内N!
総景=液中溶解(皆十空寸中N、量=499JX0.0
209刈195−)−28,2X1195X −78 =45J558 d ■−■ 密1g]のま韮o℃になった時の缶内ガスの状
況を算出する。
(1co, gas partial pressure from Henry's law 5"C, Co,) B [JNZENII && coefficient 0.25
45 1.424 = 0.179 atm ■ N, gas partial pressure N, gas partial pressure - can internal pressure - (Go, +7J oyster) Partial pressure = 1.4 - (0,179 + 0.006 + 0.0020
) = 1.195 atm θ N in the can, total i (0℃, 1 atm conversion) N in the can!
Overall view = Dissolution in liquid (all dimensions are N, amount = 499JX0.0
209 Hari 195-)-28,2X1195X-78 =45J558 d ■-■ Density 1g] Calculate the state of the gas in the can when the temperature reaches 0°C.

■ Co、ガスの分圧 同様に 1.713(0−に colのBUNZFN吸収係数)
=0.148 atm ON、ガスの分圧 45.558 499.2 Xo、0235+27.9−−1.450
 atm ■−m Cof ai fkの算定(0’C,1atm
換算)CO,ガス総’A’に=液中耐解…十空寸中ガス
計(CO,ガス分圧) =134.775 d ■−IV rrA度変化に[にう缶内ガス圧の変化法に
60℃における缶内圧の算出例を示す。ILお、温度を
変えて下記60℃の場合と同様にして缶内圧を算出1−
ることかでき、これら各プロットを結ぶことにより5℃
、1、4 atmを西る圧力下限線Bが得られる。
■ Co, gas partial pressure Similarly, 1.713 (BUNZFN absorption coefficient of col at 0-)
=0.148 atm ON, gas partial pressure 45.558 499.2 Xo, 0235+27.9--1.450
atm ■-m Cof ai fk calculation (0'C, 1atm
Conversion) CO, gas total 'A' = resistance to dissolution in liquid... 10-dimensional medium gas meter (CO, gas partial pressure) = 134.775 d ■-IV rrA degree change [Change in gas pressure inside the can An example of calculating the internal pressure at 60°C is shown below. IL Oh, change the temperature and calculate the can internal pressure in the same way as in the case of 60℃ below 1-
By connecting these plots, it is possible to
, 1, 4 A pressure lower limit line B is obtained west of atm.

■ CO,分圧 60℃C偽分圧をYco!とすると、缶内co、 tハ
134.775 mテアルカラ、33 YcO@ = 0.664 atm @N1分圧 60℃N8分圧をYN、とすると1缶内N!量は45.
558mであるから、 33 YNI = 1.991 atm θ 缶内圧 60℃仔灼王== 0.664−H,991+0.19
7+0.032=2.88 atm ■ 圧力上限線 本発明によれば、加熱滅菌した非炭酸飲料を用いるので
、一般に果汁の場合には大腸附、酵母菌、乳e菌等の缶
への付着が問題となるので、これら菌の死滅温度である
60℃を越える温度で充填をNrう場合には後殺菌工程
が不要となる、この60”Cで充填した場合に缶内圧力
が8atmO点を通り、それぞれの場合の温度変化によ
る缶内圧力を前述した圧力下限線と同様の手法により算
出し、これらプロットを結んで得られる缶内圧一温度曲
線Aを得る。なお、曲線りは同様の手法によりコーヒー
の場合のように120℃(レトルト)殺菌を行う場合の
圧力上限線を算出した結果を示す。
■ CO, partial pressure 60℃C fake partial pressure Yco! Then, CO in the can, t is 134.775 m The Alcala, 33 YcO @ = 0.664 atm @ N1 Partial pressure 60℃ N8 Partial pressure is YN, then N in one can! The amount is 45.
Since it is 558 m, 33 YNI = 1.991 atm θ Bottle internal pressure 60°C == 0.664-H,991+0.19
7 + 0.032 = 2.88 atm ■ Pressure upper limit line According to the present invention, heat-sterilized non-carbonated beverages are used, so in the case of fruit juice, generally, in the case of fruit juice, there is no possibility of large intestine bacteria, yeast bacteria, lactobacilli, etc. adhering to the can. If filling is carried out at a temperature higher than 60°C, which is the temperature at which these bacteria are killed, the post-sterilization step is not necessary. , the can internal pressure due to temperature change in each case is calculated using the same method as the pressure lower limit line described above, and these plots are connected to obtain the can internal pressure-temperature curve A.The curve is calculated using the same method. The results of calculating the pressure upper limit line when sterilizing at 120°C (retort) as in the case of coffee are shown.

しかして、ガスの加圧溶解に際してはこれらA曲線もし
くは0曲線および8曲線の間の領域に収まるようKその
他の条件、すなわち飲料中に溶解せしめる飲料中のN、
に対するco、比率およびこれらガスの溶解時の加圧力
、並びに温度を設定しなければならない。
Therefore, when dissolving gas under pressure, K and other conditions must be set so that the gas falls within the region between the A curve or the 0 curve and the 8 curve.
co, the ratio and the applied pressure during dissolution of these gases, as well as the temperature must be set.

特に本発明にあっては、上記飲料中のN、に対するCO
2比率および溶解時の加圧力についても条件を変化させ
て充填巻締後の缶内圧力と温度との前記圧力上下線を示
したと同様の座標にプロットし、そのCO1比率および
加圧力をパラメータとする圧力一温度曲線をめ、表示す
るととが一つの大きな特徴といえる。
In particular, in the present invention, CO for N in the above-mentioned beverage
2 ratio and the pressurizing force during melting are also changed and plotted on the same coordinates as shown above for the above-mentioned pressure line between the internal pressure and temperature after filling and seaming, and the CO1 ratio and pressurizing force are used as parameters. One of the major features is that the pressure-temperature curve can be calculated and displayed.

また、本発明ではガスの加圧溶解後にその圧力を低下せ
しめるものではあるが、溶解時加圧力がそのまま充填圧
力になると仮定し、溶解時加圧力にて充填され、巻締ら
れた後の缶内圧一温度曲線を各溶解時加圧力を変えてそ
れぞれめる。
In addition, in the present invention, the pressure is reduced after the gas is melted under pressure, but it is assumed that the pressure applied during melting becomes the filling pressure as it is, and the can is filled with the pressure applied during melting and sealed. Determine the internal pressure-temperature curve by changing the applied pressure during each melting process.

なお、充填前に飲料中に加圧溶解されたN、ガスおよび
C偽ガスは前述したような第1図のフローシートにおけ
る充填工程と巻締工程との間に大気開放することKよっ
ても、N、ガスもしくはC偽ガスを含む不活性ガスを借
上面に吹き付け、ヘッドスペースの領域をこれらのガス
VC置換することにより飲料中から抜けにくいという驚
くべき知見を本発明者らは得て訃り、従って充填巻締前
圧飲料中に溶解したCO!ガスおよびN2ガスは充填巻
締後においてもほとんどそのまま飲料中に溶解し得るの
である、 そこで、加圧溶解させるCO,ガスおよびN、ガスの溶
解量から導かれる分圧と、’j’C,′JrA巻締後の
缶内空寸中のN8.水蒸気卦よび03分圧の和を以下の
方法で′痒出した。
Furthermore, since the N, gas and C false gas dissolved under pressure in the beverage before filling are released to the atmosphere between the filling process and the seaming process in the flow sheet of FIG. 1 as described above, The present inventors made the surprising finding that by spraying an inert gas containing N, gas, or C pseudogas onto the surface of the drinking surface and replacing the head space area with these gases, it is difficult for the inert gas to escape from the beverage. , therefore the CO dissolved in the pressurized beverage before filling and closing! Gas and N2 gas can be dissolved in the beverage as they are even after filling and sealing.Therefore, the partial pressure derived from the dissolved amount of CO, gas and N to be dissolved under pressure, and 'j'C, 'N8 in the empty space inside the can after tightening JrA. The sum of the water vapor diagram and the 03 partial pressure was calculated using the following method.

前項に示したとおり、充填巻締後の缶内圧はその時の温
度による圧力下限線以上で圧力上限線以下にする必要が
ある。
As shown in the previous section, the internal pressure of the can after filling and seaming must be above the lower pressure limit line and below the upper pressure limit line depending on the temperature at that time.

一方、充填圧力は前述の仮定よりガスの溶解時加圧力と
等しく(実際には溶解時加圧力はその後減圧され、減圧
後の圧力が充填機の充填圧力限度である8 atm以下
、好ましくは4 atm以Fとされるが)、これら溶解
時加圧力を11atm、 10 atm、 ・・” 4
 atm、 3 atmとし、それぞれについて算出す
る。なお、溶解時加圧力が11 stmを越えると通常
のサチュレータ−の耐圧限度を越えるようKなるので、
理論的には可能であるとしても実用的でなくなる。
On the other hand, from the above-mentioned assumption, the filling pressure is equal to the applied pressure during gas dissolution (actually, the applied pressure during dissolution is then reduced, and the pressure after reduced pressure is 8 atm or less, which is the filling pressure limit of the filling machine, preferably 4 atm). 11 atm, 10 atm, ..." 4
atm, 3 atm, and calculate for each. In addition, if the applied pressure during melting exceeds 11 stm, the pressure will exceed the pressure limit of a normal saturator, so
Even if it is theoretically possible, it becomes impractical.

また、充填機を出た缶は、一度大気開放となり、巻、締
機に入るが、この間、N、ガスによる吹き付けを行うの
で、空寸部はN、ガス雰囲気となっている。ただし、こ
の時空寸部には3mlの残存空気が含まれるとする。
Furthermore, the cans leaving the filling machine are once exposed to the atmosphere and then enter the winding and tightening machine, during which time they are blown with nitrogen and gas, so the empty space is in an atmosphere of nitrogen and gas. However, it is assumed that this time-space portion contains 3 ml of residual air.

■ 温度60℃の場合 ■−1サチュレータ−の気相部のCO,ガス濃度の算出
前述の缶内CO,の総fQ、 134.775rtLl
ガス加圧溶解時のCO,ガス濃度なXとすると、ヘンリ
ーの法則から以下の如くなる。
■ When the temperature is 60℃ ■ Calculation of the gas concentration of CO in the gas phase of the -1 saturator Total fQ of CO in the can, 134.775rtLl
Assuming that CO and the gas concentration are X when the gas is dissolved under pressure, the following is obtained from Henry's law.

■−1−1 ガス溶解時加圧力 11 atm134.
775=507.6X0.365XiIXxx=0.0
66 ■−1−2 ガス溶解時加圧力 10atm134.7
75=507.6X0.365X10XXx=0.07
3 ■−1−3 ガス溶解時加圧力 9 atm134.7
75=507.6X0.365X9Xx!=0.081 ■−1−4 ガス溶解時加圧力 8 Atm134.7
75=507.6X0.365X8Xxx=0.091 ■−1−5 以下同様にして 7 atm=x=0.104 。
■-1-1 Pressure force when dissolving gas 11 atm134.
775=507.6X0.365XiIXxx=0.0
66 ■-1-2 Pressure force when dissolving gas 10atm134.7
75=507.6X0.365X10XXx=0.07
3 ■-1-3 Pressure force when dissolving gas 9 atm134.7
75=507.6X0.365X9Xx! =0.081 ■-1-4 Pressure force when dissolving gas 8 Atm134.7
75=507.6X0.365X8Xxx=0.091 ■-1-5 Similarly, 7 atm=x=0.104.

6 atm・・・x=0.121. 5 itm=x=
0.146゜4 atm・・・x=0.182 、 3
 atm・・・x=0243となる。
6 atm...x=0.121. 5 itm=x=
0.146゜4 atm...x=0.182, 3
atm...x=0243.

■−2それう功溶解時加圧力におけるN!ガスQ各加圧
力下におけるN、ガスー礒は、液中のN。
■-2 N at the pressure applied during melting! Gas Q is N under each pressure, and gas is N in a liquid.

II、空寸中のN、tJおよび混入空気中のNtを以下
のように算出して合算した。
II, N in the empty space, tJ, and Nt in the mixed air were calculated and summed up as follows.

■−2−4 溶解時加圧力 8 atm■−2−5溶解
時加圧力 7 atm ■−2−6俗解時加圧力 6ntrr。
■-2-4 Pressure force during dissolution 8 atm ■-2-5 Pressure force during dissolution 7 atm ■-2-6 Pressure force during dissolution 6 ntrr.

73 ■−2−7〜9 同様にして溶解時加圧力が5ntm、4atm、3 a
tmの場合はそれぞれ39.324Tα′、34.15
7 tne、 289 ’74 ml! ト’fZ ル
73 ■-2-7~9 Similarly, the applied pressure during melting was 5 ntm, 4 atm, 3 a
In the case of tm, it is 39.324Tα′ and 34.15 respectively.
7 tne, 289'74 ml! To'fZ Le.

(a)3 i11内Co、ガス分)4−、 ’tr’i
−出缶内のco、の体積(m!、θパC1l atmデ
1< 、1り: (tri )は■−1に示すとおり1
34.775m1であるから缶内COfガス分圧Yeは
次式からまる。
(a) 3 Co in i11, gas content) 4-, 'tr'i
- The volume of co in the can (m!, θp C1l atm de 1<, 1: (tri) is 1 as shown in ■-1
Since it is 34.775 m1, the COf gas partial pressure Ye in the can is calculated from the following equation.

Yc−0,664atm ■−4缶内N、ガス分圧算出 缶内のN、の体積(mt″、o ’c、1atm換算値
)は(の−2に示すとおりであるから、缶内N!ガス分
圧なYNとすると次式が成り立つ。
Yc-0,664 atm ■-4 N in the can, calculation of gas partial pressure The volume of N in the can (mt″, o'c, 1 atm conversion value) is as shown in (-2), so the N in the can is !If YN is a gas partial pressure, the following equation holds true.

■−4−1 溶解時加圧力 11atm273+60 YN=3.077 atm (i)−4−2溶解時加圧力 10atmYN:2.8
50 atm ■−4−3 溶解時加圧力 9 atmYN=2.62
4 atm ■−4−4 溶解時加圧力 8 atm273+60 YN=2.398 atm ■−4−5 溶解時加圧力 7 ptm273+60 YN=2.171 stm ■−4−6〜9 同様にして溶解時加圧力が6 atm、5 atm。
■-4-1 Pressure force during melting 11atm273+60 YN=3.077 atm (i)-4-2 Pressure force during melting 10atmYN:2.8
50 atm ■-4-3 Pressure during melting 9 atmYN=2.62
4 atm ■-4-4 Pressure force during melting 8 atm273+60 YN=2.398 atm ■-4-5 Pressure force during melting 7 ptm273+60 YN=2.171 stm ■-4-6~9 Similarly, pressure force during melting is 6 atm, 5 atm.

4 atm、 3 atmの場合のYNはそれぞれ1.
945atm、1.718atm、1.492 atm
YN for 4 atm and 3 atm is 1.
945 atm, 1.718 atm, 1.492 atm
.

1.266atmとなる。It becomes 1.266 atm.

■−5缶内全圧の計算 缶内全圧は籠〔■−3・・・CO9分圧分圧上〔■−4
・・・当分圧)+(u、o分圧) + [0!分王〕)
であるから、温度60℃の場合、各溶解加圧力下におけ
る充填巻締直後の缶内平衡圧の全圧は以下のとおりとな
り、図(第2図)中にプロットする。
■-5 Calculation of the total pressure inside the can The total pressure inside the can is above the cage [■-3...CO9 partial pressure partial pressure] [■-4
...Current partial pressure) + (u, o partial pressure) + [0! Bunoh〕)
Therefore, when the temperature is 60°C, the total equilibrium pressure in the can immediately after filling and seaming under each melting pressure is as follows, which is plotted in the figure (Figure 2).

■ 温度60℃の場合と同様にして各温度における溶解
時加圧力の値を変えて充填巻締後の缶内圧力を算出し、
これらの値を前記座標にプロットし、これらプロットを
結ぶことによりC9σ。
■ Calculate the pressure inside the can after filling and seaming by changing the value of the pressure during melting at each temperature in the same way as when the temperature was 60℃,
C9σ is obtained by plotting these values at the coordinates and connecting these plots.

σ Cme、・・・・・・曲線が得られる。σ Cme,...A curve is obtained.

■ ガス中CO,比率の圧力一温度曲線の算出また、飲
料中に加圧溶解されるN、ガス訃よびC偽ガスのCO1
比率を一定とした場合の充填圧、充填温度から、充填巻
締後の缶内圧力一温度曲線を算出した。その算出は前項
充填温度60℃における溶解加圧力に対す名ガスのCO
1比率の場合に準じて行った。
■ Calculation of the pressure-temperature curve of the ratio of CO in gas and the CO1 of N, gas and C pseudogas dissolved under pressure in beverages.
The internal pressure-temperature curve after filling and seaming was calculated from the filling pressure and filling temperature when the ratio was kept constant. The calculation is as follows:
The procedure was carried out in accordance with the case of 1 ratio.

一方、炭酸飲料用充填ラインによって種々の条件下にお
いて、充填巻締な行って、缶内圧を測定し、上述の理論
的推測値が実質的に実用できることを確認した。
On the other hand, the can internal pressure was measured by filling and sealing cans under various conditions using a carbonated beverage filling line, and it was confirmed that the above-mentioned theoretical estimated values were practically applicable.

その結果、充填巻締後の缶内平衡圧とガスの加圧溶解時
に必要な条件(溶解温度、ガスのCO,ガスの比率、ガ
スの溶解時加圧力)との関係を一目瞭然と示すことがで
きる実用的な図表を完成したのである。
As a result, it was possible to clearly show the relationship between the equilibrium pressure inside the can after filling and crimping and the conditions necessary for pressurized melting of gas (melting temperature, gas CO, gas ratio, and pressurizing force during gas melting). We have completed a practical diagram that can be used.

かくして第2図に示されるような線図(以下これをKH
線図という)が作成されることになる。このような第2
図のK tI線図は軟袈缶の材質、寸法、それらに伴う
缶強度、容量、ヘッドスペースの容量等が設定されれば
、上記と同様圧して各設定条件に対応してそれぞれのK
 H線図が作成される。
Thus, the diagram shown in Figure 2 (hereinafter referred to as KH)
(referred to as a line diagram) will be created. A second like this
The KtI diagram shown in the figure shows that once the material and dimensions of the soft can, the associated can strength, capacity, head space capacity, etc. are set, pressure is applied in the same manner as above, and each K
An H-diagram is created.

この第2図のK 曲線間において缶内圧力上限線Aもし
くはり1缶内圧力上限線B、および実用的には11 a
tmの溶解時加圧力の缶内圧力一温度曲線Cで四重れる
範囲内の条件にてガスの加圧溶解を行えば充填巻締後の
缶内圧力が角変形を生じない所定範囲とフェリ、非炭酸
飲料の軟儂缶への充填が可能となる。
Between the K curves in Fig. 2, the can pressure upper limit line A or the can pressure upper limit line B, and in practical terms 11 a.
If gas is melted under pressure within the range that is quadrupled by the pressure in the can and the temperature curve C during melting of tm, the pressure in the can after filling and seaming will be within a predetermined range in which angular deformation does not occur. , it becomes possible to fill soft cans with non-carbonated beverages.

第2図を用いた実際のガスの加圧溶解における金目的条
件は、例えば温度を第1義的に規制する場合、第2図の
特定の温度の点を上方に延長し、飲料の種類により、換
言すれば殺菌すべき閑の種類により決定される圧力上限
線AもしくはD(実際には蕗の′P4類が具なればさら
に他の13−力上限線が決定される)と曲線Bとの曲線
間において溶解時加圧力の許容し得る範囲がまり、この
範囲のいずれかの溶解加圧力を選定1−ることによりそ
の溶解加圧力と温度との交点ニ分けるガスのCO3比率
が決定される。あるいはまた1111配特定の設定温度
における曲線Aもしくは曲線りと曲線Bとの曲線間にお
いてガスのCO!比率の許容し得る範囲がまり、この範
囲のいずれかのCO3比率を選定することにより溶解加
圧力がめられることになる。これら温度、俗解加圧力訃
よびCO3比率はいずれをも基昂とすることができる。
The actual target conditions for pressurized dissolution of gas using Fig. 2 are, for example, when temperature is primarily regulated, the specific temperature point in Fig. 2 is extended upward, and depending on the type of beverage. In other words, the pressure upper limit line A or D is determined depending on the type of material to be sterilized (actually, if Fuki's 'P4 type is fulfilled, another 13-force upper limit line is determined) and curve B. The permissible range of the melting pressure is defined between the curves, and by selecting one of the melting pressures in this range, the CO3 ratio of the gas that is divided into two points at the intersection of the melting pressure and the temperature is determined. Ru. Alternatively, CO of gas between curve A or curve B at a specific set temperature of 1111 distribution! An allowable range of ratios is determined, and by selecting a CO3 ratio within this range, the melting pressure can be determined. Any of these temperatures, applied pressures, and CO3 ratios can be set as standards.

上述の如きK)1線図から明らかなように、充填温度は
例えば第2図の前提条件である500m1アルミ缶にか
いて、広範囲の温度に亘って選択し得ることがわかる。
As is clear from the above K)1 diagram, it can be seen that the filling temperature can be selected over a wide range of temperatures, for example for a 500 ml aluminum can, which is the prerequisite in FIG.

しかし、本発明では非炭酸飲料の熱ブC填に係るもので
あり、従ってガスの加圧溶解時の温度、換言すれば充填
温度の下限は熱光l揖の範隣に入る50℃以上とする。
However, the present invention relates to hot filling of non-carbonated beverages, and therefore, the temperature at which the gas is dissolved under pressure, in other words, the lower limit of the filling temperature is 50°C or higher, which is within the range of thermal light. do.

好ましくは果汁、ミネラルウォーター、スポーツドリン
ク、麦茶、日本酒、等の充填eこ際して問題となる菌の
死滅を確実にする温度である60℃以上とする。このよ
うな温度での充填が可能となることにより、前記の如き
飲料の後殺菌が不要となる。才だ充填温度の上限は93
℃とする。この温度を越える充填温度゛では飲料の沸騰
が生ずる訃それが生ずるので避けるべきである。好まし
くは、この充填温度は85℃以下とする。
Preferably, when filling fruit juice, mineral water, sports drinks, barley tea, Japanese sake, etc., the temperature is set at 60° C. or higher, which is a temperature that ensures the killing of problematic bacteria. Since filling at such a temperature becomes possible, post-sterilization of the beverage as described above becomes unnecessary. The upper limit of the filling temperature is 93
℃. Filling temperatures exceeding this temperature should be avoided as this can lead to boiling of the beverage. Preferably, the filling temperature is below 85°C.

従って、KH1j1図を予め作成することにより、ガス
加圧溶解時の各条件が合目的に得られることになり、し
かもガス溶解時加圧力をその後減圧して充填するため、
従来例よりも高温度での充填が設定できることになる。
Therefore, by creating the KH1j1 diagram in advance, each condition for pressurized gas dissolution can be obtained for the purpose, and furthermore, since the pressurizing force during gas dissolution is subsequently reduced and filled,
This means that filling can be set at a higher temperature than in the conventional example.

効果 以上のような本発明によれば、充填飲料、缶の材質、そ
の寸法、容量等が決定されることにより、各KH線図が
作成され、このKH線図によりガスの加圧溶解時の合目
的条件が容易に決定され、特に高温充填が可能となり、
省エネルギー的に極めて有用であり、さらに従来の炭酸
飲料の軟質缶への充填ラインもしくは非炭酸飲料のスチ
ール缶等の硬質缶への充填ライン、装置をそのままもし
くはわずかの変更を行うことKより、非炭酸飲料の軟質
缶への充填が可能であるのみならず、炭酸飲料および非
炭酸飲料共に同一の軟質缶、例えばアルミfiDI缶へ
の充填が可能となり、缶の統一が図れることになり、こ
の点からも省エネルギーとなる。
Effects According to the present invention as described above, each KH diagram is created by determining the filled beverage, the material of the can, its dimensions, capacity, etc., and this KH diagram is used to The suitable conditions are easily determined, and especially high-temperature filling becomes possible.
It is extremely useful in terms of energy saving, and it is also more energy efficient than the conventional filling line for soft cans for carbonated beverages or the filling line for hard cans such as steel cans for non-carbonated beverages. Not only is it possible to fill carbonated drinks into soft cans, but also carbonated drinks and non-carbonated drinks can be filled into the same soft cans, such as aluminum fiDI cans, which makes it possible to standardize cans. It also saves energy.

実施例 缶胴厚さ0.14 g、底板厚さ0.42朋のアルミ製
500d用DI缶に10チ果汁を第1図に示されるよう
な装置を用いて図示の工程に従って充填した。このよう
な前提条件におけるK 曲線間、すなわち第2図におい
て、サチュレータ−中でのガスの溶解温度を85℃に設
定し、その時のガス溶解加圧力を9atmとし、従って
ガス中のCO1比率を11係としく#料中のCO,ガス
量は重量比/ )としてガスを加圧溶解0000 し、その後第1図に示されるようにサージタンク手前に
設けられた減圧弁により飲料の圧力を4 atmに減じ
て充填し、その後大気開放中にN。
Example 10 pieces of fruit juice were filled into a 500 d aluminum DI can with a body thickness of 0.14 g and a bottom plate thickness of 0.42 g, using an apparatus as shown in FIG. 1 and following the steps shown. Between the K curves under these preconditions, that is, in Figure 2, the gas dissolution temperature in the saturator is set at 85°C, the gas dissolution pressure at that time is set at 9 atm, and therefore the CO1 ratio in the gas is set at 11. The gas is dissolved under pressure, and the amount of CO and gas in the drink is expressed as a weight ratio of 0000. Then, as shown in Figure 1, the pressure of the beverage is reduced to 4 atm using a pressure reducing valve installed in front of the surge tank. After reducing the amount to 100% and filling it, add N while venting to the atmosphere.

ガスを缶上面に吹き付け、その後巻締した。充填巻締後
の缶はこれを5℃まで冷却したが、指圧を加えても缶の
変形は全く生じなかった。また、充填巻締後に後殺菌処
理を施さ7J:かったが、充填巻締後の缶を開封して果
汁を調べたが、食品ftI生法上規制の対象となる菌の
存在は全く見られなかった。
Gas was sprayed onto the top of the can, and then the can was sealed. After filling and sealing, the can was cooled to 5°C, but no deformation occurred even when finger pressure was applied. In addition, post-sterilization treatment was performed after filling and sealing, but when the cans were opened after filling and sealing and the fruit juice was examined, no bacteria that are subject to regulations under the Food FTI Production Act were found. There wasn't.

上記の充填法でに、N、カスおよびCO,ガスを混合カ
スとして加圧溶解した例を示したが、N、ガスおよびC
O,ガスを別個にサチュレータ−へ係船して加圧溶解さ
せた場合にも全く同様の結果が得られた。
In the above filling method, an example was shown in which N, gas, CO, and gas were dissolved under pressure as a mixed waste.
Exactly the same results were obtained when O and gas were separately moored to a saturator and dissolved under pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する場合の概略工程説明図である
。 i!a2図はガスの加圧溶解時の各条件を変化させた。 1合の缶内圧力と温度との関係図である。 1・・・デアレータ 2・・・調合タンク3・・・熱交
暎器 4・・・サチュレータ5・・・CO,発生機 6
・・・N2発生機7.8・・・弁 9・・・混合器 10・・・自動圧力訓節弁 11 ・・・サージタンク
12・・・減圧部材 13・・・充填機14・・・巻締
FIG. 1 is a schematic process explanatory diagram for carrying out the present invention. i! Figure a2 shows various conditions during pressurized dissolution of gas. It is a relationship diagram between the internal pressure and temperature of 1 cup. 1... Dealer 2... Mixing tank 3... Heat exchanger 4... Saturator 5... CO, generator 6
...N2 generator 7.8...Valve 9...Mixer 10...Automatic pressure adjustment valve 11...Surge tank 12...Pressure reduction member 13...Filling machine 14... Sealing machine

Claims (1)

【特許請求の範囲】 1、 調合後、加熱滅菌した非炭酸飲料に穐ガスおよび
GO,ガスをそのCO,ガス量が飲料の重責比15/ 
以下の量で加圧溶解せしめた後、0000 この飲料を軟質缶に充填するに際し、充填巻締後の缶内
圧力と温度とを軸とする座標にプロットした場合の缶内
圧力が5℃にて1.1 stmの点を通る缶内圧一温度
曲線以上であり、且つ缶内に付着する菌の殺菌温度にお
いて缶内圧が8atmの点を通る缶V1圧一温度曲線以
下の缶内圧一温度曲線範囲を設定し、飲料中に溶解せし
めるガスのN、に対するCO,比率およびこれらガスの
飲料中への溶解時用圧力を変化させて充填巻締した後の
缶内圧を前記座標にプロットし、前記缶内圧一温度曲線
範囲内に収まる各温度、CO8比率および溶解時用圧力
を予め選定して、これら温度、CO1比率および溶解時
用圧力にてガスを飲料中に溶解せしめ、しかる後に充填
ライン途中に設けられた減圧部材により前記温度のま゛
ま減圧し、この温度にて飲料を充填し、充填後、巻締工
程までの間N、ガスもしくはCO,ガスを含む不活性ガ
スを借上面に吹き付けてヘッドスペースの領域をこれら
ガスに置換後、巻締めすることを特徴とする非炭酸飲料
の熱充填方法。 2、非炭酸飲料が果汁、コーヒー、紅茶、ココア、ワイ
ン、日本酒、スープ、茶、麦茶、スポーツドリンク、き
ネラルウォーターのいずれかである特許請求の範囲第1
項記載の方法。 3、軟質缶がアルミ缶である特許請求の範囲第1項記載
の方法。 4、飲料中に加圧溶解されるCO,ガス量が飲料の!量
比/ 以下の量である特許請求の1ooo。 範囲第1項記載の方法。 5、飲料中に加圧溶解される穐ガスおよびCO。 ガスが混合ガスとされる特許請求の範囲第1項記載の方
法。 6、 前記缶内圧一温度曲線範囲における圧力下限線が
5℃にて1.4 atmO点を通る缶内圧一温度曲線以
上である特許請求の範囲第1項記載の方法。 7、 充填温度が50〜93℃である特許請求の範囲P
A1項記載の方法。 8 充填温度が60〜85℃である特許請求の範囲第7
項記載の方法。 9、 ガスの溶解時加圧力が6〜11 atmである特
許請求の範囲第7項または第8項記載の方法。 10、溶解せしめるガスのco、比率が8〜12tlb
である特許請求の範囲第9項記載の方法。 11、減圧部材により1〜8atmK減圧される特許請
求の範囲第9項記載の方法。 12 減圧部材が充填ラインのガス加圧溶解工程の直後
に設けられる特許請求の範囲第1項記載の方法。 13、減圧部材が充填ラインの充填機直前に設けられる
特許請求の範囲第1項記載の方法。 14、減圧部羽が減圧バルブである特許請求の範囲第1
1項または第12項記載の方法。 15、減圧バルブがライン途中に複数個直列に設げられ
る特許請求の範囲第13項記載の方法。 16、充填後1巻締工程までの間に缶上面に吹き付ける
ガスがN、ガスとco、ガスとの混合ガスである特許請
求の範囲第1項記載の方法。
[Claims] 1. After blending, heat sterilize the non-carbonated beverage by adding the gas and GO, the gas to the CO, and the amount of gas being the weight ratio of the beverage to 15/
After dissolving under pressure in the following amount, 0000 When filling this beverage into a soft can, the pressure inside the can after filling and sealing is plotted on a coordinate axis with the inside pressure and temperature at 5℃. 1.1 Can internal pressure-temperature curve that passes through the point stm and is equal to or higher than the can internal pressure-temperature curve that passes through the can V1 pressure-temperature curve that passes through the point where the can internal pressure is 8 atm at the sterilization temperature of bacteria attached to the can. Setting the range, changing the ratio of gas to N and CO to be dissolved in the beverage, and the pressure for dissolving these gases in the beverage, plotting the internal pressure of the can after filling and sealing on the above coordinates, and Each temperature, CO8 ratio, and melting pressure that fall within the can internal pressure-temperature curve range are selected in advance, and the gas is dissolved in the beverage at these temperatures, CO1 ratio, and melting pressure, and then the gas is dissolved in the beverage midway through the filling line. The pressure is reduced at the same temperature using a pressure reducing member installed in the container, and the beverage is filled at this temperature. A method for hot filling a non-carbonated beverage, which comprises blowing to replace the head space area with these gases, and then sealing. 2. Claim 1 in which the non-carbonated beverage is any one of fruit juice, coffee, tea, cocoa, wine, sake, soup, tea, barley tea, sports drink, and mineral water.
The method described in section. 3. The method according to claim 1, wherein the flexible can is an aluminum can. 4. The amount of CO and gas dissolved under pressure in drinks is the same as in drinks! Quantity ratio/1ooo of the patent claim whose quantity is below. The method described in Scope 1. 5. Liquor gas and CO dissolved under pressure in beverages. 2. The method according to claim 1, wherein the gas is a mixed gas. 6. The method according to claim 1, wherein the pressure lower limit line in the can internal pressure-temperature curve range is equal to or higher than the can internal pressure-temperature curve passing through the 1.4 atmO point at 5°C. 7. Claim P in which the filling temperature is 50 to 93°C
The method described in Section A1. 8 Claim No. 7 in which the filling temperature is 60 to 85°C
The method described in section. 9. The method according to claim 7 or 8, wherein the applied pressure during dissolution of the gas is 6 to 11 atm. 10. CO of the gas to be dissolved, the ratio is 8 to 12 tlb
The method according to claim 9. 11. The method according to claim 9, wherein the pressure is reduced by 1 to 8 atmK by a pressure reducing member. 12. The method according to claim 1, wherein the pressure reducing member is provided immediately after the gas pressurization melting step in the filling line. 13. The method according to claim 1, wherein the pressure reducing member is provided in the filling line immediately before the filling machine. 14. Claim 1 in which the pressure reducing part vane is a pressure reducing valve.
The method according to item 1 or item 12. 15. The method according to claim 13, wherein a plurality of pressure reducing valves are provided in series in the middle of the line. 16. The method according to claim 1, wherein the gas sprayed onto the top surface of the can after filling and before the first seaming process is a mixed gas of N, gas, and cobalt gas.
JP58124366A 1983-07-08 1983-07-08 Method of thermally filling non-carbonated beverage Pending JPS6023193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124366A JPS6023193A (en) 1983-07-08 1983-07-08 Method of thermally filling non-carbonated beverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124366A JPS6023193A (en) 1983-07-08 1983-07-08 Method of thermally filling non-carbonated beverage

Publications (1)

Publication Number Publication Date
JPS6023193A true JPS6023193A (en) 1985-02-05

Family

ID=14883618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124366A Pending JPS6023193A (en) 1983-07-08 1983-07-08 Method of thermally filling non-carbonated beverage

Country Status (1)

Country Link
JP (1) JPS6023193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620962A (en) * 1985-03-04 1986-11-04 Mg Industries Method and apparatus for providing sterilized cryogenic liquids
JPH01240145A (en) * 1988-03-23 1989-09-25 Coca Cola Co:The Production of canned tea beverage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620962A (en) * 1985-03-04 1986-11-04 Mg Industries Method and apparatus for providing sterilized cryogenic liquids
JPH01240145A (en) * 1988-03-23 1989-09-25 Coca Cola Co:The Production of canned tea beverage

Similar Documents

Publication Publication Date Title
US4347695A (en) Beverage bottling method
CN1116209C (en) Assembly containing container and instant beverage
JPH0314719B2 (en)
MX2008008196A (en) Beer-manufacturing process.
CN102960443A (en) Fresh liquid milk freshness protection method
JP2001509456A (en) Process for producing liquid products in cans, bottles and other suitable containers
US20210120847A1 (en) Method of producing a canned hydrogen infused beverage
CA2859699C (en) Wine packaged in aluminium containers
EP0447104A1 (en) Dissolving a gas in a liquid
JPS6023193A (en) Method of thermally filling non-carbonated beverage
JPS61124361A (en) Canned drink filled with nitrogen gas and having negative pressure, and preparation thereof
IE914209A1 (en) Dissolving a gas in a liquid
JPS6058114B2 (en) Filling method for non-sparkling beverages
JPH04227835A (en) Method for dissolving gas into liquid
KR100750382B1 (en) Method and device for filling a drinks container with a drink, and corresponding drinks container
JPS63273460A (en) Production of beverage containing small quantity of gaseous carbon dioxide
JP2007084112A (en) Method for manufacturing positive pressure plastic bottle-filling beverage and its manufacturing system
CN112646685A (en) Soda wine and preparation method thereof
JPH04227834A (en) Method for dissulving gas into liquid
JP6768109B2 (en) Effervescent beverage products and their manufacturing methods
JP2000309310A (en) Brew of sake in sealed container
JPS6384466A (en) Canning method
US20040107839A1 (en) Method of serving heated beverages
JPH01252274A (en) Production of canned low-acidic beverage
JPS62135124A (en) Method of filling can