JPS60231784A - Phosphor consisting of alkaline earth sulfide - Google Patents

Phosphor consisting of alkaline earth sulfide

Info

Publication number
JPS60231784A
JPS60231784A JP5449784A JP5449784A JPS60231784A JP S60231784 A JPS60231784 A JP S60231784A JP 5449784 A JP5449784 A JP 5449784A JP 5449784 A JP5449784 A JP 5449784A JP S60231784 A JPS60231784 A JP S60231784A
Authority
JP
Japan
Prior art keywords
phosphor
activator
alkaline earth
afterglow
earth sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5449784A
Other languages
Japanese (ja)
Other versions
JPS6244791B2 (en
Inventor
Heihachiro Muto
武藤 平八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5449784A priority Critical patent/JPS60231784A/en
Publication of JPS60231784A publication Critical patent/JPS60231784A/en
Publication of JPS6244791B2 publication Critical patent/JPS6244791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To prepare a high-luminance multicolor phosphor consisting of an alkaline earth sulfide and having a long afterglow, by adding Y, Sc, Al, Ga or I as co-activator to a phosphor activated with a divalent cation. CONSTITUTION:At least one of yttrium, aluminum, gallium and indium is added as co-activator to a phosphor activated with a divalent cation. When a divalent cation such as Mn<2+>, Cu<2+> or Eu<2+> is used as activator, it replaces CA<2+> ion and does not cause surplus or shortage of valency electrons in a matrix crystal. When a trivalent cation is added as co-activator, it also replaces Ca<2+> ion, but is forms a deep electron trap and produces long afterglow, for a part of an excited carrier is returned to a basic state via the electron trap.

Description

【発明の詳細な説明】 本発明はアルカリ土類硫化物螢光体に係り、特に長残光
螢光体に関する。CaSを中心とするアルカリ土類硫化
物基体は高効率発光する螢光体母体材料として古くから
知られていたが、その性質から用途は赤外輝尽用螢光体
と短残光性電子線励起用螢光体に限られていた。しかる
に近年、情報処理機器、自動制御機器、電子計算機、教
育用電子機器、電子ゲーム等の端末(man −mac
hine 1nterface)としてディスプレイ用
ブラウン管の需要が急速に拡大しつつある。このブラウ
ン管においては、従来からテレビジョン用などに用いら
れてきた動画用ブラウン管に比べてきわめて長残光の螢
光体が要求される。これは静止画像9文字像を低い掃引
周波数で表示する結果生ずるチラつきを抑えるためであ
る。しかし、酸素八面体構造をもつ螢光体母体に比べて
アルカリ土類硫化物基体は結晶構造が単純であるため、
付活されたイオン間の遮弊やイオンと母体格子間の遮弊
が不十分とな9、一般に長残光螢光体を得ることは困難
である。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to alkaline earth sulfide phosphors, and more particularly to long afterglow phosphors. Alkaline earth sulfide substrates, mainly CaS, have been known for a long time as phosphor matrix materials that emit light with high efficiency, but due to their properties, their applications are limited to infrared stimulable phosphors and short-afterglow electron beams. It was limited to excitation fluorophores. However, in recent years, terminals such as information processing equipment, automatic control equipment, electronic computers, educational electronic equipment, electronic games, etc.
Demand for cathode ray tubes for displays is rapidly expanding. This cathode ray tube requires a phosphor with an extremely long afterglow compared to the moving picture cathode ray tubes conventionally used for televisions and the like. This is to suppress flickering that occurs as a result of displaying the still image of nine characters at a low sweep frequency. However, since the crystal structure of the alkaline earth sulfide substrate is simpler than that of the phosphor matrix, which has an oxygen octahedral structure,
Generally, it is difficult to obtain a long afterglow phosphor because of insufficient shielding between activated ions and between ions and host lattices9.

実用化されているディスプレイ管用長残光単色表示螢光
体は数少なく、緑色螢光体のZn2SiO4:体の3 
Cds (Po4)z ・CdC6z : Mn(XO
残光時間τ1/。
There are only a few long afterglow monochromatic display phosphors for display tubes that have been put into practical use, and the green phosphor Zn2SiO4:
Cds (Po4)z ・CdC6z: Mn(XO
Afterglow time τ1/.

Σ30mmec)が主なものである。この細長残光カラ
ー表示螢光体として、六方晶ZnS:”′A2(青色)
やZn5(PO4)2 : Mn (赤色) * Mg
SiO3: Mn(赤色)。
Σ30mmec) is the main one. As this elongated afterglow color display phosphor, hexagonal ZnS:'''A2 (blue)
and Zn5(PO4)2: Mn (red) * Mg
SiO3: Mn (red).

Zn2 S i04 : Mn 、 As (緑色)な
どがあり、また白色表示用としては混合螢光体六方晶Z
nS:Ag7’ラス(Zn 、 Cd)S :Cuがよ
く用いられている。これら既存の実用螢光体に比べてC
aSを中心とするアルカリ土類硫化物螢光体の残光時間
は短かく、その中ではもつとも長いと指摘されているC
a8 : Mnでも′各。は1〜10”°°゛にとどま
る・しかし・前記のようにアルカリ土類硫化物螢光体は
高効率発光する数少ない螢光体のひとつであり、また付
活剤の種類や母体の組成を調整することによって全可視
領域で色調を制御することが可能であるというすぐれた
特長をもっている。そこで何らかの手段によって長残光
化することができれば、ブイスジレイ管への適用が可能
となる。
Zn2 Si04: Mn, As (green), etc., and for white display, mixed phosphor hexagonal Z
nS:Ag7' lath (Zn, Cd)S:Cu is often used. Compared to these existing practical phosphors, C
The afterglow time of alkaline earth sulfide phosphors, mainly aS, is short, and C, which is said to have the longest afterglow time.
a8: Mn also 'each. However, as mentioned above, alkaline earth sulfide phosphors are one of the few phosphors that emit light with high efficiency, and the type of activator and composition of the matrix are It has the excellent feature that it is possible to control the color tone in the entire visible range by adjusting it. Therefore, if it can be made to have a long afterglow by some means, it will be possible to apply it to a V-display tube.

本発明は上記アルカリ土類硫化物螢光体のもつ長残光化
という命題を達成することを目的としている。
The object of the present invention is to achieve the long afterglow property of the above-mentioned alkaline earth sulfide phosphor.

この目的を達成するために、本発明では2価の陽イオン
を付活した螢光体に、共付活剤としてイツトリウム、ス
カンジウム、アルミニウム、ガリウム、インジウムより
成る群から少なくとも1種類を添加したアルカリ土類硫
化物螢光体を開示する。付活剤に2価の陽イオン、たと
えばMn”、 Cu”。
In order to achieve this objective, the present invention uses an alkali which is added to a phosphor activated with divalent cations and at least one member selected from the group consisting of yttrium, scandium, aluminum, gallium, and indium as a co-activator. Earth sulfide phosphors are disclosed. Divalent cations as activators, such as Mn'' and Cu''.

Eu2+などを用いた場合、これら陽イオンはCa2+
イオンを置換するので母体結晶内に価電子の過不足は生
じない。しかし、これに3価陽イオンの前記共付活剤を
添加するとこれら元素もCa2+イオンを置換するが、
この際深い電子ドラッグを生じ、励起されたキャリアが
一部この電子トラップを経由して基底状態に戻るために
長残光化することがわかった。
When Eu2+ etc. are used, these cations become Ca2+
Since ions are replaced, there is no excess or deficiency of valence electrons within the host crystal. However, when the co-activator of trivalent cations is added to this, these elements also replace Ca2+ ions,
At this time, it was found that deep electron drag occurs and some of the excited carriers return to the ground state via this electron trap, resulting in a long afterglow.

以下、本発明を実施例に基づいて詳しく述べる。Hereinafter, the present invention will be described in detail based on examples.

(実施例1) 炭酸カルシウムに0.1モルチの酸化マ
ンガンをよく混合し、これを硫化水素雰囲気で1200
℃に保持することによってMntt活硫化カルシウムC
aS : Mn (0,1mg%)を焼成した。この試
料を6分割し、酸化イツトリウムを混合した。各分割試
料に混合したイツトリウム濃度は、0.05モルチ。
(Example 1) 0.1 mol of manganese oxide was thoroughly mixed with calcium carbonate, and the mixture was heated to 1200 molar mass in a hydrogen sulfide atmosphere.
Mntt activated calcium sulfide C by keeping at °C
aS: Mn (0.1 mg%) was fired. This sample was divided into six parts and yttrium oxide was mixed therein. The concentration of yttrium mixed in each divided sample was 0.05 mol.

0.1モルチオ0.3モル%、0.5モルチ、1.0モ
ルチである。これらを酸化イツトリウム無碓加の分割試
料と共に前記条件下で再焼成し、得られた螢光体の17
面残光時間τイ。を紫外線(253,7nm水銀線)照
射下で測定した。また各螢光体で沈降膜を形成し、25
KVの電子線で励起して色度座標と3Cds(PO4)
g・CaCl2: Mnに対する相対輝度9発光効率を
調べた。
They are 0.1 mol %, 0.3 mol %, 0.5 mol %, and 1.0 mol %. These were refired under the above conditions together with divided samples containing no yttrium oxide, and the resulting phosphor was 17
Surface afterglow time τa. was measured under ultraviolet light (253.7 nm mercury line) irradiation. In addition, each phosphor forms a precipitated film, and 25
Excite with KV electron beam to obtain chromaticity coordinates and 3Cds (PO4)
g.CaCl2: Relative brightness 9 luminous efficiency with respect to Mn was investigated.

これを第1表に記す。This is shown in Table 1.

第1表 CaS:Mn(0,1mot%)、Yの螢光特
性第1表の結果から、共付活剤Yの濃度が高まる程螢光
体は長残光化し、色度座標は赤色塵の強い方へ移動する
が、発光効率(輝度)は低下するととがわかる。現在デ
ィスプレ装置用橙色螢光体として用いられているカドミ
ウム系螢光体CDP 、すなわち3 Cds (PO4
)+1 ・CdC4z : Mnに匹敵する残光時間は
、本例の場合Y濃度約0.3 mot%の試料で得られ
ており、発光効率(輝度)もCDPに匹敵している。し
かし色調はCDPより黄色が強い。
Table 1 Fluorescent properties of CaS:Mn (0.1 mot%), Y From the results in Table 1, the higher the concentration of co-activator Y, the longer the afterglow of the phosphor becomes, and the chromaticity coordinates show a strong red dust. However, it can be seen that the luminous efficiency (luminance) decreases. CDP, a cadmium-based phosphor currently used as an orange phosphor for display devices, namely 3 Cds (PO4
)+1 ・CdC4z: In this example, an afterglow time comparable to that of Mn was obtained in a sample with a Y concentration of about 0.3 mot%, and the luminous efficiency (brightness) was also comparable to that of CDP. However, the color tone is more yellow than CDP.

そこで次に色−を変えた試料で残光時間を測定した。C
aS螢光体の色調を変化させるにはいくつかの方法があ
る。主要なものには付活剤の濃度ケ変化させる方法、混
晶母体を用いる方法や共付活剤を用いる方法などがある
が、ここでは、付活剤Mn濃度を変化させた例を示す。
Then, the afterglow time was measured using samples with different colors. C
There are several ways to change the color tone of an aS phosphor. The main methods include a method of varying the concentration of the activator, a method of using a mixed crystal matrix, and a method of using a co-activator. Here, an example in which the Mn concentration of the activator is varied is shown.

試料の焼成は上記と同じ工程によって行なった。得られ
た各螢光体Ca8 : Mn(amat%)、Y(03
mot%)で沈降膜を形成し、前記同様紫外光励起PL
でτ”Aoを、また25KV電子線励起CLで相対輝度
および色度座標を測定した結果を第2表に示した。
The sample was fired using the same process as above. Each of the obtained phosphors Ca8: Mn (amat%), Y (03
mot%) to form a precipitated film, and UV-excited PL as described above.
Table 2 shows the results of measuring τ''Ao, relative brightness and chromaticity coordinates using 25 KV electron beam excitation CL.

第2表 CaS : Mn(amot%) 、 Y(0
,3mo1%)の螢光特性この表から付活剤Mnの濃度
が増加するにつれて残光時間が短かくなり、色調は赤色
度を増し、輝度は低下することがわかる。現在用いられ
ているカドミウム系螢光体CDPに匹敵する色調、残光
時間はB−3の試射で得られ、輝度もCDPにほぼ匹敵
する。したがってB−3の組成をもつ橙色螢光体は公害
物質カドミウム入りの現行橙色螢光体に代替してディス
プレイ管に塗布することができ、カドミウム処理費不要
のためブラウン管のコストダウンに寄与することができ
る。また、PLで長残光であることが確認されたので、
本例の螢光体はランプ用螢光体にも応用可能である。
Table 2 CaS: Mn (amot%), Y (0
, 3mo1%) From this table, it can be seen that as the concentration of the activator Mn increases, the afterglow time becomes shorter, the color tone becomes more reddish, and the brightness decreases. The color tone and afterglow time comparable to the currently used cadmium-based phosphor CDP were obtained by test shooting B-3, and the brightness was also comparable to CDP. Therefore, the orange phosphor having the composition B-3 can be applied to display tubes in place of the current orange phosphor that contains the pollutant cadmium, and contributes to reducing the cost of cathode ray tubes because there is no cadmium treatment cost. I can do it. In addition, it was confirmed that the PL had a long afterglow, so
The phosphor of this example can also be applied to a phosphor for lamps.

(実施例2) 炭酸カルシウム、炭酸ストロンシン カ
゛ ラムおよび硫酸マ薮Δンの各粉末を所定のモル比で混合
し、硫化水素雰囲気で数時間120σCに保持すること
により、Ca1−1Srz8 : Mn (0,2mo
L%)を焼成した。これを粉砕後、異なる母体組成比X
を有する各試料に共付活剤スカンジウムを0.3モルチ
酸化物の形で添加し、よく混合して再び1200℃で3
時間硫化水素雰囲気に保持した。この結果、Ca 1−
X5rXS : Mn (0,2moL%) 、Se(
03mot% )の組成をもつ黄橙色螢光体が得られた
。前実施例同様沈降膜を形成後253.7nm水銀線励
起によるPLで猫残光時間を測定し、更に25 KV加
速の軍、子線励起によるCLでその他の螢光特性を測定
した。再びカドミウム系橙色螢光体CDPを標準試料と
して用い、得られた結果を第3表に記載した。
(Example 2) Ca1-1Srz8 : Mn (0, 2mo
L%) was fired. After pulverizing this, different matrix composition ratios
Co-activator scandium was added in the form of 0.3 molar thioxide to each sample with
It was kept in a hydrogen sulfide atmosphere for an hour. As a result, Ca 1-
X5rXS: Mn (0.2mol%), Se(
A yellow-orange phosphor having a composition of 0.03 mot %) was obtained. As in the previous example, after forming a precipitated film, the afterglow time was measured using PL using 253.7 nm mercury beam excitation, and other fluorescent properties were measured using CL using 25 KV acceleration and consonant beam excitation. The cadmium-based orange phosphor CDP was used again as a standard sample, and the results obtained are listed in Table 3.

第3表 Ca 1−1srzs : Mn(0,2mo
t%) + 5C(0,3mat%)の螢光特性 Sr組成比Xの増大につれて、色度点が橙色から黄色に
移行していくと同時に残光時間が長くなる。相対輝度は
視感度依存性のためにXの増大につれてやや向上するが
、発光効率が低下するために飽和する傾向を示す。本例
のように母体にCa 1−1 S rxS 混晶を用い
れば、Mn付活長残光螢光体の色調を前実施例の場合よ
り一層黄色側に移行させることが可能である。また、第
3表では述べなかったが、CL測測定行なった場合もC
DP工り光分長残光であった。たとえば、25 KV加
速の電子線励起の場合、C−3試料のでMoは108m
5ecであり、CDPの29m5ecを大幅に上回った
Table 3 Ca 1-1srzs: Mn(0,2mo
t%) + Fluorescent properties of 5C (0.3 mat%) As the Sr composition ratio X increases, the chromaticity point shifts from orange to yellow and at the same time the afterglow time increases. Although the relative brightness slightly improves as X increases due to visibility dependence, it tends to become saturated due to a decrease in luminous efficiency. If a Ca 1-1 S rxS mixed crystal is used as the matrix as in this example, it is possible to shift the color tone of the Mn-activated long afterglow phosphor to a more yellow side than in the previous example. Although not mentioned in Table 3, C
It was a DP-processed light with a long afterglow. For example, in the case of electron beam excitation at 25 KV acceleration, Mo is 108 m
5ec, which was significantly higher than CDP's 29m5ec.

(実施例3) 炭酸カルシウム、硫酸マグネシウム、#
化銅、酸化イツトリウムを所定の割合で混合し、硫化水
素気流中で120孔に保持することによりCa 1−y
 Mg yS : Cu (0,2mol−% ) 、
Y青色螢光体を焼成した。一旦粉砕後、1モル−〇炭酸
ナトリウムを混合して110元で加分間再び硫化水素中
で焼成した。得られた青色螢光体の沈降膜を作り、前実
施例と同様な方法でPLとCLにより室温における特性
を測定した。この結果を第4表に示す。
(Example 3) Calcium carbonate, magnesium sulfate, #
Ca 1-y
MgyS: Cu (0.2 mol-%),
The Y blue phosphor was fired. Once pulverized, 1 mol of sodium carbonate was mixed and the mixture was heated at 110 yuan and calcined again in hydrogen sulfide. A precipitated film of the obtained blue phosphor was prepared, and its properties at room temperature were measured by PL and CL in the same manner as in the previous example. The results are shown in Table 4.

標準試料は豆方晶ZnS : Agである。The standard sample is crystalline ZnS:Ag.

第4表 Ca 1 y Mgy S : Cu (0,
2mo1%ン。
Table 4 Ca 1 y Mgy S: Cu (0,
2mo1%n.

Na (2mo1%) + Y (Cmol−%)の螢
光特性第4表によれば共付活剤Yの飽加によって青色螢
光体は著しく長残光化することがわかる。ただし、発光
効率はカラーブラウン管用青色螢光体ZnS : Ag
の7〜8割程度にとどまる。しかし、このような長残光
青色螢光体はあまり例がなく、ディスプレイ管用青色螢
光体として有望である。イツトリウム濃度0.05〜5
モルチの範囲で、イツトリウム無添加の場合より長残光
化が認められた。また、共付活剤をイツトリウムに替え
て、スカンジウム。
According to Table 4 of the fluorescent properties of Na (2mol1%) + Y (Cmol-%), it can be seen that saturation of the co-activator Y causes the blue phosphor to have a significantly longer afterglow. However, the luminous efficiency is higher than that of the blue phosphor ZnS for color cathode ray tubes: Ag.
It remains at around 70-80% of the total. However, there are few examples of such long afterglow blue phosphors, and they are promising as blue phosphors for display tubes. Yttrium concentration 0.05-5
Within the range of molti, longer afterglow was observed than when no yttrium was added. Also, replace the co-activator with yttrium and use scandium.

アルミニウム、ガリウム、インジウムを用いた場合も長
残光化が認められた。たとえば、共付活剤濃度Cを0.
3モルチに固定した場合、第4表に示したイツトリウム
共付活と同じ焼成条件下で得られた螢光体(組成比y=
0)では、第4表と同じ測定条件下でて扇はスカンジウ
ム800maee 、アルミニウム44 m5ec 、
ガリウム38 m5ec 、インジウム39m5ecで
あり、共付活剤無添加の場合よす長残光であった。
Long afterglow was also observed when aluminum, gallium, and indium were used. For example, the coactivator concentration C is set to 0.
3 molti, the phosphor obtained under the same firing conditions as the yttrium coactivation shown in Table 4 (composition ratio y =
0), under the same measurement conditions as in Table 4, the fan was made of scandium 800 maee, aluminum 44 m5ec,
Gallium was 38 m5ec, indium was 39m5ec, and the afterglow was longer than when no co-activator was added.

(実施例4) 炭酸男ルシウム、酸化ユーロピウム。(Example 4) Lucium carbonate, europium oxide.

酸化セリウム、ll&化スカンジウムの粉末をよく混合
し、1200℃で繰返し硫化してCa8 :Eu(0,
1mot%)、Co(0,O1mat%)。
Powders of cerium oxide, ll & scandium oxide were mixed well and sulfurized repeatedly at 1200°C to form Ca8:Eu(0,
1 mot %), Co (0, O 1 mat %).

Be(Cmot%)赤色螢光体を焼成した。共付活剤S
Cの濃度Cを変化させて得たいくつかの試料の沈降螢光
体膜の特性を、前実施例同様のPL、CLによって測定
した。得られた結果を第5表に示した。
A Be(Cmot%) red phosphor was fired. Coactivator S
The properties of the precipitated phosphor films of several samples obtained by varying the C concentration C were measured by PL and CL in the same manner as in the previous example. The results obtained are shown in Table 5.

なお、本例の場合標準試料はSC無添加のCab:F、
u (0,1mot%) 、 Ce(o、o 1mg%
 ) とした。この標準螢光体の室温における電子線励
起発光のエネルギー効率(絶対効率)は約17チであっ
た。
In the case of this example, the standard samples were Cab:F without SC;
u (0,1 mot%), Ce (o, o 1 mg%
). The energy efficiency (absolute efficiency) of electron beam excited luminescence of this standard phosphor at room temperature was about 17 cm.

第5表 CaS : Eu (0,1mo1%) 、 
Co(0,01mot%)。
Table 5 CaS: Eu (0.1mol1%),
Co (0.01 mot%).

Be (Cmol、%)の螢光特性 共付活剤Scの濃度が増大するにつれて発光効率は低下
するがτ!λ。は大幅に伸び、長残光深赤色螢光体とし
て利用できる。
Fluorescence properties of Be (Cmol, %) As the concentration of the co-activator Sc increases, the luminous efficiency decreases, but τ! λ. It can be used as a long afterglow deep red phosphor.

以上の実施5例では、アルカリ土類硫化物螢光体母体と
してCaS 、(Ca 、S r )S 、 (Ca 
、Mg )Sを用いた場合を述べたが本発明はこれにと
どまることなく、他のアルカリ土類硫化物螢光体に対し
ても有効である。また、螢光体焼成法としては硫化水素
雰囲気で加熱する方法のみを述べたが、長残光化には共
付活剤としてY、Sc、At、GaあるいはInの存在
が基本的であり、他の焼成法たとえば還元硫化法や硫化
物湿式合成後の加熱焼成法などKも本発明が有効である
ことは自明である。
In the above fifth embodiment, CaS, (Ca, Sr)S, (Ca
, Mg 2 )S has been described, but the present invention is not limited thereto, and is also effective for other alkaline earth sulfide phosphors. In addition, although only the method of heating in a hydrogen sulfide atmosphere has been described as the phosphor firing method, the presence of Y, Sc, At, Ga, or In as a coactivator is fundamental for long afterglow. It is obvious that the present invention is also effective with other calcination methods such as the reduction sulfidation method and the heating calcination method after wet sulfide synthesis.

本発明によって、高輝度多色アルカリ土類硫化物螢光体
の長残光化が達成され、ディスグレイ管用螢光体、ラン
グ用螢光体としての用途が大きく開けた。
According to the present invention, a long afterglow of a high-intensity multicolor alkaline earth sulfide phosphor has been achieved, and its use as a phosphor for display gray tubes and a phosphor for rungs has been greatly expanded.

特許出願人 株式会社 レアメタリック代理人 弁理士
 秋 本 正 実
Patent Applicant Rare Metallic Co., Ltd. Agent Patent Attorney Masami Akimoto

Claims (1)

【特許請求の範囲】[Claims] 1.2価の陽イオンを付活した螢光体に共付活剤として
イツトリウム、スカンジウム、アルミニウム、f!リウ
ム、インジウムより成る群から少なくとも1種類を添加
したことを特徴とするアルカリ土類硫化物螢光体。 2、前項記載の2価の陽イオンはMn 、Cu 。 およびEu”+から成る群から選んだ1種類であること
を特徴とする特許請求の範囲第1項記載のアルカリ土類
硫化物螢光体。
Yttrium, scandium, aluminum, f! An alkaline earth sulfide phosphor, characterized in that it contains at least one element selected from the group consisting of lithium and indium. 2. The divalent cations mentioned in the previous section are Mn and Cu. The alkaline earth sulfide phosphor according to claim 1, characterized in that the phosphor is one selected from the group consisting of and Eu''+.
JP5449784A 1984-03-23 1984-03-23 Phosphor consisting of alkaline earth sulfide Granted JPS60231784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5449784A JPS60231784A (en) 1984-03-23 1984-03-23 Phosphor consisting of alkaline earth sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5449784A JPS60231784A (en) 1984-03-23 1984-03-23 Phosphor consisting of alkaline earth sulfide

Publications (2)

Publication Number Publication Date
JPS60231784A true JPS60231784A (en) 1985-11-18
JPS6244791B2 JPS6244791B2 (en) 1987-09-22

Family

ID=12972267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5449784A Granted JPS60231784A (en) 1984-03-23 1984-03-23 Phosphor consisting of alkaline earth sulfide

Country Status (1)

Country Link
JP (1) JPS60231784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102518A1 (en) * 2007-02-19 2008-08-28 Mitsui Mining & Smelting Co., Ltd. Red phosphor, red light emitting element or device, and white light emitting element or device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232871A (en) * 1975-09-08 1977-03-12 Kobe Steel Ltd Method of denitrating flue gas
JPS57128772A (en) * 1981-02-02 1982-08-10 Hitachi Ltd Fluorescent substance
JPS57195784A (en) * 1981-05-29 1982-12-01 Hitachi Ltd Fluorescent substance
JPS57202373A (en) * 1981-06-05 1982-12-11 Hitachi Ltd Sulfide fluorescent substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232871A (en) * 1975-09-08 1977-03-12 Kobe Steel Ltd Method of denitrating flue gas
JPS57128772A (en) * 1981-02-02 1982-08-10 Hitachi Ltd Fluorescent substance
JPS57195784A (en) * 1981-05-29 1982-12-01 Hitachi Ltd Fluorescent substance
JPS57202373A (en) * 1981-06-05 1982-12-11 Hitachi Ltd Sulfide fluorescent substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102518A1 (en) * 2007-02-19 2008-08-28 Mitsui Mining & Smelting Co., Ltd. Red phosphor, red light emitting element or device, and white light emitting element or device
JP4790794B2 (en) * 2007-02-19 2011-10-12 三井金属鉱業株式会社 Red phosphor, red light emitting device or device, and white light emitting device or device

Also Published As

Publication number Publication date
JPS6244791B2 (en) 1987-09-22

Similar Documents

Publication Publication Date Title
US5376303A (en) Long Decay phoaphors
US3639254A (en) Alkaline earth thiogallate phosphors
JPS6241990B2 (en)
JPWO2007074935A1 (en) Blue-emitting alkaline earth chlorophosphate phosphor for cold cathode fluorescent lamp, cold cathode fluorescent lamp, and color liquid crystal display device.
JP2790673B2 (en) Aluminate phosphor
JP2979984B2 (en) Afterglow phosphor
CN106957651A (en) Rear-earth-doped luminous material
KR900001384B1 (en) White luminescent fluorescent substance having long after glow
EP0087476A1 (en) Display device
JP2000017257A (en) Fluorescent substance and luminous screen using the same
JPS60231784A (en) Phosphor consisting of alkaline earth sulfide
JP3360431B2 (en) Aluminate phosphor
JP3098266B2 (en) Light-emitting composition and fluorescent lamp
JP2003041250A (en) Phosphor
JP2589491B2 (en) Fluorescent lamp
JP2786329B2 (en) Aluminate phosphor and fluorescent lamp using the same
JP2863160B1 (en) Phosphorescent phosphor
JPH06100860A (en) Blue-emitting phosphor
JPS638476A (en) Highly bright fluorescent substance
JP2697733B2 (en) Long afterglow phosphor
JPS62187785A (en) Highly color-rendering fluorescent lamp
JPS60147490A (en) Fluorescent substance of sulfide
JPH05117655A (en) White luminescent phosphor
JP4242732B2 (en) Red light emitting phosphor and light emitting composition
JP2865216B2 (en) Aluminate phosphor and fluorescent lamp using the same