JPS60231376A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPS60231376A
JPS60231376A JP8735884A JP8735884A JPS60231376A JP S60231376 A JPS60231376 A JP S60231376A JP 8735884 A JP8735884 A JP 8735884A JP 8735884 A JP8735884 A JP 8735884A JP S60231376 A JPS60231376 A JP S60231376A
Authority
JP
Japan
Prior art keywords
crystal
holder
laser
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8735884A
Other languages
Japanese (ja)
Inventor
Kazuya Nakagawa
中川 一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP8735884A priority Critical patent/JPS60231376A/en
Publication of JPS60231376A publication Critical patent/JPS60231376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/086One or more reflectors having variable properties or positions for initial adjustment of the resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make it possible to change an oscillating wavelength by changing crystals simply without disassembling a laser, by rotating a holder, to which several kinds of ion crystals are attached, by external operation. CONSTITUTION:A holder 4 is rotatably attached to the inside of a crystal changing chamber 5. By rotating a stepping motor 6, arbitrary one of four kinds of ion crystals 3, which are attached to the holder 4, can be positioned at the end part of a copper pipe 1. Exciting infrared rays are inputted through a window 7, transmitted through the crystal 3, which is located at an input coupling position, and inputted to the inside of the copper pipe 1. Ammonia gas is excited by the infrared rays. Of the far infrared rays emitted from the excited ammonia gas, the light with cirtain wavelength is reflected by the crystal 3 with high reflectivity. The light with said wavelength is reflected between a reflecting mirror 2 and the crystal 3 and goes back and forth. The light is intensified and transformed into a laser beam, which is emitted through the central hole of the reflecting mirror 2.

Description

【発明の詳細な説明】 イ・ 産業上の利用分野 本発明は発振波長を切換えることのできるガスレーザに
関する○ 口・従来技術 ガスレーザは適当なガスを管中に充填し、両端に光反射
体を置いて、この両反射体の間で光が反射往復するよう
に構成したもので、ガスを適宜方法で励起すると、励起
されたガス分子が低エネルギー準位の状態に戻るとき放
射される特定波長の光が、上記両反射体間を往復する間
に他の励起ガス分子の低準位への復帰を誘導することに
よって上記特定波長の光が増強されるようになっている
、こ\で励起されたガスが低エネルギー準位に戻る場合
の遷移の種類が幾つかあるときは、夫々の遷移に対応す
る波長の光の発振が可能である。そこでガス管の両端に
配置する反射体の一方を反射特訃 性が上記発振可能な波長の一つだけを含l範囲で反射率
が高く、他の波長範囲では透明であるようなものにする
と、上記した一つの波長で発振するレーザとなシ、上記
した反射体を他の特性のものと交換することで、一つの
ガスレーザーで幾種類かの異る波長のレーザー光を得る
ことができる。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a gas laser whose oscillation wavelength can be switched. The structure is such that light is reflected back and forth between these two reflectors, and when the gas is excited by an appropriate method, a specific wavelength is emitted when the excited gas molecules return to a low energy level state. While the light travels back and forth between the two reflectors, the light of the specific wavelength is enhanced by inducing other excited gas molecules to return to a lower level. When there are several types of transitions when the gas returns to a lower energy level, it is possible to oscillate light with a wavelength corresponding to each transition. Therefore, one of the reflectors placed at both ends of the gas pipe should have a reflection characteristic that is high in the range that includes only one of the wavelengths at which oscillation is possible, and transparent in the other wavelength ranges. However, by replacing the reflector described above with one with other characteristics, it is possible to obtain laser light of several different wavelengths with one gas laser. .

例えば遠赤外域の分子ガスレーザにおいて、KCl笠の
イオン結晶は赤外光に対して殆んど透明であるが、遠赤
外の成る波長域で高い反射率を示すので、このようなイ
オン結晶を上述した反射体として用い、単一波長のレー
ザ発振を起させることができ、イオン結晶の種類を変え
ることで発振波長を選択できることが示されている(M
RGreen他: J Phys、 D: Appl 
Phys、 131980、中用他:昭和57年レーザ
学会第2回年次大会予稿P3B等)。
For example, in molecular gas lasers in the far-infrared region, ion crystals made of KCl caps are almost transparent to infrared light, but since they exhibit high reflectance in the far-infrared wavelength region, such ion crystals are used. It has been shown that single-wavelength laser oscillation can be caused by using it as the above-mentioned reflector, and that the oscillation wavelength can be selected by changing the type of ion crystal (M
R Green et al.: J Phys, D: Appl.
Phys, 131980, intermediate use, etc.: Proceedings of the 2nd Annual Conference of the Laser Society of Japan, 1988, P3B, etc.).

しかし既提案のレーザでは結晶を交換するためには−々
レーザを分解しなくてはならず、単に実験的な可能性を
示すに停まり、種々な波長のレーザ光の中から選択切換
によって任意の一つの波長のレーザー光を取出すことが
できる実用的な装置は提案されていない。
However, in the previously proposed lasers, it is necessary to disassemble the laser in order to replace the crystal, and this merely shows the experimental possibility. No practical device has been proposed that can extract laser light of one wavelength.

へ目的 本発明はレーザを分解することなしに簡単な外部操作で
結晶を交換することにより発振波長を切換えることので
きるガスレーザを提供するものである。
SUMMARY OF THE INVENTION The present invention provides a gas laser whose oscillation wavelength can be switched by replacing the crystal with a simple external operation without disassembling the laser.

二・構成 本発明レーザはレーザ内に数種のイオン結晶を取付けた
ホルダーを設け、このホルダー釜外部操作で回転するこ
とにより、入力結合位置にセットできるようにしたこと
を特徴とする。
2.Construction The laser of the present invention is characterized in that a holder to which several types of ion crystals are attached is provided inside the laser, and the holder can be set at an input coupling position by being rotated by an external operation.

札実雄側 第1図は本発明の一実施例を示すものである。Fatsuo side FIG. 1 shows an embodiment of the present invention.

この実施例は遠赤外発振を行うアンモニアガスレーザで
ある。lは鋼管でその一端側には金蒸着した穴あき凹面
鏡2が配置され、他端側に入力結合用イオン結晶が位置
するようになっている。入力イオン結晶3は円板のホル
ダ4に取付けられている。第2図はホルダ4の正面を示
し、4種のイオン結晶3が取付けられている。ホルダ4
は銅管1の端に取付けられている結晶交換室5内に回転
可能に取付けられており、その軸は結晶交換室外に出て
いて駆動用ステッピングモータ6グ軸に結合されている
。励起用赤外光は結晶交換室5に設けられた窓7から入
射せしめられる。ステッピングモータ6を回転させるこ
とによりホルダ4に取付けられている4種のイオン結晶
のうちの任意の一つを銅管1の端部に位置させることが
できる。結晶交換室5にはガス供給口8が設けられてお
り、同室内から銅管内までレーザ内部全体にアンモニア
ガスが充たされる。このアンモニアガスの圧力は数To
rr〜数十TOrrの程度であるから、外から大気が侵
入しないように、ホルダ4の軸が結晶交換室5の壁を貫
通している部分、同室と銅管1との接続部、窓7の周囲
、銅管1の一端側のレーザ光取出し室9と窓10との間
、同室と銅管1との接続部等全部気密を要する。
This embodiment is an ammonia gas laser that emits far-infrared oscillation. 1 is a steel pipe, on one end of which a gold-deposited concave mirror 2 with a hole is placed, and on the other end an ion crystal for input coupling is placed. The input ion crystal 3 is attached to a disc holder 4. FIG. 2 shows the front of the holder 4, on which four types of ion crystals 3 are attached. Holder 4
is rotatably mounted within the crystal exchange chamber 5 attached to the end of the copper tube 1, and its shaft extends outside the crystal exchange chamber and is connected to the shaft of a driving stepping motor 6. The excitation infrared light is made to enter through a window 7 provided in the crystal exchange chamber 5. By rotating the stepping motor 6, any one of the four types of ion crystals attached to the holder 4 can be positioned at the end of the copper tube 1. A gas supply port 8 is provided in the crystal exchange chamber 5, and the entire interior of the laser is filled with ammonia gas from the chamber to the inside of the copper tube. The pressure of this ammonia gas is several To
rr to several tens of TOrr, so in order to prevent air from entering from outside, the portion where the axis of the holder 4 penetrates the wall of the crystal exchange chamber 5, the connection between the chamber and the copper tube 1, and the window 7 , between the laser beam extraction chamber 9 and the window 10 on one end side of the copper tube 1, and at the connection between the chamber and the copper tube 1, etc., all must be airtight.

励起用赤外光は窓7からレーザ内に入射し、入力結合位
置にある結晶3を透過して銅管1内に入る。このとき、
結晶3は入射する励起赤外線(レーザ発振の波長より短
波長)に対しては透明であるから銅管1内に入射して内
部のアンモニアガスを励起することができる0励起され
たアンモニアガス分子から発せられる伺種類かの波長の
遠赤外光のうち、成る波長の光に対しては結晶3は高反
射率であるので、その波長の光は反射鏡2と上記結晶3
との間で反射されて往復し、その間に増強されてレーザ
ビームとなって反射鏡2の中央孔よシ右方に出射される
The excitation infrared light enters the laser through the window 7, passes through the crystal 3 located at the input coupling position, and enters the copper tube 1. At this time,
Since the crystal 3 is transparent to the incident excitation infrared rays (wavelength shorter than the laser oscillation wavelength), it can enter the copper tube 1 and excite the ammonia gas inside.0 From the excited ammonia gas molecules Of the far-infrared light of various wavelengths that is emitted, the crystal 3 has a high reflectance for the light of that wavelength, so the light of that wavelength is reflected between the reflecting mirror 2 and the crystal 3.
The laser beam is reflected and reciprocated between the mirrors 2 and 2, and is intensified during that time to become a laser beam that is emitted to the right through the center hole of the reflecting mirror 2.

上述実施例で入力結合用イオン結晶の種類と得られるレ
ーザ発振波長との関係を例示する。励起赤外光の光源と
してCO2ガスレーザを用いる。
The relationship between the type of input coupling ionic crystal and the resulting laser oscillation wavelength will be illustrated in the above embodiment. A CO2 gas laser is used as a light source for excitation infrared light.

CO2ガスレーザをl0F(32)にセットし、アンモ
ニアガスを励起する。このとき、アンモニアガスの遷移
は第3図Aに示すような3通りが考えられる。こ\で入
力結合用イオン結晶としてKREI−5を用いると、こ
の結晶の遠赤外高反射波長域に含まれているのは152
μmの波長を出す遷移だけであり、従って152μmの
レーザ光が得られる。また他の結晶としてに工を選び、
C02レーザを9R(16)にセットして励起すると、
この光による励起においてはアンモニアガスの遷移は第
3図Bに示す2種が可能であるが、K工の結晶が高反射
率を呈するのは90−4μmの方なので、90.4μm
のレーザ光が得られる。
Set the CO2 gas laser at 10F (32) and excite the ammonia gas. At this time, there are three possible transitions of ammonia gas as shown in FIG. 3A. When KREI-5 is used as the input coupling ionic crystal, the far-infrared high reflection wavelength range of this crystal is 152
There is only a transition that emits a wavelength of .mu.m, and therefore a laser beam of 152 .mu.m is obtained. He also chose koi as another crystal,
When the C02 laser is set to 9R (16) and excited,
When excited by this light, the two types of transition of ammonia gas shown in Figure 3B are possible, but since the crystal of K-4 exhibits a high reflectance at 90-4 μm, the transition at 90.4 μm is possible.
of laser light can be obtained.

へ・効果 ガスレーザは構造的には外気から密閉されたガス室であ
るが、本発明はこのガス室の内部に回転可能に取付けら
れたホルダに複数種の入力結合用結晶を保持させ、外部
操作によって上記ホルダを回転させて入力結合用結晶を
交換するようにしたので、−々レーザを分解しないで、
複数種の可能な波長の中の任意の一つを選択してレーザ
発振させるととができ波長の切換えが大へん簡単にでき
る。
Effects Gas lasers are structurally a gas chamber sealed from the outside air, but in the present invention, multiple types of input coupling crystals are held in a holder rotatably installed inside this gas chamber, and external operation is possible. Since the input coupling crystal can be replaced by rotating the holder, the laser can be replaced without disassembling the laser.
Laser oscillation can be performed by selecting any one of a plurality of possible wavelengths, making wavelength switching extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のガスレーザの縦断側面図、
第2図は同実施例における結晶ホルダの正面図、第3図
A、Bは励起アンモニア分子における可能な遷移の種類
を示すグラフである。 1・・・銅管、2・・・凹面反射鏡、3・・・入力結合
用イオン結晶、4・・・ホルダ、5・・・結晶交換室、
6・・・ホルダ駆動用ステッピングモータ、7・・・窓
、8・・・ガス供給口、9・・・レーザ光取出し室、1
0・・・窓。 代理人 弁理士 縣 浩 介 −マー 第う図 (A) (B)
FIG. 1 is a vertical side view of a gas laser according to an embodiment of the present invention;
FIG. 2 is a front view of the crystal holder in the same example, and FIGS. 3A and 3B are graphs showing possible types of transitions in excited ammonia molecules. DESCRIPTION OF SYMBOLS 1... Copper tube, 2... Concave reflecting mirror, 3... Ion crystal for input coupling, 4... Holder, 5... Crystal exchange chamber,
6...Stepping motor for holder drive, 7...Window, 8...Gas supply port, 9...Laser light extraction chamber, 1
0...window. Representative Patent Attorney Hiroshi Agata (A) (B)

Claims (1)

【特許請求の範囲】[Claims] 充填ガスの励起状態からの可能な複数種の遷移に対応す
る複数種の波長の夫々に対して、その波長を含む成る帯
域幅内でのみ高い反射率を呈する複数種の結晶を回転ホ
ルダに取付け、このホルダをレーザ発振管と連通し外気
と遮断された室内に回転可能に取付け、同ホルダの回転
によってホルダ上の複数の結晶中の任意の一つをレーザ
発振管の管端位置に移動させ得るようにしたガスレーザ
Multiple types of crystals are attached to a rotating holder, each exhibiting a high reflectance only within a bandwidth that includes multiple types of wavelengths corresponding to multiple types of possible transitions from the excited state of the filled gas. , this holder is rotatably installed in a chamber that communicates with the laser oscillation tube and is cut off from the outside air, and by rotating the holder, any one of the plurality of crystals on the holder is moved to the tube end position of the laser oscillation tube. A gas laser made to obtain.
JP8735884A 1984-04-30 1984-04-30 Gas laser Pending JPS60231376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8735884A JPS60231376A (en) 1984-04-30 1984-04-30 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8735884A JPS60231376A (en) 1984-04-30 1984-04-30 Gas laser

Publications (1)

Publication Number Publication Date
JPS60231376A true JPS60231376A (en) 1985-11-16

Family

ID=13912661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8735884A Pending JPS60231376A (en) 1984-04-30 1984-04-30 Gas laser

Country Status (1)

Country Link
JP (1) JPS60231376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501177A (en) * 1987-08-26 1990-04-19 テクノメド・アンテルナシヨナル adjustable laser device
JP2018530927A (en) * 2015-08-20 2018-10-18 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Terahertz laser, terahertz source, and use of such a terahertz laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501177A (en) * 1987-08-26 1990-04-19 テクノメド・アンテルナシヨナル adjustable laser device
JP2018530927A (en) * 2015-08-20 2018-10-18 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Terahertz laser, terahertz source, and use of such a terahertz laser

Similar Documents

Publication Publication Date Title
US3890578A (en) Dye laser excited by a diode laser
US5148441A (en) Solid state laser
US5339328A (en) Solid-state laser
JPS60231376A (en) Gas laser
JPS6016479A (en) Laser device of single frequency oscillation
JPH05211362A (en) Cavity mirror for suppression of high-gain laser wavelength
US4780882A (en) Optical resonator and laser
US3868590A (en) Narrow bandwidth dye laser
US5867519A (en) Multiple element, folded beam laser
US3860888A (en) Time-sharing two frequency laser
US5513205A (en) End-pumping laser configuration utilizing a retroreflector as an input coupler
US3772609A (en) Laser cavity configuration yielding dual output beam
AU595277B2 (en) Laser apparatus
EP0986150B1 (en) Multiple element, folded beam laser
US4759026A (en) Dye lasers
US20020181089A1 (en) Laser with selectable wavelength
WO1998006156A9 (en) Multiple element, folded beam laser
JPS6028288A (en) Orthogonal gas laser oscillator
JPH0652814B2 (en) Optical fiber-communication device
EP0407194B1 (en) Input/output ports for a lasing medium
JPH1065238A (en) Solid-state laser device
US5867518A (en) Multiple element laser pumping chamber
JPH033377A (en) Semiconductor laser pumping solid-state laser device
EP0209222A2 (en) Multiple wavelength operating lasers
JPH05259539A (en) Solid-state laser