JPS60231369A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60231369A
JPS60231369A JP59087406A JP8740684A JPS60231369A JP S60231369 A JPS60231369 A JP S60231369A JP 59087406 A JP59087406 A JP 59087406A JP 8740684 A JP8740684 A JP 8740684A JP S60231369 A JPS60231369 A JP S60231369A
Authority
JP
Japan
Prior art keywords
gate
electrode
region
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59087406A
Other languages
Japanese (ja)
Inventor
Tsuneyoshi Aoki
青木 常良
Masayoshi Kanazawa
金沢 雅義
Akiyasu Ishitani
石谷 彰康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59087406A priority Critical patent/JPS60231369A/en
Priority to KR1019850002753A priority patent/KR930009473B1/en
Priority to DE8585105133T priority patent/DE3578533D1/en
Priority to EP85105133A priority patent/EP0166112B1/en
Publication of JPS60231369A publication Critical patent/JPS60231369A/en
Priority to US07/246,963 priority patent/US4982247A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the resistance of a gate and to improve a noise index in a semiconductor device having an FET structure, by arranging a plurality of gate- potential supplying electrodes in a region on the side of a source electrode and a region including the side of a drain electrode. CONSTITUTION:On a compound semiconductor substrate 10, a source electrode 12 and a drain electrode 13 are arranged so as to hold a gate electrode 11 and connected to a source region 16 and a drain region 17 electrically. Feeding points Pa and Pb in the vicinity of both ends of the gate electrode 11 are electrically connected to a gate potential supplying electrodes (gate pads) 14a and 14b of a pattern, which is surrounded by the source electrode 12. A feeding point Pc at the center is connected to a gate pad 14c, which is arranged in the region on the side of the drain electrode 13. The feeding points to the gate electrode are increased without increasing the size of a chip and without using a complicated structure such as multilayer wirings, and the resistance of the gate can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、FET(電界効果トランジスタ)構造を有す
る半導体装置に関し、特にGaAs (ガリウム・ヒ素
)FETのような超高周波用FETに適用して好ましい
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor device having an FET (field effect transistor) structure, and is particularly applicable to an ultra-high frequency FET such as a GaAs (gallium arsenide) FET. This is preferable.

〔背景技術とその問題点〕[Background technology and its problems]

近年において、静止軌道上の放送衛星を用いて高品質な
映像やPCM音声等を例えば12GHz帯の超高周波信
号により放送するようないわゆる衛星放送が実現されて
おり、このような衛星放送の受信システムの用途等に、
低雑音で超高周波用のFET(電界効果トランジスタ〕
の需要が極めて高くなっている。
In recent years, so-called satellite broadcasting has been realized, which uses broadcasting satellites in geostationary orbit to broadcast high-quality video, PCM audio, etc. using ultra-high frequency signals in the 12 GHz band. For purposes such as
FET (field effect transistor) for ultra-high frequency with low noise
demand is extremely high.

ここで、GaAs(ガリウム・ヒ素)FET等の超高周
波用FETは、例えば第1図に示すような等何回路で表
すことができ、雑音指数(ノイズフィギュア、NF)と
しての請求める一般式は、となる。この0式において、
Kfはいわゆるフィンティングファクタと称される素子
固有の定数であり、Cgsはゲートーノース間容量(い
わゆる入力容量)であり、RIは高周波時のゲート抵抗
であり、Rsはンース抵抗であり、またpmはFETの
伝達コンダクタンスである0このような雑音指数として
のFoを小さくするための一つの方法として、上記ゲー
ト抵抗R7を小さくすることが考えられる。
Here, an ultra-high frequency FET such as a GaAs (gallium arsenide) FET can be represented by any number of circuits as shown in Figure 1, and the general formula that can be claimed as the noise figure (NF) is , becomes. In this formula 0,
Kf is a constant unique to the element called the so-called finning factor, Cgs is the gate-to-north capacitance (so-called input capacitance), RI is the gate resistance at high frequency, Rs is the source resistance, and pm is One possible method for reducing the FET's transfer conductance, 0, as a noise figure, Fo, is to reduce the gate resistance R7.

このゲート抵抗R1は、 にて表せ、この0式において、Rtは抵抗率、Zuは単
位ゲート幅、Sはゲート断面積、また21はゲート全幅
である。ここで、単位ゲート幅Zuは、第2図A−Cに
示すように、ゲート全幅が21のゲート電極1に対する
給電点Pが増加するほど減少する。すなわち、上記給電
点が1個の第2図Aの単位ゲート幅ZuはZu=Zt/
2.給電点が2個の第2図BではZu=Zt/4 、給
電点が3個の第2図CではZu=Zt/6 となり、一
般にN個の給電点が第2図のような形態で設けられてい
る場合の単位ゲート幅Zuは、Zu=Zt/2Nとなる
。したがって、給電点が1個(N=1)のときの上記ゲ
ート抵抗RIIに対して、給電点が2個(N〒2)のと
きのR,pは1/4となり、3個(N=3)のときのR
tは1/9となり、一般に給電点がN個のときのゲート
抵抗Rtはl/N2に減少し、その分上記雑音指数とし
てのFo k小さくできることになる。
This gate resistance R1 can be expressed as follows, where Rt is the resistivity, Zu is the unit gate width, S is the gate cross-sectional area, and 21 is the full gate width. Here, as shown in FIGS. 2A to 2C, the unit gate width Zu decreases as the power supply point P for the gate electrode 1 having a total gate width of 21 increases. That is, the unit gate width Zu in FIG. 2A with one feeding point is Zu=Zt/
2. In Figure 2B, where there are two feed points, Zu = Zt/4, and in Figure 2C, where there are three feed points, Zu = Zt/6.Generally, N feed points are in the form as shown in Figure 2. When provided, the unit gate width Zu is Zu=Zt/2N. Therefore, with respect to the gate resistance RII when there is one feeding point (N=1), R and p are 1/4 when there are two feeding points (N〒2), and three (N= R at the time of 3)
t becomes 1/9, and in general, when there are N feeding points, the gate resistance Rt decreases to 1/N2, and Fok as the above-mentioned noise figure can be reduced accordingly.

ところが、ゲート電極1に対する給電点Pk増加させる
と、各給電点にゲート電位を供給するための電極、いわ
ゆるポンディングパッドの個数が増加し、パターン面積
が増大してチップサイズが大きくなるという欠点がある
。すなわち、第3図A、B、Cはそれぞ九給電点Pが1
個、2個、3個の場合の各電極パターンを概略的に示す
平面図であり、ゲート電極1を挾むようにソース電極2
とドレイン電極3とが対向配置されている。これら第3
図A、BXCにおいて、ゲート電位供給電極、いわゆる
ゲートパッド4は、いずれもソース電極211!lに配
されている。これは、ゲートパッド4をドレイン電極3
側に配した場合のドレイン−ゲート間容量Cdtの増加
を防止するためと、通常アース電位に保持されるソース
電極2によりゲートパッド4を囲んでシールドするため
である。
However, when the power supply points Pk for the gate electrode 1 are increased, the number of electrodes, so-called bonding pads, for supplying gate potential to each power supply point increases, resulting in an increase in the pattern area and the chip size. be. That is, in Figure 3 A, B, and C, each of the nine feed points P is one.
FIG. 2 is a plan view schematically showing each electrode pattern in the case of one electrode, two electrodes, and three electrodes, in which a source electrode 2 is sandwiched between a gate electrode
and the drain electrode 3 are arranged to face each other. These third
In Figures A and BXC, the gate potential supply electrodes, so-called gate pads 4, are both source electrodes 211! It is placed in l. This connects the gate pad 4 to the drain electrode 3.
This is to prevent an increase in the drain-gate capacitance Cdt when disposed on the side, and to surround and shield the gate pad 4 by the source electrode 2, which is normally held at ground potential.

このような第3図A、B、Cの電極パターン外形の最大
長Wについては、給電点Pが1個のとき〔第3図A〕の
上記最大長kW1、給電点Pが2個のとき(第3図B)
の上記最大長hW2、給電点Pが3個のとき(第3図C
)の上記最大長をW。
Regarding the maximum length W of the electrode pattern outline in Fig. 3 A, B, and C, the above maximum length kW1 in [Fig. 3 A] when there is one feeding point P, and when there are two feeding points P (Figure 3B)
When the above maximum length hW2 and the number of feeding points P are three (Fig. 3C
) is the above maximum length W.

とするとき、Wl <W2 <Wa のように′なり、
給電点の個数が増加するほどパターン外形最大長が大き
くなって、結果的にチップサイズが大きくなる。チップ
サイズが大きくなると、GaAs基板等の材料費が嵩む
のみならず製品の歩留りも悪化し、またパッケージも大
型化して好ましくない。
Then, Wl < W2 < Wa ′, and
As the number of feeding points increases, the maximum length of the pattern outline increases, resulting in a larger chip size. As the chip size increases, not only does the cost of materials such as GaAs substrates increase, but also the yield of the product deteriorates, and the package also becomes larger, which is undesirable.

なお、多層配線を用いてポンディングパッドを増やすこ
となく上記給電点を増加させることも考えられるが、ゲ
ートーノース間容量(入力容量)C2s の増大を防ぐ
ために、厚みの厚い低誘電率の絶縁膜を層間絶縁層とし
てCVD法等により被着形成する必要があり、さらにコ
ンタクト用窓開は等の工程も必要となって製造工程が複
雑化し、製造コストが嵩む。
Although it is possible to increase the number of feeding points without increasing the number of bonding pads by using multilayer wiring, in order to prevent an increase in the gate-to-north capacitance (input capacitance) C2s, it is necessary to use a thick insulating film with a low dielectric constant. It is necessary to form an interlayer insulating layer by a CVD method or the like, and further steps such as opening a contact window are required, which complicates the manufacturing process and increases manufacturing costs.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の点に鑑み、多層配線のような複雑な構
造を用いずに、テンプサイズやパターン外形最大長を増
大させることなくゲート電極に対する給電点を増加し、
ゲート抵抗Ryt=低減して雑音指数の改善が可能な半
導体装置の提供を目的とする。
In view of the above points, the present invention increases the number of power feeding points to the gate electrode without using a complicated structure such as multilayer wiring, without increasing the template size or the maximum length of the pattern outline,
It is an object of the present invention to provide a semiconductor device that can reduce gate resistance Ryt and improve noise figure.

〔発明の概要〕[Summary of the invention]

すなわち、本発明に係る半導体装置の特徴は、対向する
ソース、ドレイン電極間にゲート電極を配してなる半導
体装置において、上記ゲート電極への電位供給電極を複
数設けたつこれらのゲート電位供給電極は上記ゲート電
極に関してソース電極側領域およびドレイン電極側領域
を含む領域に配されて成ることである。
That is, the feature of the semiconductor device according to the present invention is that in a semiconductor device in which a gate electrode is disposed between opposing source and drain electrodes, a plurality of potential supply electrodes to the gate electrode are provided. The gate electrode is arranged in a region including a source electrode side region and a drain electrode side region with respect to the gate electrode.

〔実施例〕〔Example〕

第4図は本発明の第1の実施例となるFETの電極パタ
ーンを示す概略平面図であり、第5図は第4図のv−V
線断面図である。
FIG. 4 is a schematic plan view showing the electrode pattern of the FET according to the first embodiment of the present invention, and FIG.
FIG.

これらの第4図および第5図においてGaAs(ガリウ
ム・ヒ素)等の化合物半導体基板10上には、ショット
キー筬触する金属材料(例えばタングステンシリサイド
等)より成るゲート電極11が、所定ゲート長Lfs所
定ゲート幅21で被着形成されている。このゲート電極
11を挾むようにソース電極12およびドレイン電極1
3が対向配置され、半導体基板100表面に臨んで拡散
等により形成された不純物濃度が高く低抵抗のソース領
域16およびドレイン領域17に対して、上記ソース電
極12およびドレイン電極13がオーミンク接触により
それぞれ電気的に接続されている。ゲート電極11には
長手方向(ゲート幅方向)両端よりそれぞれZt/6ず
つ内側位置の2個の給電点Pa 、Pbおよび中央位置
の1個の給電点Pcが設定されており、前述した単位ゲ
ート幅ZuはZt/6となっている。これら3個の給電
点のうち、両端近傍の2箇所の給電点Pa 、 Pbに
ついては、それぞれリード電極ノセターンを介して、ソ
ース電極12側領域内部でソース電極12により包囲さ
れたパターンのゲート電位供給電極、いわゆるゲート用
ポンディングパッド(以下ゲートパッドという)14a
、14bに電気的に接続されている。また中央の給電点
Pcは、リード電極パターンを介して、ドレイン電極1
3側領域に配されたゲートバンド14cに電気的に接続
されている。これらのゲートパッド14a、14b。
4 and 5, on a compound semiconductor substrate 10 such as GaAs (gallium arsenide), a gate electrode 11 made of a Schottky-contacting metal material (for example, tungsten silicide) is formed with a predetermined gate length Lfs. It is deposited and formed with a predetermined gate width 21. A source electrode 12 and a drain electrode 1 sandwich this gate electrode 11.
The source electrode 12 and the drain electrode 13 are in ohmink contact with the source region 16 and drain region 17, which have high impurity concentration and low resistance and are formed by diffusion or the like facing the surface of the semiconductor substrate 100, and which are arranged facing each other. electrically connected. The gate electrode 11 is provided with two power supply points Pa and Pb at positions Zt/6 inside from both ends in the longitudinal direction (gate width direction), and one power supply point Pc at the center position. The width Zu is Zt/6. Of these three power supply points, two power supply points Pa and Pb near both ends are supplied with a gate potential of a pattern surrounded by the source electrode 12 inside the source electrode 12 side region through the lead electrode nosetan, respectively. Electrode, so-called gate bonding pad (hereinafter referred to as gate pad) 14a
, 14b. In addition, the central power feeding point Pc is connected to the drain electrode 1 via the lead electrode pattern.
It is electrically connected to the gate band 14c arranged in the third side region. These gate pads 14a, 14b.

14cは、それぞれ略正方形の平面形状を有し、−辺の
長さは、いわゆるワイヤボンディングを行うために最小
でも50μm必要であり、一般に50μm〜80μmと
している。また、ソース電極12やドレイン電極13に
も同程度以上の寸法のポンディングパッド部が必要であ
る。これに対して、上記ゲート幅21は例えば200μ
m(あるいは300μm)程度に設定されており、ソー
ス電極側のみに複数のゲートパッドを配設すると、前記
第3図において示したように、ソース電極最大長が極端
に増大することになる。
14c each has a substantially square planar shape, and the length of the negative side is required to be at least 50 μm in order to perform so-called wire bonding, and is generally set to 50 μm to 80 μm. In addition, the source electrode 12 and the drain electrode 13 also require bonding pad portions of comparable or larger dimensions. On the other hand, the gate width 21 is, for example, 200 μm.
m (or 300 μm), and if a plurality of gate pads are provided only on the source electrode side, the maximum length of the source electrode will be extremely increased as shown in FIG. 3 above.

ところで、ソース電極側領域のみならずドレイン電極側
領域にも上記ゲートバンドを配設することは、前述した
ように、ドレイン−ゲート間容量Cdp’(r増加させ
る点、およびソース電極によるシールド効果が得られな
くなる点が予想されるため、従来においては試みられて
おらな〃1つた。ここで、上記容量Cdtは、FET累
子の入力−出力間に存在して帰還容量として作用し、特
に利得(ゲイン)の減少を生ずるものである。
By the way, as mentioned above, disposing the gate band not only in the source electrode side region but also in the drain electrode side region increases the drain-gate capacitance Cdp'(r) and reduces the shielding effect of the source electrode. This has not been attempted in the past because it is predicted that the above capacitance Cdt exists between the input and output of the FET capacitance and acts as a feedback capacitance, especially when controlling the gain. (gain) decreases.

このような一般常識に逆って、本件発明者等は、ゲート
パッドをドレイン電極側領域にも配設し、同じ寸法(チ
ップサイズ)で従来の電極パターンによるFETと特性
を比較することにより本発明を達成したものである。
Contrary to such common knowledge, the inventors of the present invention determined the present invention by disposing the gate pad also in the drain electrode side region and comparing the characteristics with an FET with the same dimensions (chip size) and a conventional electrode pattern. This is an invention that has been achieved.

すなわち、同一サイズの半導体チップ10に従来の電極
パターンを用いる場合には、第6図に示すように、ゲー
ト電極1に対しては2個の給電点P?z設定し得るのみ
であり、単位ゲート幅ZuはZt/4となる。いま、こ
れら第4図および第6図に示す電極パターンにおける上
記ゲート長Ltをそれぞれ互いに等しく0.5μmと1
他の条件、例えばゲート幅21や電極パターン外形の最
大長となるソース電極幅W2等も互いに等しくし、同一
サイズのGaAs半導体チップ10を用いてFET’!
r構成するとき、入力信号周波数が12GHzにおける
利得Gaはいずれも略9dBと等しくなり、雑音指数N
Fは、従来例(第6図)の場合に略1.5dBであるの
に対し、本発明実施例(第4図〕の場合には略1.25
 dBの優れた特性が得られた。この12GHzにおけ
る1、 25 dBのNF値は、従来構造の場合に、ゲ
ート長Ltが0.3μmの微細ゲート電極パターンとし
たときに初めて達成し得るものであり、高度な極微細パ
ターニング技術が必要とされていたが、本発明実施例(
第4図)によれば、Lfが0.5μmのゲート電極パタ
ーンにより上記NF値を得ることができるO これは、ゲートパッド14ckドレイン電極13側領域
に配設することにより、ドレイン−ゲート間容量cdp
が従来の略20fFから本実施例の略30fFへと増加
するものの、ゲート電極11に対する給電点を増加する
ことによるゲート抵抗Rfの減少効果の方がより大きく
、結果として超低雑音化が実現できたものである。
That is, when a conventional electrode pattern is used for a semiconductor chip 10 of the same size, as shown in FIG. 6, two power supply points P? z can be set, and the unit gate width Zu is Zt/4. Now, the gate lengths Lt in the electrode patterns shown in FIGS. 4 and 6 are set to be equal to each other, 0.5 μm and 1 μm, respectively.
Other conditions, such as the gate width 21 and the source electrode width W2, which is the maximum length of the electrode pattern, are made equal to each other, and GaAs semiconductor chips 10 of the same size are used to form an FET'!
r configuration, the gain Ga when the input signal frequency is 12 GHz is approximately equal to 9 dB, and the noise figure N
F is approximately 1.5 dB in the conventional example (Fig. 6), whereas it is approximately 1.25 dB in the case of the embodiment of the present invention (Fig. 4).
Excellent dB characteristics were obtained. This NF value of 1.25 dB at 12 GHz can only be achieved with a conventional structure when using a fine gate electrode pattern with a gate length Lt of 0.3 μm, and requires advanced ultra-fine patterning technology. However, the present invention example (
According to FIG. 4), the above NF value can be obtained by using a gate electrode pattern with Lf of 0.5 μm. cdp
Although this increases from approximately 20 fF in the conventional case to approximately 30 fF in this embodiment, the effect of reducing the gate resistance Rf by increasing the power supply points to the gate electrode 11 is greater, and as a result, ultra-low noise can be achieved. It is something that

したがって、本発明の上記第1の実施例によれば、第6
図に示す従来構造と同一のチップサイズにもかかわらず
、多層配線のような複雑な構造を用いることなく、ゲー
ト電極11に対する給電点を2個〃\ら3個に増加させ
ることができ、ゲート抵抗Rfを低減して超低雑音化を
達成することができる。ここで、例えば12GHz程度
の超高周波帯における雑音指数NFは、ゲート長0.3
μm並みの1.25 dB’iゲート長0.5μmで得
ることができ、上記多層配線が不要なことと相まって製
造工程が簡略化できるとともに、チップサイズの小型化
が可能なことにより、コストパフォーマンスに優れた超
高周波用の超低雑音FET(r供給できる。
Therefore, according to the first embodiment of the present invention, the sixth
Although the chip size is the same as the conventional structure shown in the figure, the number of power feeding points for the gate electrode 11 can be increased from two to three without using a complicated structure such as multilayer wiring. Ultra-low noise can be achieved by reducing the resistance Rf. Here, for example, the noise figure NF in a super high frequency band of about 12 GHz is a gate length of 0.3.
It is possible to obtain 1.25 dB'i with a gate length of 0.5 μm, which is comparable to μm, and combined with the above-mentioned no need for multilayer wiring, the manufacturing process can be simplified and the chip size can be reduced, resulting in cost performance. We can supply ultra-low noise FETs (r) for ultra-high frequencies with excellent performance.

次に、第7図は本発明の第2の実施例となるFETの電
極パターンを示す概略平面図である。この第7図におい
ては、ゲート電極21に対して3個の給電点Pa 、 
Pb 、 Pc を設定しているが、2個の給電点Pa
 、Pbはゲート電極21の長手方向〔ゲート幅方向〕
の両端位置に配されているため、単位ゲート幅ZuはZ
t/4となる。ただし、チップサイズは、従来における
給電点が1個の場合(第3図A)と略同−寸法でよく、
この同一チップサイズの従来例に比較して特性向上が図
れる。
Next, FIG. 7 is a schematic plan view showing an electrode pattern of an FET according to a second embodiment of the present invention. In FIG. 7, three power supply points Pa,
Pb and Pc are set, but two feeding points Pa
, Pb is the longitudinal direction of the gate electrode 21 [gate width direction]
Since the unit gate width Zu is located at both ends of Z
It becomes t/4. However, the chip size may be approximately the same size as the conventional case with one feeding point (Fig. 3A).
The characteristics can be improved compared to the conventional example of the same chip size.

この第7図に示す第2の実施例では、ドレイン電極23
側領域に上記給電点Pa、Pbとそれぞれ電気的に接続
されるゲートバンド24a、24bが配設され、ソース
電極22側領域に上記給電点Pcと電気的に接続される
ゲートパッド24cが配設さ肛ているが、ゲートバンド
24a 、24b會ンース電極側に、またゲートパッド
24cffiドレイン電極側に、それぞれ配設してもよ
い。
In the second embodiment shown in FIG. 7, the drain electrode 23
Gate bands 24a and 24b are provided in the side region to be electrically connected to the feed points Pa and Pb, respectively, and gate pads 24c are provided in the source electrode 22 side region to be electrically connected to the feed point Pc. However, they may be provided on the gate electrode side of the gate bands 24a and 24b, and on the drain electrode side of the gate pad 24cffi, respectively.

次に、第8図は本発明の第3の実施例を示し、ゲート電
極31の長手方向両端位置および4等分位置の計5箇所
に給電点Pa”Pc’r設定している。この場合も、両
端位置に給電点を設けているため、単位ゲート幅Zuは
Zt/8となる。また、両端位置の給電点pa、Pbお
よび中央位置の給電点Pcにそれぞ汎電気的に接続され
るゲートパッド34a、34b 、34c’a−ドレイ
ン電極33側領域に配設し、両端よりZt/4だけ内側
の各位置の給電点Pd 、Peにそれぞれ電気的に接続
されるゲートパッド34d、34eeン一ス電極321
M!I領域に配設している。
Next, FIG. 8 shows a third embodiment of the present invention, in which power feeding points Pa''Pc'r are set at a total of five locations, ie, both end positions in the longitudinal direction of the gate electrode 31 and positions divided into four equal parts. Since the power supply points are provided at both end positions, the unit gate width Zu is Zt/8.Furthermore, the power supply points pa and Pb at both end positions and the power supply point Pc at the center position are electrically connected to each other. Gate pads 34d, 34ee are disposed in the drain electrode 33 side region, and are electrically connected to power supply points Pd, Pe at respective positions Zt/4 inside from both ends. first electrode 321
M! It is located in the I area.

この他、第9図の第4の実施例に示すように、ゲート電
極41の両端位置の給電点Pa、Pbにそれぞれ電気的
に接続されるゲートパッド44a、44b’に、ドレイ
ン電極431111領域とソース電極42側領域の両方
に跨るように、例えばゲートバンド面積の1/2が上記
ドレイン側領域に、他のI/2が上記ソース側領域に存
在するように、それぞ扛配設してもよい。この第4の実
施例の給電点は、第2の実施例と同様に両端位置および
中央位置の計3個であり、単位ゲート幅ZuはZt/4
となる。この給電点を第3の実施例と同様に5個設定し
て、単位ゲート幅Zu’eZt/8とすることも容易に
実現できる。
In addition, as shown in the fourth embodiment in FIG. For example, 1/2 of the gate band area is arranged in the drain side region and the other I/2 is arranged in the source side region so as to span both the source electrode 42 side regions. Good too. The fourth embodiment has a total of three power feeding points, one at both ends and one at the center, as in the second embodiment, and the unit gate width Zu is Zt/4.
becomes. It is also possible to easily set five of these feeding points as in the third embodiment and make the unit gate width Zu'eZt/8.

〔発明の効果〕〔Effect of the invention〕

本発明に係る半導体装置によれば、チップサイズを増大
することなり、シかも多層配線のような複雑な構造を用
いることなく、ゲート電極に対する給電点を増加してゲ
ート抵抗R1を小さくすることによって特性向上、特に
超高周波帯における雑音指数を大幅に改善することが可
能となり、超高周波、超低雑音の半導体装置を安価に供
給できる。
According to the semiconductor device according to the present invention, the gate resistance R1 can be reduced by increasing the power supply points to the gate electrode without increasing the chip size or using a complicated structure such as multilayer wiring. It becomes possible to improve the characteristics, particularly the noise figure in the ultra-high frequency band, and to supply ultra-high frequency, ultra-low noise semiconductor devices at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFETの等価回路を示す回路図、第2図A−C
はゲート電極に対する給電点の個数が1〜3個のときの
単位ゲート幅Zukそれぞれ説明するための路線図、第
3図A−Cは第2図A−Cにそれぞれ対応する電極パタ
ーンを示す概略平面図、第4図は本発明の第1の実施例
を示す概略平面図、第5図は第4図のv−v線断面図、
第6図は上記第1の実施例と同一サイズのチップに従来
構造の電極パターンを用いた比較例を示す概略平面図、
第7図は本発明の第2の実施例金示す概略平面図、第8
図は本発明の第3の実施例を示す概略平面図、第9図は
本発明の第4の実施例を示す概略平面図である。 11.21.31.41・・・ ゲート電極12.22
,32,42・・・ソース電極13.23,33,43
・曇・ ドレイン電極14.24,34,44・・・ゲ
ート電位供給電極間 1) 村 榮 − 15− 第4図 第6図
Figure 1 is a circuit diagram showing the equivalent circuit of FET, Figure 2 A-C
3 is a route diagram for explaining the unit gate width Zuk when the number of power feeding points to the gate electrode is 1 to 3, and FIGS. 3A to 3C are schematic diagrams showing electrode patterns corresponding to FIGS. 2A to C, respectively. A plan view, FIG. 4 is a schematic plan view showing the first embodiment of the present invention, FIG. 5 is a sectional view taken along the line v-v in FIG. 4,
FIG. 6 is a schematic plan view showing a comparative example using an electrode pattern of a conventional structure on a chip of the same size as that of the first embodiment;
FIG. 7 is a schematic plan view showing the second embodiment of the present invention;
The figure is a schematic plan view showing a third embodiment of the invention, and FIG. 9 is a schematic plan view showing a fourth embodiment of the invention. 11.21.31.41... Gate electrode 12.22
, 32, 42...source electrode 13.23, 33, 43
- Cloud - Drain electrodes 14, 24, 34, 44... Between gate potential supply electrodes 1) Sakae Mura - 15- Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 対向するンース、ドレイン電極間にゲート電極を配して
なる半導体装置において、上記ゲート電極への電位供給
電極を複数段けかつこれらのゲート電位供給電極は上記
ゲート電極に関してンース電極側領域およびドレイン電
極側領域を含む領域に配されて成ることを特徴とする半
導体装置0
In a semiconductor device in which a gate electrode is disposed between opposing source and drain electrodes, a plurality of potential supply electrodes to the gate electrode are provided, and these gate potential supply electrodes are connected to the source electrode side region and the drain electrode with respect to the gate electrode. A semiconductor device 0 characterized in that it is arranged in a region including a side region.
JP59087406A 1984-04-28 1984-04-28 Semiconductor device Pending JPS60231369A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59087406A JPS60231369A (en) 1984-04-28 1984-04-28 Semiconductor device
KR1019850002753A KR930009473B1 (en) 1984-04-28 1985-04-24 Semiconductor device
DE8585105133T DE3578533D1 (en) 1984-04-28 1985-04-26 SEMICONDUCTOR COMPONENT WITH CONNECTORS SURROUNDED BY SOURCE AND / OR DRAIN AREAS.
EP85105133A EP0166112B1 (en) 1984-04-28 1985-04-26 Semiconductor device with bonding pads surrounded by source and/or drain regions
US07/246,963 US4982247A (en) 1984-04-28 1988-09-21 Semi-conductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087406A JPS60231369A (en) 1984-04-28 1984-04-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60231369A true JPS60231369A (en) 1985-11-16

Family

ID=13913991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087406A Pending JPS60231369A (en) 1984-04-28 1984-04-28 Semiconductor device

Country Status (2)

Country Link
JP (1) JPS60231369A (en)
KR (1) KR930009473B1 (en)

Also Published As

Publication number Publication date
KR930009473B1 (en) 1993-10-04
KR850008248A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
JP3036233B2 (en) Semiconductor device and manufacturing method thereof
US5404581A (en) Microwave . millimeter wave transmitting and receiving module
US6900482B2 (en) Semiconductor device having divided active regions with comb-teeth electrodes thereon
US10600746B2 (en) Radio frequency transistor amplifiers and other multi-cell transistors having gaps and/or isolation structures between groups of unit cell transistors
US3373323A (en) Planar semiconductor device with an incorporated shield member reducing feedback capacitance
JPH06125208A (en) Microwave integrated circuit and its production
US5014104A (en) Semiconductor integrated circuit having CMOS inverters
EP0166112B1 (en) Semiconductor device with bonding pads surrounded by source and/or drain regions
US6825548B2 (en) Semiconductor device
JPH10242169A (en) Semiconductor device
US5252843A (en) Semiconductor device having overlapping conductor layers
KR860000971B1 (en) Microwave field effect transistor
JPS60231370A (en) Semiconductor device
JPS60231369A (en) Semiconductor device
JPS583379B2 (en) semiconductor equipment
US4546371A (en) Semiconductor device having an improved dual-gate field effect transistor
US5358900A (en) Semiconductor device having overlapping conductor layers and method of producing the semiconductor device
JPH05335487A (en) Transmission circuit element
JPS58206170A (en) Compound semiconductor device
US5045501A (en) Method of forming an integrated circuit structure with multiple common planes
JPS6255722B2 (en)
JPH11168100A (en) Semiconductor integrated circuit device
JPH06104291A (en) Field effect-type semiconductor device
JPH0116026B2 (en)
JPH0669466A (en) Semiconductor memory device