JPS60231120A - Earthquake sensor - Google Patents

Earthquake sensor

Info

Publication number
JPS60231120A
JPS60231120A JP59088902A JP8890284A JPS60231120A JP S60231120 A JPS60231120 A JP S60231120A JP 59088902 A JP59088902 A JP 59088902A JP 8890284 A JP8890284 A JP 8890284A JP S60231120 A JPS60231120 A JP S60231120A
Authority
JP
Japan
Prior art keywords
liquid
output
container
earthquake
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088902A
Other languages
Japanese (ja)
Other versions
JPH0245133B2 (en
Inventor
Hiroshi Ko
博 高
Takashi Tokuyama
隆 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
Original Assignee
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd filed Critical Fujitec Co Ltd
Priority to JP59088902A priority Critical patent/JPS60231120A/en
Priority to GB08510935A priority patent/GB2160319B/en
Priority to US06/729,117 priority patent/US4662225A/en
Publication of JPS60231120A publication Critical patent/JPS60231120A/en
Publication of JPH0245133B2 publication Critical patent/JPH0245133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/181Geophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To accurately detect the seismic intensity of an earthquake, by such a simple apparatus constituted so that a container storing a liquid is irradiated with a light source and the reflected light from the liquid surface is received to be converted to an electric signal which is, in turn, compared with a threshold value. CONSTITUTION:The bottom of a container 31 is sealed with a liquid 32 and a light emitting element 34 is driven by a power source 33 to irradiate the surface of the liquid 32. The change in the reflected light by the shaking of the surface of the liquid generated by an earthquake is photoelectrically converted by a light receiving element 35 to output a signal 20a. The signal 20a is inputted to a plurality of comparators while amplified by the amplifying circuit not shown in the drawing and compared with the different threshold values of the comparators and seismic intensity is judged on the basis of the output from the comparator having a corresponding number. As the liquid to be used, oil, which is flat at 0-5Hz but shows a falling characteristic at 5Hz or more and has a frequency characteristic coincided with that of a seismic wave, is used. By this method, up- and-down movement or horizontal movement can be detected by a simple apparatus.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、地震等による振動を感知する地震感知器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an earthquake sensor that detects vibrations caused by earthquakes and the like.

[従来の技術及び発明が解決しようとする問題点コ まず、地震の周波数について説明する。[Problems to be solved by conventional techniques and inventions] First, we will explain the frequency of earthquakes.

一般に地震波の主成分の周波数は1〜10Hzにあると
言われているが、 そのうち特に1〜5Hzの成分が顕
著である。第1図に昭和53年6月12日17時14分
に発生した宮城県沖地震について、−例として大船渡で
観測された地震波のパワースペクトルを示す。卓越振動
数は2〜3 Hz(2,4Hz)で、l 〜5 Hzの
パワーが大きい(図示していないが、フーリエスペクト
ルもほぼ同様な形状で1〜5Hz成分が多い)。
It is generally said that the main component of seismic waves has a frequency of 1 to 10 Hz, but the 1 to 5 Hz component is particularly prominent. Figure 1 shows the power spectrum of seismic waves observed at Ofunato, as an example, for the Miyagi Prefecture-Oki Earthquake that occurred at 17:14 on June 12, 1973. The dominant frequency is 2 to 3 Hz (2,4 Hz), and the power in the 1 to 5 Hz range is large (although not shown, the Fourier spectrum has a similar shape and has many 1 to 5 Hz components).

又、電車、ダンプカー、建築工事及び回転機械等積々の
原因による地盤及び建物の微小振動は地震波とは異なり
外乱振動となるが、この外乱振動は20H2以上のもの
が多いが10Hz近傍のものも含まれるので誤動作防止
の点より日本エレベータ協会の耐震設計、施工指針の技
術基準においては、感知器の周波数特性として1普通級
は1〜5Hzの範囲でフラット特性、精密級では01〜
5Hzの範囲でフラット特性、5Hzを越える範囲では
感度は下降特性とすること」となっている。
In addition, micro-vibrations in the ground and buildings caused by trains, dump trucks, construction work, rotating machinery, etc. are different from seismic waves and constitute disturbance vibrations, but these disturbance vibrations are often over 20H2, but can also be around 10Hz. In order to prevent malfunctions, the Japan Elevator Association's technical standards for seismic design and construction guidelines state that the frequency characteristics of the sensor are flat in the range of 1 to 5 Hz for the normal class, and 01 to 01 for the precision class.
The sensitivity shall have a flat characteristic in the 5Hz range, and a decreasing characteristic in the range exceeding 5Hz.

上記のような地震の特性に対して、従来の地震感知器と
しては、電気式の動電型やストレーンゲージ型、圧電型
、或いは機械式の重錘落下型などが一般に用いられてい
る。
In response to the above-mentioned characteristics of earthquakes, conventional earthquake sensors are generally of an electrodynamic type, a strain gauge type, a piezoelectric type, or a mechanical weight drop type.

第2図に、動電型地震感知器の構造の一例(垂直方向感
知器)を示す。この動電型地震感知器は、永久磁石4に
より発生する磁束5の中を、おもり2に固定されたコイ
ル3が振動により上下に動くと、コイル3の両端に電圧
が発生し、この電圧の大きさがコイル3の移動速度に比
例することを利用して地震を感知するものである。なお
、1はおもり2を支持するばね系であり、6は磁路を形
成するヨークである。このばね系1の固有振動数は、普
通4Hz程度にとられているが、この方式で周波数特性
を前述のように5Hz以上で下降特性とするのは難しく
(ばね系の問題)、通常10Hz程度以上で下降特性に
している。更に固有振動数は、ばね系1やおもり2の精
度に大きく影響を受けるので、実際には、最終の工程で
手加工によりおもりの重さ等をm整している。すなわち
、この動電型地震感知器は精度や調整の手間の点で問題
を有している。
Figure 2 shows an example of the structure of an electrodynamic seismic sensor (vertical sensor). In this electrodynamic earthquake sensor, when a coil 3 fixed to a weight 2 moves up and down due to vibration in a magnetic flux 5 generated by a permanent magnet 4, a voltage is generated at both ends of the coil 3. Earthquakes are sensed by utilizing the fact that the size is proportional to the moving speed of the coil 3. Note that 1 is a spring system that supports the weight 2, and 6 is a yoke that forms a magnetic path. The natural frequency of this spring system 1 is normally set to about 4 Hz, but it is difficult to make the frequency characteristic with this method fall above 5 Hz as mentioned above (spring system problem), and it is usually set to about 10 Hz. The above results in a descending characteristic. Furthermore, since the natural frequency is greatly affected by the accuracy of the spring system 1 and the weight 2, the weight of the weight, etc. is actually adjusted by hand in the final process. That is, this electrodynamic seismic sensor has problems in terms of accuracy and the amount of effort required for adjustment.

また、ストレーンゲージ型地震感知器は、ストレーンゲ
ージ(歪ゲージ)をX、Y方向に設置し、これらの電気
出力をベクトル合成して加速度をめるものであるが、歪
ゲージ自身の周波数特性は数KHzにも及ぶので、電気
的フィルターで5Hz以上を減衰させるようにしている
In addition, in a strain gauge type earthquake sensor, strain gauges are installed in the X and Y directions, and their electrical outputs are vector-combined to calculate acceleration, but the frequency characteristics of the strain gauges themselves are Since the frequency ranges up to several kHz, an electric filter is used to attenuate frequencies above 5 Hz.

従ってストレーンゲージ型の地震感知器はこのフィルタ
ーの特性に大きく左右きれ、更にベクトル合成を行なう
為に掛算器等を必要とするなど、多くの誤差要因を含ん
でおり信頼性の点で問題がある。なお、圧電型地震感知
器もベクトル合成方式を採用しており、同様の問題点を
含んでいる。
Therefore, strain gauge type earthquake detectors are greatly affected by the characteristics of this filter, and also include many error factors such as the need for multipliers to perform vector synthesis, which poses problems in terms of reliability. . Note that piezoelectric earthquake sensors also use a vector synthesis method and have similar problems.

第3図は、重錘落下型地震感知器の構造の一例を示すも
のである。これは、静止状態では重錘(鉄等の磁性体)
13が、ケース10に固定された永久磁石11に吸引き
れているが、ある一定以上の振動が発生するとこの重錘
13が落下し、重錘13にはめ込まれているし・バー1
2が支点15を中心に矢印方向に回転することにより、
マイクロスイッチ14のアクチュエータ14′ を作動
移せて地震を感知するものである。
FIG. 3 shows an example of the structure of a falling weight type earthquake sensor. This is a weight (magnetic material such as iron) in a stationary state.
13 is fully attracted to the permanent magnet 11 fixed to the case 10, but when vibrations above a certain level occur, this weight 13 falls and is fitted into the weight 13.
2 rotates in the direction of the arrow around the fulcrum 15,
The actuator 14' of the microswitch 14 can be actuated to sense an earthquake.

この方式は簡単ではあるが、磁石の吸引力と重錘の重さ
の関係によって感知レヘルが左右され、その調整が大変
であると同時に低い周波数(IHz以下)では感知しに
くいという欠点があり、やはり精度や信頼性の点で問題
がある。
Although this method is simple, the detection level is affected by the relationship between the attraction force of the magnet and the weight of the weight, and it is difficult to adjust, and at the same time, it has the disadvantage that it is difficult to detect at low frequencies (below IHz). There are still problems with accuracy and reliability.

[問題点を解決するための手段及び作用]本発明は、液
体の入った容器、該容器内を照射する光源、該容器内の
光を受光する光電変換素子とを備えた感知部と、該感知
部の出力が所定値より大きいとき出力を発する信号処理
部とからなることを特徴とするものである。
[Means and effects for solving the problems] The present invention provides a sensing unit including a container containing a liquid, a light source that irradiates the inside of the container, and a photoelectric conversion element that receives the light inside the container; The sensor is characterized by comprising a signal processing section that generates an output when the output of the sensing section is larger than a predetermined value.

感知部は、容器内の液体が地震波によって揺動し、液体
表面の形状が変わることによって変化する容器内の輝度
分布を電気信号に変換して出力し、信号処理部はこの出
力信号の大きさにより振動レヘルを識別する。これによ
り、簡単な構成で信頼性が高く、しかも水平振動波(以
下S波という)と垂直上下振動波(以下P波という)の
いずれでも感知しうる高精度の地震感知器を提供するも
のである。
The sensing section converts the luminance distribution inside the container, which changes as the liquid inside the container is shaken by seismic waves and changes the shape of the liquid surface, into an electrical signal and outputs it. to identify the vibration level. This provides a highly reliable earthquake sensor with a simple configuration and high accuracy that can detect both horizontal vibration waves (hereinafter referred to as S waves) and vertical vertical vibration waves (hereinafter referred to as P waves). be.

[実 施 例] 第4図は、本発明の一実施例の構成を示すブロック図で
、図中、20は液体の入った容器内の光を受光し、容器
内の輝度分布に応じた信号20aを出力する感知部、2
1は信号20aが所定値を越えると出力を発する信号処
理部である。
[Embodiment] FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, 20 receives light inside a container containing liquid, and generates a signal according to the luminance distribution inside the container. a sensing unit that outputs 20a, 2;
Reference numeral 1 denotes a signal processing section that outputs an output when the signal 20a exceeds a predetermined value.

この例では、信号処理部21は2段階の設定値を設けて
おり、前置増幅器(交流増幅器)22の出力が第1の設
定値より大きい場合は第1のコンパレータ23及び出力
回路24により信号24aが出力きれ、更に第2の設定
値より大きい場合は第2のコンパレータ25及び 出力
回路26により信号26aが出力される。なお、前置増
幅器22の後にノイズ除去の為のフィルターを設けても
よく、設定値は上記のように2段階に限らず、任意の複
数段階の設定値を設けることもできる。
In this example, the signal processing unit 21 has two levels of set values, and when the output of the preamplifier (AC amplifier) 22 is larger than the first set value, the first comparator 23 and output circuit 24 output a signal. When the signal 24a is fully output and is still larger than the second set value, the second comparator 25 and the output circuit 26 output a signal 26a. Note that a filter for noise removal may be provided after the preamplifier 22, and the set value is not limited to two stages as described above, but may be set to any number of stages.

第5図は、感知部20の一実施例の構造を示す断面図で
、31は容器、32は油や水銀等の液体、33は電源、
34は例えば発光ダイオード等の光源、35は光を受光
する光電変換素子である。第5図において、容器31が
静止状態に置かれている場合は液体32も静止状態にあ
り、従って容器31内の輝度分布は一定で、光電変換素
子35の出力20aも一定であるが、地震等の振動によ
り液体32が揺動すると液体表面の形状が変わり、光の
反射や散′乱の形態が変化して容器31内の輝度分布も
変化し、それに対応して光電変換素子35の出力20a
も変動する。
FIG. 5 is a sectional view showing the structure of one embodiment of the sensing section 20, in which 31 is a container, 32 is a liquid such as oil or mercury, 33 is a power source,
34 is a light source such as a light emitting diode, and 35 is a photoelectric conversion element that receives light. In FIG. 5, when the container 31 is placed in a stationary state, the liquid 32 is also in a stationary state, so the brightness distribution inside the container 31 is constant, and the output 20a of the photoelectric conversion element 35 is also constant. When the liquid 32 is shaken by such vibrations, the shape of the liquid surface changes, the form of reflection and scattering of light changes, and the brightness distribution inside the container 31 also changes, and the output of the photoelectric conversion element 35 changes accordingly. 20a
Also fluctuates.

第6図は、水平方向の振動が生じた場合に、液体32が
容器31内で揺動する様子を示した図で、比較的低い周
波数の場合は(a)に示すように、液体32は矢印方向
に大きく移動し、比較的高い周波数の場合は(b)に示
すように、液体320表面が小刻みに揺れ、液体の移動
はない。
FIG. 6 is a diagram showing how the liquid 32 oscillates within the container 31 when horizontal vibration occurs. In the case of a relatively low frequency, the liquid 32 oscillates as shown in (a). In the case of a large movement in the direction of the arrow and a relatively high frequency, as shown in (b), the surface of the liquid 320 shakes little by little, and the liquid does not move.

このように、振動の周波数の違いによって液体の揺動の
様子が異なり、その結果光電変検素る。
In this way, the manner in which the liquid oscillates differs depending on the frequency of vibration, resulting in photoelectric detection.

第7図は、光電変換素子35の出力20a (但し前置
増幅器22を介した後の出力)についての実験結果を示
したもので、(a)は振動数が低い場合を、(b)は振
動数が高い場合をそれぞれ示している。
FIG. 7 shows the experimental results for the output 20a of the photoelectric conversion element 35 (output after passing through the preamplifier 22), where (a) shows the case where the frequency is low, and (b) shows the result when the frequency is low. The cases where the vibration frequency is high are shown respectively.

第8図は、液体としてエンジン油を用いた場合について
、第7図に示した出力電圧の、振動周波数に対する出力
特性の実験結果を示す図である。ここで、パラメータ(
al、a2.a3゜a4)は振動加速度であり、−例と
してaII=30gal、a2=80ga1. a3=
120gal。
FIG. 8 is a diagram showing the experimental results of the output characteristics of the output voltage shown in FIG. 7 with respect to the vibration frequency when engine oil is used as the liquid. Here, the parameter (
al, a2. a3°a4) is the vibration acceleration, - for example aII=30gal, a2=80ga1. a3=
120 gal.

a4=150gal とすると、5Hzのときの出力電
圧はそしFしb 1−0.45V、b 2 =1.2V
If a4=150gal, the output voltage at 5Hz is thenFb1-0.45V, b2=1.2V
.

b 3= L85V、b 4−2.3L となり加速度
の大きさと出力電圧の比はほぼ比例する。
b3=L85V, b4-2.3L, and the ratio of the magnitude of acceleration and the output voltage is almost proportional.

このように、加速度と出力電圧の関係はリニアであり、
また第8図から明らかなように、1〜5Hzはほぼフラ
ット特性、5Hz以上では下降特性で地震波の周波数特
性と合致しており、地震感知器に理想的な特性となって
いる(水銀の場合は3〜4Hzで特に鋭い出力特性を示
す)。
In this way, the relationship between acceleration and output voltage is linear,
Furthermore, as is clear from Figure 8, the frequency characteristics are almost flat between 1 and 5 Hz, and the falling characteristics above 5 Hz match the frequency characteristics of seismic waves, making them ideal characteristics for earthquake detectors (in the case of mercury, shows particularly sharp output characteristics at 3 to 4 Hz).

なお、以上はS波の場合について述べたが、P波の゛場
合には液体の揺動の様子は第9図に示すようになり、容
器内の輝度分布の変化、すなわち感知部の出力電圧の変
化を捉えることにより、P波の感知もS波と同様に行な
うことができる。
The above has been described in the case of S waves, but in the case of P waves, the liquid oscillates as shown in Figure 9, and changes in the brightness distribution inside the container, that is, the output voltage of the sensing section, By capturing changes in the P wave, P waves can be sensed in the same way as S waves.

また、容器内の液体としては水銀や適当な粘度を有する
油が適しているが、地震波のみをとらえる精度において
は油の方が、高層ビル等の高所で0.1Hz程度の周波
数をも感知する必要があるような場合には水銀の方が、
それぞれ若干優れている。
Additionally, mercury or oil with an appropriate viscosity is suitable as the liquid in the container, but oil is more accurate in detecting only seismic waves because it can detect frequencies as low as 0.1 Hz in high places such as skyscrapers. In cases where it is necessary to use mercury,
Each one is slightly better.

[発明の効果] 本発明によれば、前述のように感知部自身極めて地震波
の周波数特性に合致するものであって、誤動作をほとん
どなくすことができ、また取付調整の手間もほとんどか
からず(厳しい水平出しは不要)、その構成は大変シン
プル(低価格)である。更に、加速度の大きさに対して
感知部の出力電圧はリニアとなるので、設定値を任意に
何段にも分けて設定でき、また、P波、S波のいずれの
地震波をも感知する事ができるという、従来にない秀れ
た特徴を数多く有するものである。
[Effects of the Invention] According to the present invention, as mentioned above, the sensing section itself matches the frequency characteristics of seismic waves very well, so malfunctions can be almost eliminated, and installation adjustment requires almost no effort ( Strict leveling is not required), and its configuration is very simple (low price). Furthermore, since the output voltage of the sensing section is linear with respect to the magnitude of acceleration, the set value can be set in any number of stages, and it is possible to detect both P-wave and S-wave seismic waves. It has many excellent features that have not been seen before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は地震波のパワースペクトルの一例を示す図、第
2図は動電型地震感知器の構造の一例を示す図、第3図
は重錘落下型地震感知器の構造の一例を示す図、第4図
は本発明の一実施例の構成を示すブロック図、第5図は
感知部の一実施例の構造を示す断面図、第6図はS波に
対する容器内の液体の揺動の様子を示す図、第7図は感
知部の出力についての実験結果を示す図、第8図は第7
図の出力電圧について振動周波数に対する出力特性の実
験結果を示す図、第9図はP波に対する容器内の液体の
揺動の様子を示す図である。 20、、、感知部 21.、、信号処理部 22、、、前置増幅器 23.25.、、コンパレータ 24.26.、、出力回路 31、、、容 器 32、、、液 体 34 、、、 、光 源 35、、、光電変換素子 特許出願人 フシチック株式会社 晃 1 図 第 2 図 第 3 回 第 4 図 1 第 !5 面 第乙図 第 7 図 (α) (7)) 第8図 用液数CHg) 第 9 図 CCI)Cb’)
Figure 1 shows an example of the power spectrum of seismic waves, Figure 2 shows an example of the structure of an electrodynamic earthquake sensor, and Figure 3 shows an example of the structure of a falling weight earthquake sensor. , FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 5 is a sectional view showing the structure of an embodiment of the sensing section, and FIG. Figure 7 is a diagram showing the experimental results regarding the output of the sensing section, and Figure 8 is a diagram showing the
FIG. 9 is a diagram showing experimental results of output characteristics with respect to vibration frequency for the output voltage shown in FIG. 20,... Sensing section 21. ,,signal processing unit 22, ,preamplifier 23.25. ,, comparator 24.26. , Output circuit 31 , Container 32 , Liquid 34 , Light source 35 , Photoelectric conversion element patent applicant Fushichik Co., Ltd. 1 Figure 2 Figure 3 4 Figure 1 ! Figure 7 (α) (7)) Number of liquids for Figure 8 CHg) Figure 9 CCI)Cb')

Claims (1)

【特許請求の範囲】[Claims] 液体の入った容器、該容器内を照射する光源、該容器内
の光を受光し電気信号に変換する光電変換素子を備えた
感知部と、該感知部の出力が所定値より大きいとき出力
を発する信号処理部上からなる地震感知器。
A sensing unit comprising a container containing a liquid, a light source that illuminates the inside of the container, a photoelectric conversion element that receives the light inside the container and converts it into an electrical signal, and outputs an output when the output of the sensing unit is larger than a predetermined value. An earthquake detector consisting of a signal processing section that emits signals.
JP59088902A 1984-05-01 1984-05-01 Earthquake sensor Granted JPS60231120A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59088902A JPS60231120A (en) 1984-05-01 1984-05-01 Earthquake sensor
GB08510935A GB2160319B (en) 1984-05-01 1985-04-30 Detecting of seismic waves by sensing the movement of a liquid surface
US06/729,117 US4662225A (en) 1984-05-01 1985-04-30 Seismic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088902A JPS60231120A (en) 1984-05-01 1984-05-01 Earthquake sensor

Publications (2)

Publication Number Publication Date
JPS60231120A true JPS60231120A (en) 1985-11-16
JPH0245133B2 JPH0245133B2 (en) 1990-10-08

Family

ID=13955880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088902A Granted JPS60231120A (en) 1984-05-01 1984-05-01 Earthquake sensor

Country Status (1)

Country Link
JP (1) JPS60231120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147117A (en) * 1984-12-20 1986-07-04 Fujitec Co Ltd Earthquake sensor with sensitivity correction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160261A (en) * 1978-06-07 1979-12-18 Berger Paul J Method of converting mechanical motion of article into electric signal and electric to mechanical converter for executing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160261A (en) * 1978-06-07 1979-12-18 Berger Paul J Method of converting mechanical motion of article into electric signal and electric to mechanical converter for executing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147117A (en) * 1984-12-20 1986-07-04 Fujitec Co Ltd Earthquake sensor with sensitivity correction
JPH0245137B2 (en) * 1984-12-20 1990-10-08 Fuji Tetsuku Kk

Also Published As

Publication number Publication date
JPH0245133B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
US4214485A (en) Electro-mechanical transducer
US4296483A (en) Method and means for measuring geophone parameters
CN108801438B (en) A kind of vibration displacement measuring device based on optical interference
JPS60231120A (en) Earthquake sensor
US4662225A (en) Seismic detector
JP3794666B2 (en) How to shut off gas during an earthquake in an earthquake block
Bakhoum et al. Frequency-selective seismic sensor
RU130705U1 (en) DEVICE FOR MEASURING ABSOLUTE VIBRATIONS
JPH0326431Y2 (en)
JPS61164125A (en) Earthquake sensor
KR20000037016A (en) Sensing device of earthquake wave
JPH0421083Y2 (en)
JPH0326432Y2 (en)
JPS61137025A (en) Earthquake sensor
JPH0245134B2 (en)
JPS61147117A (en) Earthquake sensor with sensitivity correction
JPH0245136B2 (en)
JPH0338532B2 (en)
USRE31248E (en) Electro-mechanical transducer
Gannon et al. A seismic test facility
CN103728657B (en) Method for the detection of geophone alias
CN1031135A (en) Suspension type eddy seismonmeter
JPH0385417A (en) Vibration detector
US3522529A (en) Impedance measuring alternating current bridge having an automatically adjustable frequency oscillator
JPS63222227A (en) Method for confirming operation of earthquake sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees