JPS602310A - Inner circumferential type cutter - Google Patents
Inner circumferential type cutterInfo
- Publication number
- JPS602310A JPS602310A JP10937683A JP10937683A JPS602310A JP S602310 A JPS602310 A JP S602310A JP 10937683 A JP10937683 A JP 10937683A JP 10937683 A JP10937683 A JP 10937683A JP S602310 A JPS602310 A JP S602310A
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- base metal
- cutting
- compressed air
- grinding wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は内周式切断機に係シ、たとえばシリコン、GG
Gなどの高価な試料を小さな切代で、且つ高精度に切断
するだめの内周式切断機に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an internal cutting machine, for example, silicon, GG
This invention relates to an internal circumferential cutting machine that cuts expensive samples such as G with a small cutting margin and with high precision.
内周式切断機は、ドーナツ状の砥石地金に砥粒層を形成
した内周砥石を、砥石面内で回転させながら、前記内周
砥石の内周側に配設され、試料テーブルで保持された試
料を該内周砥石の半径方向に移動させることにより、前
記砥粒層で前記試料を切断するものであり、この内周式
切断機は、大断面積の試料を高精度に且つ小さな切代で
切断するだめに使用されている。The inner circumferential cutting machine rotates an inner circumferential grindstone in which an abrasive grain layer is formed on a donut-shaped grindstone base metal within the grinding wheel surface, and is placed on the inner circumferential side of the inner circumferential grindstone and held on a sample table. The sample is cut by the abrasive grain layer by moving the sample in the radial direction of the inner grindstone, and this inner circumferential cutter can cut a sample with a large cross-sectional area into small pieces with high precision. It is used for cutting with cutting margin.
しかし、従来の内周式切断機には、■切代の最小限界が
0.28〜0.35 amであるので、材料歩留りが悪
い、■切断面にうねシを生ずるので、試料を高精度にス
ライスすることができない、という問題点があった。However, with conventional internal circumferential cutting machines, 1) the minimum cutting distance is 0.28 to 0.35 am, resulting in poor material yield; 2) ridges are produced on the cut surface, making it difficult to There was a problem in that it was not possible to slice accurately.
これらの問題点を、第1図を使用して説明する。These problems will be explained using FIG. 1.
第1図は、従来の内周式切断機によって試料を切断して
いる状態を示す要部断面図である。FIG. 1 is a sectional view of a main part showing a state in which a sample is being cut by a conventional internal circumferential cutter.
この第1図において、11は、ドーナツ状の砥石地金3
の内周に沿って砥粒層1を形成してなる内周砥石、5は
、この内周砥石11の内周側に配設された、試料に係る
切断用インゴット(たとえばシリコンのインゴット)、
6は、この切断用インゴット5から切断されるウェハ、
2は、切断用インゴット5の切断溝、12は、ウェハ6
と砥石地金3との間隙を流れるクーラントである。そし
て矢印は切断用インゴット5の移動方向であり、内周砥
石11は、紙面と垂直方向に回転する。In this FIG. 1, 11 is a donut-shaped grindstone base metal 3
An inner circumferential grindstone 5 formed by forming an abrasive layer 1 along the inner circumference of the inner circumferential grindstone 11 is an ingot for cutting a sample (for example, a silicon ingot), which is disposed on the inner circumferential side of the inner circumferential grindstone 11.
6 is a wafer cut from this cutting ingot 5;
2 is a cutting groove of the cutting ingot 5; 12 is a wafer 6;
This is coolant flowing through the gap between the grinding wheel base metal 3 and the grinding wheel base metal 3. The arrow indicates the direction of movement of the cutting ingot 5, and the inner grindstone 11 rotates in a direction perpendicular to the paper surface.
このように構成した内周式切断機において、内周砥石1
1を回転(紙面と垂直方向)させ、切断用インゴット5
を矢印方向へ移動させながら、クーラント12を供給し
た状態で、砥粒層1によって切断用インゴット5を切断
する。In the internal circumferential cutting machine configured in this way, the internal circumferential grindstone 1
1 (in a direction perpendicular to the page) and cut the cutting ingot 5.
While moving in the direction of the arrow, the cutting ingot 5 is cut by the abrasive layer 1 while the coolant 12 is supplied.
この場合、ウェハ6と砥石地金3との間隙を流れるクー
ラント12および空気などにより、ウェハ6と砥石地金
3との間に吸引力が生じ、ウェハ6が砥石地金3に接触
して砥石地金3にきすをつけるおそれがある。また、ウ
ェハ6の両面の加工変質層に生ずる内部応力の不均衡の
ために、ウェハ6が曲がって砥石地金3にきすをつける
おそれもある。砥石地金3にきすがつくと内周砥石11
を短寿命化するので、従来、砥粒層1と砥石地金3との
間に、寸法e=65〜80μmの段差を両側に設けるこ
とにより、前記接触を防止するようにしていた。In this case, the coolant 12 and air flowing through the gap between the wafer 6 and the whetstone base metal 3 create an attractive force between the wafer 6 and the whetstone base metal 3, and the wafer 6 comes into contact with the whetstone base metal 3, causing the whetstone to There is a risk of scratching the base metal 3. Further, due to the imbalance of internal stress occurring in the process-affected layers on both sides of the wafer 6, there is a risk that the wafer 6 will bend and scratch the grindstone base metal 3. When the whetstone base metal 3 gets scratched, the inner whetstone 11
In order to shorten the life of the abrasive grain layer 1 and the grindstone base metal 3, conventionally, steps with a size e=65 to 80 μm are provided on both sides to prevent the contact.
一方、切断の精度を良くするだめには、内周砥石11の
剛性を一定値以上にする必要があり、このために砥石地
金3の厚さtbを少なくとも0.1〜0.14mにしな
ければならない。On the other hand, in order to improve the precision of cutting, the rigidity of the inner grindstone 11 must be greater than a certain value, and for this purpose the thickness tb of the grindstone base metal 3 must be at least 0.1 to 0.14 m. Must be.
しだがって内周砥石11の厚さtは、最小でもt=t、
+2e
=023〜0.30■
となる。これに内周砥石11の振れδ(−50μm)が
あるので、切代の最小限界は、前記したように、を十δ
=0.28〜0.35mであった。Therefore, the thickness t of the inner grindstone 11 is at least t=t,
+2e =023~0.30■. Since this includes the runout δ (-50 μm) of the inner grinding wheel 11, the minimum cutting distance is 10 δ as described above.
=0.28-0.35m.
ところで、前記したように、段差の寸法をe−65〜8
0μmにとったとしても、ウェハ6と砥石地金3とが接
触することがしばしばあシ、内周砥石11の寿命にはほ
とんど影響がないものの、この接触によって生ずる押圧
力、および内周砥石11の振動によって内周砥石11が
変位し、砥粒層1の位置が変化する。このため、前記し
たように、ウェハ6の切断面にうねりが生じ、切断の精
度を低下させるものであった。By the way, as mentioned above, the dimension of the step is e-65~8
Even if it is set to 0 μm, the wafer 6 and the grinding wheel base metal 3 often come into contact with each other, and although this has little effect on the life of the inner grinding wheel 11, the pressing force caused by this contact and the inner grinding wheel 11 The inner grindstone 11 is displaced by the vibration, and the position of the abrasive grain layer 1 is changed. For this reason, as described above, undulations occur on the cut surface of the wafer 6, reducing cutting accuracy.
本発明は、上記した従来技術の欠点を除去して、切代が
小さく且つ高精度に切断することができる内周式切断機
の提供を、その目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide an internal circumferential cutting machine that eliminates the drawbacks of the prior art described above and can cut with a small cutting margin and with high precision.
本発明に係る内周式切断機の構成は、ドーナツ状の砥石
地金に砥粒層を形成してなる内周砥石を、砥石面内で回
転させながら、前記内周砥石の内周側に配設され、試料
テーブルで保持された試料を該内周砥石の半径方向に移
動させることにより、前記砥粒層で前記試料を切断する
ようにした内周式切断機において、内周砥石を、砥石地
金の内周の砥粒を付着させる部分を他の部分よりも薄肉
にし、この部分に砥粒層を形成した内周砥石にし、試料
に形成される切断溝の砥石入口部へ前記内周砥石の上下
側から圧縮空気もしくは空気を流入させることができる
圧縮空気流入装置もしくは空気流入ガイドを、試料テー
ブルに保持せしめて前記試料と同期して移動させるよう
にしたものである。The configuration of the internal cutting machine according to the present invention is such that an inner peripheral grindstone formed by forming an abrasive grain layer on a donut-shaped grindstone base metal is rotated within the grinding wheel surface, and the inner peripheral grindstone is rotated on the inner peripheral side of the inner peripheral grindstone. In an internal circumferential cutting machine that cuts the sample with the abrasive grain layer by moving the sample arranged and held on the sample table in the radial direction of the inner circumferential grindstone, the inner circumferential grindstone is The part of the inner periphery of the grindstone base metal to which the abrasive grains are attached is made thinner than the other parts, and this part is made into an inner periphery grindstone with an abrasive layer formed thereon, and the inside part is inserted into the grindstone entrance part of the cutting groove formed on the sample. A compressed air inflow device or an air inflow guide capable of inflowing compressed air or air from above and below the peripheral grindstone is held on the sample table and moved in synchronization with the sample.
さらに詳しくは、次の通シである。More details are as follows.
前述した切代の成分かられかるように、切断の精度を劣
化させずに切代を小さくするには、前記段差の寸法eを
小さくするとともに、振れδを小さくする必要がある。As can be seen from the components of the cutting allowance described above, in order to reduce the cutting allowance without deteriorating the cutting accuracy, it is necessary to reduce the dimension e of the step and also to reduce the runout δ.
これを実施するために、内周砥石を、砥石地金の内周の
砥粒付着部を薄肉にし、この砥粒伺着部に砥粒層を形成
したものにし、且つ切断溝の砥石入口部に、前記切断溝
へ圧縮空気を流入することができる圧縮空気流入装置を
設けるようにしたものである。In order to implement this, the inner circumferential grindstone is made such that the abrasive grain adhesion part on the inner circumference of the whetstone base metal is thinned, an abrasive grain layer is formed in this abrasive grain adhesion part, and the grindstone entrance part of the cutting groove is made thin. Further, a compressed air inflow device is provided that can flow compressed air into the cutting groove.
以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.
嬉2図は、本発明の一実施例に係る内周式切断機の要部
を示す平面図、第3図は、第2図の■−−m断面図、第
4図は、第2図の■−■断面拡大図、第5図は、第3図
における切断溝の砥石入口部へ圧縮空気を流入させたと
きの、砥石回転方向に沿っての圧力分布図、第6図は、
前記圧縮空気によるウェハの変形量を示すウェハの変形
特性図、第7図は、前記圧縮空気による砥石地金の変形
量を示す砥石地金の髪形特性図、第8図は、第2図に係
る内周式切断機によって切断したウエノ・の切断面形状
を拡大して示す模式図である。Figure 2 is a plan view showing the main parts of an internal circumferential cutting machine according to an embodiment of the present invention, Figure 3 is a sectional view taken along ■--m of Figure 2, and Figure 4 is a cross-sectional view of Figure 2. Fig. 5 is a pressure distribution diagram along the rotation direction of the grinding wheel when compressed air is introduced into the grinding wheel inlet of the cutting groove in Fig. 3, and Fig. 6 is an enlarged cross-sectional view of
7 is a wafer deformation characteristic diagram showing the amount of deformation of the wafer due to the compressed air; FIG. It is a schematic diagram which expands and shows the cut surface shape of Ueno cut by the internal circumferential cutter.
各図において、第1図と同−奇岩を付したものは同一部
分である。そして11Aは、第4図にその詳細を示すよ
うに、砥石地金3Aの内周の砥粒を付着させる部分(以
下砥粒付着部3aという)を他の部分よりも薄肉(たと
えばエツチングによる薄肉)にし、との砥粒付着部3a
に砥粒層lを形成した内周砥石である。したがって、こ
の内周砥石11Aは、その砥粒層1および砥石地金3A
の厚さは従来のものと変ることはなく(すなわち砥石寿
命、砥石地金3Aの剛性は低下することなく)、段差の
寸法e′を小さくしたために、内周砥石lIAの厚さt
′を従来よりも薄くすることができる。なお、10ば、
内周砥石11. Aを張り上げて固定するだめの地金チ
ャックボデーである。In each figure, the same parts as in Figure 1 are marked with the same strange rocks. As shown in detail in FIG. 4, 11A has a part on the inner periphery of the whetstone base metal 3A to which abrasive grains are attached (hereinafter referred to as the abrasive grain adhesion part 3a) that is thinner than other parts (for example, by etching). ) and the abrasive grain adhesion part 3a.
This is an inner peripheral grindstone with an abrasive grain layer l formed thereon. Therefore, this inner peripheral grindstone 11A has its abrasive grain layer 1 and grindstone base metal 3A.
The thickness of the inner grinding wheel lIA remains unchanged from that of the conventional one (that is, the life of the grinding wheel and the rigidity of the grinding wheel base metal 3A do not decrease), and the thickness of the inner grinding wheel lIA is reduced by reducing the step dimension e'.
′ can be made thinner than before. In addition, 10th grade,
Inner circumference whetstone 11. It is a bare metal chuck body that is used to tension and secure A.
4は、切断用インゴット5に形成される切断溝2の砥石
入口部2aへ、内周砥石11Aの上下側から圧縮空気を
流入させることができる圧縮空気流入装置(詳細後述)
であり、この圧縮空気流入装置4は、試料テーブル(図
示せず)に保持され、切断用インゴット5と同期して移
動可能である。4 is a compressed air inflow device (details will be described later) that allows compressed air to flow into the grindstone inlet 2a of the cutting groove 2 formed in the cutting ingot 5 from the upper and lower sides of the inner grindstone 11A.
This compressed air inlet device 4 is held on a sample table (not shown) and is movable in synchronization with the cutting ingot 5.
圧縮空気流入装置4は、圧縮空気導入部4aを有し、複
数個の圧縮空気吐出孔4bを分布して穿設した、断面形
状がH形で、蓋付き円弧状の一対の上ノズル4c、下ノ
ズル4dを、所定間隔dだけ離間して対向して配設し、
前記圧縮空気導入部4aに、コンプレッサ(図示せず)
と接続されている圧縮空気供給ホース13を嵌入してな
るものである。The compressed air inflow device 4 has a compressed air introduction part 4a, a pair of arcuate upper nozzles 4c with a lid and an H-shaped cross-section, in which a plurality of compressed air discharge holes 4b are drilled in a distributed manner. The lower nozzles 4d are arranged to face each other with a predetermined distance d apart,
A compressor (not shown) is installed in the compressed air introduction section 4a.
The compressed air supply hose 13 that is connected to the compressed air supply hose 13 is inserted thereinto.
このように構成した内周式切断機をONにすると、内周
砥石11Aが砥石回転方向15へ回転し、切断用インゴ
ット5が、圧縮空気流入装置4とともに試料移動方向1
6へ移動する。そして、内周砥石11Aが圧縮空気流入
装置4の上ノズル4Cと下ノズル4dとの間に位置した
状態で、砥粒層1によって切断用インゴット5の切断が
行なわれる。切断溝2の砥石地金3Aとウエノ・6との
間にクーラント(図示せず)が供給されるとともに、圧
縮空気流入装置4の圧縮空気導入部4aへ供給された圧
縮空気(この供給空気の圧力を一次空気圧という)が圧
縮空気吐出孔4bを経て、矢印14で示すように、内周
砥石11への両側から切断溝2の砥石入口部2aへ入り
、砥石地金3Aと切断用インゴット5との間隙、および
砥石地金3Aとウェー・6との間隙へ流れる。それぞれ
の間隙へ流入した圧縮空気の砥石回転方向15に沿って
の圧力分布は、第5図に示すようになる。この圧力分布
を有する圧縮空気の作用によって、砥石地金3Aとウェ
ハ6との間に斥力が働く。この斥力の大きさは、前記し
た吸引力よりも大きく、まだ、ウェハ6の両面の加工変
質層に生ずる内部応力のアンバランスによる曲げモーメ
ントよりも犬きい。この斥力によるウエノ・6の変形量
は、砥石切込量C(第2図参照)に対して、第6図の曲
線8(−次空気圧=== 11.、 / C,、の場合
)9曲線7(−次空気圧−2Kg/ crlの場合)の
ようになり、たとえば−次空気圧が2 Kg/ crt
t 、切込量80配の場合、ウェハ6は砥石地金3Aか
ら約80μm引き離されて、砥石地金3八に接触するこ
とはない。これに対して、圧縮空気を流入させない場合
(従来の内周式切断機によって切断した糊合)には、曲
線9のようになり、砥石切込量が95m以上(たたし、
ウェハ6の直径100闘の場合)になると、ウェハ6が
砥石地金3に吸引されて接触してしまう。When the internal cutting machine configured as described above is turned on, the internal grinding wheel 11A rotates in the grinding wheel rotation direction 15, and the cutting ingot 5, together with the compressed air inlet device 4, moves in the sample moving direction 1.
Move to 6. Then, the cutting ingot 5 is cut by the abrasive grain layer 1 with the inner peripheral grindstone 11A positioned between the upper nozzle 4C and the lower nozzle 4d of the compressed air inlet device 4. A coolant (not shown) is supplied between the grinding wheel base metal 3A of the cutting groove 2 and the Ueno 6, and compressed air supplied to the compressed air introduction part 4a of the compressed air inlet device 4 (this supply air The pressure (referred to as primary air pressure) passes through the compressed air discharge hole 4b, enters the grinding wheel inlet portion 2a of the cutting groove 2 from both sides of the inner peripheral grinding wheel 11 as shown by the arrow 14, and cuts the grinding wheel base metal 3A and the cutting ingot 5. and the gap between the grinding wheel base metal 3A and the wafer 6. The pressure distribution of the compressed air flowing into each gap along the grinding wheel rotation direction 15 is as shown in FIG. Due to the action of the compressed air having this pressure distribution, a repulsive force acts between the grindstone base metal 3A and the wafer 6. The magnitude of this repulsive force is larger than the above-mentioned attractive force, and is still smaller than the bending moment due to the imbalance of internal stress generated in the process-affected layers on both sides of the wafer 6. The amount of deformation of Ueno 6 due to this repulsive force is the curve 8 in Figure 6 (when -th air pressure === 11., / C,,) 9 with respect to the grinding wheel cutting depth C (see Figure 2). Curve 7 (when the negative air pressure is −2 Kg/crt), for example, when the negative air pressure is 2 Kg/crt
When the depth of cut is 80, the wafer 6 is separated from the grindstone base metal 3A by about 80 μm and does not come into contact with the grindstone base metal 38. On the other hand, when compressed air is not allowed to flow in (glue cut by a conventional internal circumferential cutter), the result is curve 9, and the cutting depth of the grindstone is 95 m or more (tatashi,
When the diameter of the wafer 6 is 100 mm), the wafer 6 is attracted to the grindstone base metal 3 and comes into contact with it.
砥石地金3Aとウェー・6との間隙へ流入した圧縮空気
は、前述したように、ウェハ6を砥石地金3Aから引き
離して下方へ押下けるとともに、砥石地金3八を押上げ
ようとするが、切断用インゴット5と砥石地金3Aとの
間隙へも圧縮空気が流入するので、上下方向から砥石地
金3Aに加わる空気圧がバランスし、砥石地金3Aの変
形量は、第7図の曲線17(上ノズル4cの一次空気圧
=I Kg/ ctrl 、下ノズル4dの一次空気圧
=2にり/cdとした場合)のようにきわめて少ない。As described above, the compressed air that has flowed into the gap between the grindstone base metal 3A and the wafer 6 separates the wafer 6 from the whetstone base metal 3A and pushes it downward, and at the same time tries to push up the whetstone base metal 38. However, since compressed air also flows into the gap between the cutting ingot 5 and the grindstone base metal 3A, the air pressure applied to the grindstone base metal 3A from above and below is balanced, and the amount of deformation of the grindstone base metal 3A is as shown in FIG. It is extremely small as shown in curve 17 (when the primary air pressure of the upper nozzle 4c = I Kg/ctrl and the primary air pressure of the lower nozzle 4d = 2 n/cd).
なお、曲線18.19は、それぞれ上ノズル4c(−次
空気圧” I K9/cnl ) 、下/ 7:k 4
d (−次空気圧=2 K9/ crtl )のみか
ら圧縮空気を流入させたときの砥石地金3への変形量で
ある。In addition, curves 18 and 19 are respectively upper nozzle 4c (-next air pressure "IK9/cnl) and lower/7:k4
This is the amount of deformation to the grindstone base metal 3 when compressed air is introduced only from d (-secondary air pressure = 2 K9/crtl).
このように、砥石地金3への変形量が小さく、また空気
圧による制振効果にょシ内周砥石11Aの振動が減少し
、さらに、ウェハ6と砥石地金3Aとの接触がないこと
により、内周砥石11Aの切断加工中の変位が著しく減
少し、第8図の実線で示すように、切断面のうねりが減
少して切断の精度が向上する。なお、破線で示す曲線は
、従来の内周式切断後で切断したウェハの切断面形状で
ある。In this way, the amount of deformation to the grindstone base metal 3 is small, the vibration of the inner peripheral grindstone 11A is reduced due to the vibration damping effect due to air pressure, and furthermore, since there is no contact between the wafer 6 and the grindstone base metal 3A, The displacement of the inner peripheral grindstone 11A during cutting is significantly reduced, and as shown by the solid line in FIG. 8, the waviness of the cut surface is reduced and cutting accuracy is improved. Note that the curve shown by the broken line is the cut surface shape of the wafer cut after the conventional inner circumferential cutting.
以下具体的に、切代の低減の効果を説明する。The effect of reducing the cutting allowance will be specifically explained below.
砥石地金3Aの厚さtb を、従来と同じ<0.1〜0
.14mとする。砥石地金3Aの空気圧による変形量は
、第7図の曲線17で示すように無視できる程度である
が、切断加工時の反り約20μmを考慮して、段差の寸
法e′を安全側に見てe′=30μmとすると、内周砥
石11Aの厚さt′は、
t′” t b +26 ’
= (0,1〜0.1’4 )+2 X O,030=
0.16〜0.20助
これに、砥石地金の振れ量δ′を加えるが、この振れ量
δ′は、砥石地金3Aが空気圧で上下から押えられるの
で50μmから20μmに減少する。The thickness tb of the whetstone metal 3A is the same as before <0.1~0
.. The length shall be 14m. The amount of deformation of the grindstone metal 3A due to air pressure is negligible, as shown by curve 17 in Fig. 7, but considering the warping of about 20 μm during cutting, the dimension e' of the step is set on the safe side. When e'=30 μm, the thickness t' of the inner grinding wheel 11A is t''' t b +26' = (0,1~0.1'4)+2 X O,030=
0.16 to 0.20% Added to this is the runout amount δ' of the grindstone base metal, which decreases from 50 μm to 20 μm because the whetstone base metal 3A is pressed from above and below by air pressure.
したがって、切代の最小限界はt′+δ′=018〜0
22鯛となり、従来の0.28〜o、35喘に比較して
、0.10〜0.13rrtm低減する。Therefore, the minimum limit of cutting distance is t'+δ'=018~0
22 sea bream, which is a reduction of 0.10 to 0.13 rrtm compared to the conventional 0.28 to 35 bream.
以上説明した実施例によれば、切代の低減にょシ材料歩
留りが向上する。また、切断面のうねシが減少するので
、切断の次の工程でるるラッピングもしくは研削におけ
る加工代を低減でき、ウェハ、たとえばシリコン、GG
Gなどのウェハの製造コストを大幅に低減することがで
きる。According to the embodiments described above, the cutting allowance is reduced and the material yield is improved. In addition, since the ridges on the cut surface are reduced, the machining allowance for lapping or grinding, which is the next step after cutting, can be reduced.
The manufacturing cost of wafers such as G can be significantly reduced.
また、うねりの中でも波長の太きいものは、ラッピング
で修正できないので、たとえば、ウェハ上にLSIなど
のパターンを形成する工程の障害になっているが、本実
施例の内周式切断機で切断したウェハには、波長の大き
いうねりがほとんどないので、前記パターン形成工程に
おける歩留シ向上に寄与するという効果もある。In addition, since undulations with large wavelengths cannot be corrected by lapping, they are an obstacle in the process of forming LSI patterns on wafers. Since the wafer thus formed has almost no waviness with a large wavelength, it also has the effect of contributing to an improvement in yield in the pattern forming process.
第9図は、本発明の他の実施例に係る内周式切断機の要
部を示す平面図、第10図は、第9図のX−X断面図で
ある。FIG. 9 is a plan view showing essential parts of an internal circumferential cutter according to another embodiment of the present invention, and FIG. 10 is a sectional view taken along line XX in FIG. 9.
各図において、第2図と同一番号を付したものは同一部
分である。そして、20は、切断溝2の砥石入口部2a
へ内周砥石11への両側から空気を流入させることがで
きる流線形状の空気導入部20aを有する、所定間隔d
oだけ離間して対向して配設された一対の上ガイド20
b、下ガイド20Cからなる空気流入ガイドであり、こ
の空気流入ガイド20は、試料テーブル(図示せず)に
よって、切断用インゴット5とともに移動可能に保持さ
れている。In each figure, parts given the same numbers as in FIG. 2 are the same parts. 20 is a grindstone entrance portion 2a of the cutting groove 2.
A predetermined interval d having a streamlined air introduction portion 20a that allows air to flow into the inner peripheral grindstone 11 from both sides.
A pair of upper guides 20 facing each other and separated by o
b, an air inflow guide consisting of a lower guide 20C; this air inflow guide 20 is movably held together with the cutting ingot 5 by a sample table (not shown);
このように空気流入ガイド20を装着せしめることによ
り、内周式切断機をONにして、内周砥石11Aが砥石
回転方向15へ回転すると、矢印21で示すように、空
気導入部20a近傍の空気が、砥石地金3Aに連れ捷わ
り、砥石入口部2aに近接するにつれて空気導入部20
aで圧縮されながら、内周砥石11への両側から切断溝
2の砥石入口部2aへ入り、砥石地金3Aと切断用イン
ゴット5との間隙、および砥石地金3Aとウェハ6との
間隙へ流れる。このように流入した空気は、前記実施例
における圧縮空気とほぼ同等の作用をなし、ウェハ6と
砥石地金3Aとの接触を防止するとともに、砥石地金3
Aの振れを小さくすることができる。したがって、切代
を小さくし、切断面のうねりを低減させるという効果が
ある。By attaching the air inflow guide 20 in this way, when the inner circumferential cutter is turned on and the inner circumferential grindstone 11A rotates in the grindstone rotation direction 15, as shown by the arrow 21, air near the air introduction portion 20a is However, as the whetstone base metal 3A changes and approaches the whetstone inlet part 2a, the air introduction part 20
While being compressed by a, it enters the grindstone inlet 2a of the cutting groove 2 from both sides of the inner grindstone 11, and enters the gap between the grindstone base metal 3A and the cutting ingot 5, and the gap between the grindstone base metal 3A and the wafer 6. flows. The air that has flowed in in this way has almost the same effect as the compressed air in the embodiment described above, and prevents contact between the wafer 6 and the grindstone base metal 3A, and also prevents the grindstone base metal 3A from coming into contact with the wafer 6.
The deflection of A can be reduced. Therefore, there is an effect of reducing the cutting margin and reducing the waviness of the cut surface.
以上説明した本実施例は、空気流入ガイド20へ圧縮空
気を供給する必要がないので、第2図に係る前記実施例
に比べて構成が簡単になるという実用的な効果があるが
、前記実施例は、それぞれ上ノズル4c、下ノズル4d
へ供給する圧縮空気の−医学気圧を調整することにより
、砥石地金3八に加わる空気圧をバランスさせてこの砥
石地金3Nの変形量を最小にすることができるという点
で本実施例よりも優れている。The present embodiment described above does not require supplying compressed air to the air inflow guide 20, so it has a practical effect of being simpler in configuration than the embodiment shown in FIG. Examples are upper nozzle 4c and lower nozzle 4d, respectively.
This embodiment is better than the present embodiment in that by adjusting the medical pressure of the compressed air supplied to the grinding wheel base metal 38, the air pressure applied to the grindstone base metal 38 can be balanced and the amount of deformation of the grindstone base metal 3N can be minimized. Are better.
以上詳細に説明したように本発明によれば、切代が小さ
く且つ高精度に切断することができる内周式切断機を提
供することができる。As described in detail above, according to the present invention, it is possible to provide an internal circumferential cutter that has a small cutting allowance and can cut with high accuracy.
第1図は、従来の内周式切断機によって試料を切断して
いる状態を示す要部断面図、第2図は、本発明の一実施
列に係る内周式切断機の要部を示す平面図、第3図は、
第2図の■−川川面面図第4図は、第2図のIV−IV
断面拡大図、第5図は、第3図における切断溝の砥石入
口部へ圧縮空気を流入させたときの、砥石回転方向に沿
っての圧力分布図、第6図は、前記圧縮空気によるウェ
ハの変形量を示すウェハの変形特性図、第7図は、前記
圧縮空気による砥石地金の変形量を示す砥石地金の変形
特性図、第8図は、第2図に係る内周式切断機によって
切断機によって切断したウェハの切断面形状を拡大して
示す模式図、第9図は、本発明の他の実施例に係る内周
式切断機の要部を示す平面図、第10図は、第9図のX
−X断面図である。
1・・・砥粒層、2・・・切断溝、2a・・・砥石入口
部、3N・・・砥石地金、3a・・・砥粒伺着部、4・
・・圧縮空気流入装置、4c・・・上ノズル、4d・・
・下ノズル、5・・・切断用インゴット、6・・・ウェ
ハ、11A・・・内周砥石、15・・・砥石回転方向、
16・・・試料移動方向、20・・・空気流入ガイド、
20b・・・上ガイド、20C・・・下ガイド。
代理人 弁理士 福田幸作
(ほか1名)
第 1 凶
v4 図
茅g 固
マ 茅7月
事 3 図
第 10 囚FIG. 1 is a sectional view of a main part showing a state in which a sample is cut by a conventional internal circumferential cutter, and FIG. 2 is a main part of an internal circumferential cutter according to one embodiment of the present invention. The plan view and Figure 3 are as follows:
■-River surface diagram in Figure 2 Figure 4 shows IV-IV in Figure 2.
An enlarged cross-sectional view, FIG. 5 is a pressure distribution diagram along the rotational direction of the grinding wheel when compressed air is introduced into the grinding wheel inlet of the cutting groove in FIG. 3, and FIG. 7 is a deformation characteristic diagram of the grindstone ingot showing the amount of deformation of the grindstone ingot due to the compressed air. FIG. FIG. 9 is a schematic diagram showing an enlarged cut surface shape of a wafer cut by a cutting machine, and FIG. is X in Figure 9
-X sectional view. DESCRIPTION OF SYMBOLS 1... Abrasive grain layer, 2... Cutting groove, 2a... Grinding wheel entrance part, 3N... Grinding wheel base metal, 3a... Abrasive grain adhesion part, 4.
...Compressed air inlet device, 4c...Upper nozzle, 4d...
・Lower nozzle, 5... Cutting ingot, 6... Wafer, 11A... Inner peripheral grindstone, 15... Grinding wheel rotation direction,
16... Sample movement direction, 20... Air inflow guide,
20b...upper guide, 20C...lower guide. Agent Patent attorney Kosaku Fukuda (and 1 other person) 1st Kyo v4 Figure Kaya G Katama Kaya July thing 3 Figure 10 Prisoner
Claims (1)
周砥石を、砥石面内で回転させながら、前記内周砥石の
内周側に配設され、試料テーブルで保持された試料を該
内周砥石の半径方向に移動させることにより、前記砥粒
層で前記試料を切断するようにしだ内り断機において、
内周砥石を、砥石地金の内周の砥粒を付着させる部分を
他の部分よりも薄肉にし、この部分に砥粒層を形成した
内周砥石にし、試料に形成される切断溝の砥石入口部へ
前記内周砥石の上下側から圧縮空気もしくは空気を流入
させることができる圧縮空気流入装置もしくは空気流入
ガイドを、試料テーブルに保持せしめて前記試料と同期
して移動させるようにしたことを特徴とする内周式切断
機。1. While rotating an inner peripheral grindstone formed by forming an abrasive grain layer on a donut-shaped grindstone base metal within the grinding wheel surface, a sample is placed on the inner peripheral side of the inner peripheral grindstone and held on a sample table. is moved in the radial direction of the inner peripheral grindstone to cut the sample with the abrasive grain layer,
The inner circumferential whetstone is made by making the inner circumferential part of the whetstone metal where the abrasive grains are attached thinner than the other parts, and forming an abrasive grain layer on this part. A compressed air inflow device or an air inflow guide capable of inflowing compressed air or air into the inlet portion from above and below the inner grinding wheel is held on the sample table and moved in synchronization with the sample. Features an internal cutting machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10937683A JPS602310A (en) | 1983-06-20 | 1983-06-20 | Inner circumferential type cutter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10937683A JPS602310A (en) | 1983-06-20 | 1983-06-20 | Inner circumferential type cutter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS602310A true JPS602310A (en) | 1985-01-08 |
Family
ID=14508668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10937683A Pending JPS602310A (en) | 1983-06-20 | 1983-06-20 | Inner circumferential type cutter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602310A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62142613A (en) * | 1985-12-18 | 1987-06-26 | 株式会社日立製作所 | Slice wafer recovery device |
JP2013169618A (en) * | 2012-02-21 | 2013-09-02 | Tdk Corp | Cutting work device |
-
1983
- 1983-06-20 JP JP10937683A patent/JPS602310A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62142613A (en) * | 1985-12-18 | 1987-06-26 | 株式会社日立製作所 | Slice wafer recovery device |
JP2013169618A (en) * | 2012-02-21 | 2013-09-02 | Tdk Corp | Cutting work device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4079152B2 (en) | How to make a donut glass substrate | |
JP4012546B2 (en) | Equipment for simultaneous double-side grinding of disk-shaped workpieces | |
US5713123A (en) | Method of lapping for producing one-side curved surface adapted for floating magnetic head | |
US10614837B2 (en) | Tape head having a portion of a bearing surface slot that defines a skiving edge | |
US9711170B1 (en) | High accuracy bearing surface slotting process for tape head fabrication | |
US5156704A (en) | Method for fabricating magnetic head air bearing sliders | |
US20060027542A1 (en) | Method to eliminate defects on the periphery of a slider due to conventional machining processes | |
JPS602310A (en) | Inner circumferential type cutter | |
US5897984A (en) | Method for manufacturing a flying magnetic head slider | |
JPH05157941A (en) | Method for polishing optical connector | |
US6452750B1 (en) | Slider including a rail having a concave end and method of manufacturing same | |
JP4123631B2 (en) | How to make a glass substrate | |
GB2025800A (en) | Magnetic transducing core and method of forming the same | |
JP2678416B2 (en) | Method and apparatus for manufacturing magnetic recording medium substrate | |
JPH01188265A (en) | Lapping device | |
JP2908915B2 (en) | Wafer cutting method and apparatus | |
JPS61172220A (en) | Production of disk substrate | |
JP5199542B2 (en) | Manufacturing method of slider | |
TW499345B (en) | External active compensation method and device for axial deviation of rotary spindle tool | |
KR20040080274A (en) | Wafer dicing method using dry etching and back grinding | |
WO2000039801A1 (en) | Magnetic head and magnetic disk unit and working method therefor | |
JPH01294049A (en) | Preparation of ink jet head | |
GB2362654A (en) | Diamond saw blade | |
JPS62246475A (en) | Inner circumference edge blade | |
JPS58194164A (en) | Manufacture of magnetic head |