JPS60230984A - Apparatus for producing deposited film by vapor phase method - Google Patents

Apparatus for producing deposited film by vapor phase method

Info

Publication number
JPS60230984A
JPS60230984A JP8806484A JP8806484A JPS60230984A JP S60230984 A JPS60230984 A JP S60230984A JP 8806484 A JP8806484 A JP 8806484A JP 8806484 A JP8806484 A JP 8806484A JP S60230984 A JPS60230984 A JP S60230984A
Authority
JP
Japan
Prior art keywords
reactor
deposited film
installation
substrate
furnaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8806484A
Other languages
Japanese (ja)
Other versions
JPS6254396B2 (en
Inventor
Yasutomo Fujiyama
藤山 靖朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8806484A priority Critical patent/JPS60230984A/en
Publication of JPS60230984A publication Critical patent/JPS60230984A/en
Publication of JPS6254396B2 publication Critical patent/JPS6254396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make efficient mass production of diversified kinds o deposited films by providing >=1 means for installing reaction furnaces having plural reaction furnaces for forming the deposited films on substrates and >=1 means for conveying the reaction furnaces for carryin the reaction furnaces into and out of such means and controlling these means. CONSTITUTION:Eight units of the reaction furnaces 1 having the capability of forming the different deposited films are installed on instaling bases 2, 3 in such a way that the central axes thereof are positioned on the same circular orbits 13, 14 and that the furnaces are freely rotatable in the lateral direction around the central axes 9, 10 of said orbits 13, 14. A mechanism 4 for conveying the reaction furnaces is provided on the tangent 6 of the orbits 13, 14. Positions 11, 12 for connecting the mechanism 4 and a part 8 for installing the reaction furnaces are provided at the contact points between the mechanism 4 and the orbits 13, 14. The reaction furnaces 1 conveyed to the positions 11, 12 are lowered by hydraulic cylinders 5 and are installed to the part 8. The furnaces are otherwise removed from the part 8 by the reverse operation.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は気相法堆積膜製造装置に関するものであり、詳
しくは基体上にプラズマCvD法により光導電膜、半導
体膜、無機絶縁膜、有機樹脂膜等を形成するための装置
に於いて、l生産ラインで多種の製品を製造可能な気相
法堆積膜製造装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an apparatus for producing a vapor-deposited film, and more specifically, a photoconductive film, a semiconductor film, an inorganic insulating film, an organic resin film, etc. The present invention relates to a vapor-deposited film manufacturing device that can manufacture a wide variety of products on a single production line.

〔従来技術〕[Prior art]

プラズマCvD法によって、光導電膜、半導体膜、無機
絶縁膜、有機樹脂膜等を基体上に堆積させる装置として
従来より代表的なものとしては、いわゆる同軸円筒型及
び平行平板型の堆積膜製造装置を挙げることができる。
Typical apparatuses for depositing photoconductive films, semiconductor films, inorganic insulating films, organic resin films, etc. on substrates using the plasma CVD method include so-called coaxial cylinder type and parallel plate type deposited film manufacturing apparatuses. can be mentioned.

同軸円筒型堆積膜製造装置は、例えば非晶質シリコン感
光体膜をアルミニウム等からなる円筒状金属基体上に堆
積して、電子写真用感光体ドラム等を形成するこ゛との
できる装置であり、その構造は、前記円筒状基体と、こ
れとともに中心軸を共有する円筒状カソード電極とを配
置し、これらの間にグロー放電を発生させるような構造
を有している。
A coaxial cylindrical deposited film manufacturing apparatus is an apparatus that can deposit, for example, an amorphous silicon photoreceptor film onto a cylindrical metal substrate made of aluminum or the like to form a photoreceptor drum for electrophotography, etc. The structure includes the cylindrical base and a cylindrical cathode electrode that shares a central axis with the cylindrical base, and a glow discharge is generated between them.

このような装置の一例を、その縦断面図である第2図に
より説明すると、21は円筒状カソード電極であり、円
筒状基体(アノード電極)22と中心軸をともに共有す
る。23はドーナツツ状電気絶縁カイシ、24は真空チ
ャンバー蓋、25は高周波電源、26は原料ガス放出パ
イプ、27は真空排気管、28は基体加熱用のヒーター
、28は基体回転機構、30はアースである。
An example of such a device will be described with reference to FIG. 2, which is a longitudinal cross-sectional view thereof. Reference numeral 21 denotes a cylindrical cathode electrode, which shares a central axis with a cylindrical base (anode electrode) 22. 23 is a donut-shaped electrical insulator, 24 is a vacuum chamber lid, 25 is a high frequency power source, 26 is a raw material gas discharge pipe, 27 is a vacuum exhaust pipe, 28 is a heater for heating the substrate, 28 is a substrate rotation mechanism, and 30 is a ground. be.

この装置では、1つの反応炉に1つの基体が配置される
ので、例えばガスの流れや分布により非晶質シリコン堆
積膜の分布調整が容易であり、しかも放電安定性に優れ
ているという利点がある。
In this device, one substrate is placed in one reactor, so it is easy to adjust the distribution of the amorphous silicon deposited film by, for example, gas flow and distribution, and it has the advantages of excellent discharge stability. be.

一方、平行平板型堆積膜製造装置は、一対の対向した電
極として上記の中心軸をともに共有する2つの円筒の代
りに、互いに平行に設置された平板を用いるものであり
、例えば第3図の横断面図に示されるような構造を有し
ている。
On the other hand, a parallel plate type deposited film manufacturing apparatus uses flat plates installed parallel to each other as a pair of opposing electrodes, instead of the two cylinders sharing a central axis. It has a structure as shown in the cross-sectional view.

この例に於いては、平板状カソード電極31と平板状基
体(アノード電極)32との間にグロー放電を発生させ
て堆積膜を基体32上に形成することのできるものであ
る。
In this example, a deposited film can be formed on the substrate 32 by generating a glow discharge between the flat cathode electrode 31 and the flat substrate (anode electrode) 32.

これら装置に於いて、対向する一対の電極の間隔は、グ
ロー放電の強度と密接な関係にあり、堆積膜の膜厚分布
や膜特性を左右する重要な要因となり、良品質な堆積膜
を形成するために適正な一定の距離に保たれていること
が好ましい。
In these devices, the distance between a pair of opposing electrodes is closely related to the intensity of glow discharge, and is an important factor that influences the thickness distribution and film properties of the deposited film, and is essential for forming a high-quality deposited film. It is preferable that the distance be kept at a certain distance.

一般に、堆積膜の特性や堆積膜が形成される基体の大き
さは、堆積膜形成後の製品が、どのような用途に使用さ
れるかによって各々異なる。ところが、前記のような装
置を用いて基体上に堆積膜を形′成させる場合、同軸円
筒型を使用する際には、前述したように、円筒状の基体
とカソード電極との間隔を一定としなければならず、一
定の大きさのカソード電極が設けられた反応炉に於いて
は、大きさの、特に外径寸法の異なる基体を反応炉内に
配置した場合、基体とカソード電極との距離が所定の距
離とはならず、良好な成膜を実施できないため、1台の
装置に外径寸法の異なる基体を適用することはできなか
った。
Generally, the characteristics of the deposited film and the size of the substrate on which the deposited film is formed differ depending on the purpose for which the product after the deposited film is formed. However, when forming a deposited film on a substrate using the above-mentioned apparatus, when using a coaxial cylindrical type, the distance between the cylindrical substrate and the cathode electrode must be kept constant, as described above. In a reactor equipped with a cathode electrode of a certain size, when substrates of different sizes, especially outer diameters, are placed in the reactor, the distance between the substrate and the cathode electrode must be is not a predetermined distance, and good film formation cannot be performed, so it has been impossible to apply substrates with different outer diameters to one device.

また、平行平板型のものの場合に於いても、少なくとも
、カソード電極が基体よりも大きい必要があり、更に、
これらのマツチング等を考慮すると、一定形状のカソー
ド電極が設けられた反応炉に種々の形状の基体を適用し
にくかった。
In addition, even in the case of a parallel plate type, at least the cathode electrode needs to be larger than the substrate, and further,
Considering these matching factors, it is difficult to apply substrates of various shapes to a reactor provided with a cathode electrode of a certain shape.

従って、上記のよ−“うな装置を用いて堆積膜を大量に
製造する場合、従来、基体の大きさや形成された堆積膜
の所望の特性に合わせた専用ラインとなることは避けら
れず、なかでも大きさの異なる基体を自由に流して多品
種生産を行なうことはできなかった。
Therefore, when producing deposited films in large quantities using the above-mentioned equipment, conventionally it has been unavoidable to have a dedicated line tailored to the size of the substrate and the desired characteristics of the deposited film formed. However, it was not possible to freely flow substrates of different sizes to produce a wide variety of products.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、大きさ等の異なる基体を用いた多品種
生産を1系統のラインのみで行なうことのできる気相法
堆積膜製造装置を提供することのある。
An object of the present invention is to provide a vapor phase deposited film manufacturing apparatus that can produce a wide variety of products using substrates of different sizes and the like using only one line.

〔発明の構成〕[Structure of the invention]

上記の目的は、以下の本発明のより達成することができ
る。
The above object can be achieved by the following invention.

すなわち、本発明の気相法堆積膜製造装置は、気相法に
より基体上に堆積膜を形成させる反応炉の設置箇所を複
数個有する反応炉設置手段の1つ以上と、該反応炉設置
手段に反応炉を搬入し、かつ該反応炉設置手段から搬出
する反応炉搬送手段の1つ以上とを有する気相法堆積膜
製造装置である。
That is, the vapor phase deposited film manufacturing apparatus of the present invention includes one or more reactor installation means having a plurality of reactor installation locations for forming a deposited film on a substrate by a vapor phase method, and the reactor installation means. This is a vapor phase deposited film manufacturing apparatus having one or more reactor conveying means for transporting a reactor into the reactor and transporting the reactor from the reactor installation means.

以下、本発明の装置を、図面に従って詳細に説明する。Hereinafter, the apparatus of the present invention will be explained in detail with reference to the drawings.

第1図は本発明の装置の一例の堆積膜の形成が行なわれ
る堆積膜形成部の主要部分を示す模式重鎮略図である。
FIG. 1 is a schematic diagram showing the main parts of a deposited film forming section in which a deposited film is formed in an example of the apparatus of the present invention.

この例に於いて、1は、先に第2図を用いて説明した同
軸円筒型の反応炉であり、あらかじめ、その内部には基
体が設置されている。反応炉l内に基体が搬入設置され
た状態は、先に第2図に示した反応炉内の状態と同様で
ある。反応炉1には、該反応炉内を排気する排気系、反
応ガス導入系、高周波電源等の付帯設備(不図示)との
接続部(不図示)が設けられている。
In this example, reference numeral 1 is the coaxial cylindrical reactor described above with reference to FIG. 2, and a base body is previously installed inside the reactor. The state in which the substrate is carried into and installed in the reactor I is similar to the state in the reactor shown previously in FIG. 2. The reactor 1 is provided with an exhaust system for evacuating the inside of the reactor, a reaction gas introduction system, and a connection part (not shown) with incidental equipment (not shown) such as a high frequency power source.

4は、反応炉1を搬送するための搬送機構であり、本発
明の装置の所定の部分(不図示)に設けられた反応炉へ
の基体導入部から、基体が導入設置された反応炉を、反
応炉設置手段としての反応炉設置台2.3上まで搬送し
、そこの設置したり、反応炉設置台2.3上にすでに設
置されている反応炉を反応炉設置台から取り外して搬出
する機能を有する。反応炉lは、油圧シリンダー5に連
動した反応炉保持機構(不図示)によって保持されて吊
下げられて搬送される。
4 is a transport mechanism for transporting the reactor 1, which transports the reactor in which the substrate is introduced from the reactor introduction part provided in a predetermined part (not shown) of the apparatus of the present invention. , transport it to the top of the reactor installation stand 2.3 as a means for installing the reactor and install it there, or remove the reactor already installed on the reactor installation stand 2.3 from the reactor installation stand and carry it out. It has the function of The reactor l is held by a reactor holding mechanism (not shown) linked to the hydraulic cylinder 5, suspended, and transported.

8は、設置台2.3に設けられた反応炉1が設置される
反応炉設置部であり、反応炉が有する付帯設備との接続
部に接続される付帯設備の末端部(不図示)が設けられ
ている。この例に於いては、1つの設置台上に8筒所の
設置部8が設けられている。なお1反応炉lはこの反応
炉設置部8のそれぞれに着脱自在である。この反応炉の
有する付帯設備との接続部と、付帯設備末端部の接続に
は、ワンタッチジヨイント等の手軽に接続可能な接続手
段が好適に適応される。これらの付帯設備としては、真
空ポンプ、反応ガス流コントローラー、高周波電源等が
ある。
8 is a reactor installation part in which the reactor 1 provided on the installation stand 2.3 is installed, and the end part (not shown) of the auxiliary equipment connected to the connection part with the auxiliary equipment of the reactor is It is provided. In this example, eight installation portions 8 are provided on one installation stand. Note that one reactor l can be attached to and detached from each of the reactor installation parts 8. A connection means that can be easily connected, such as a one-touch joint, is suitably used to connect the connection part with the auxiliary equipment of the reactor and the end of the auxiliary equipment. These ancillary equipment include vacuum pumps, reactant gas flow controllers, high frequency power supplies, and the like.

本発明の装置に於いては、異なる堆積膜形成能を有する
2種以上の反応炉lを、これらの中心軸が同一円軌道1
3.14上に位置し、かつその円軌道の中心軸9.10
を中心として左右両方向に回転自在なように設置台2,
3上に設置することができるようになっている。
In the apparatus of the present invention, two or more types of reactors 1 having different deposited film forming abilities are placed in a circular orbit 1 whose central axes are the same.
3.14 and the central axis of its circular orbit 9.10
The installation stand 2 is rotatable in both left and right directions around the center.
It can be installed on top of 3.

反応炉lを設置する設置台2.3は、中心軸を中心に回
転可能であり、円形、多角形等の適当な形状を有するも
の、また独立した1つの設置台の複数を支持部材等を用
いて、上記のような配置にし、回転可能としたものでも
良い。
The installation stand 2.3 on which the reactor l is installed can be rotated around the central axis and has an appropriate shape such as circular or polygonal, or it may be possible to use a plurality of independent installation stands with support members, etc. It may also be possible to use the above-mentioned arrangement and make it rotatable.

なお、円軌道上の反応炉設置部8の数は8個に限定され
ることはなく、必要に応じて増減可能であり、またそれ
にともなって円軌道の半径を増減すれば、効率良い反応
炉の設置が可能である。
Note that the number of reactor installation parts 8 on the circular orbit is not limited to eight, and can be increased or decreased as necessary, and if the radius of the circular orbit is increased or decreased accordingly, an efficient reactor can be achieved. It is possible to install

反応炉搬送機構4は円軌道13.14の接線6上に設け
られており、該搬送機構4と円軌道13.14との接点
7に、搬送機構4と反応炉設置部8との接続位置11.
12が設けられている。
The reactor transport mechanism 4 is provided on a tangent 6 to the circular orbit 13.14, and the connection position between the transport mechanism 4 and the reactor installation part 8 is located at the contact point 7 between the transport mechanism 4 and the circular orbit 13.14. 11.
12 are provided.

接続位置11.12に於いては、搬送されてきた反応炉
lは、油圧シリンダー5の作用によって降下し、設置部
8に設置さる。あるいは、この逆の操作により設置部8
から取外される。
At the connection position 11.12, the reactor l that has been transported is lowered by the action of the hydraulic cylinder 5 and installed in the installation part 8. Alternatively, by reversing this operation, the installation part 8
removed from.

第1図の装置を用いて成膜を行なうには、まず、所定の
位置に設けられた基体設置部(不図示)に於いて、反応
炉l内に、所望の製品に対応した基体を設置する。この
ようにして基体の設置された反応炉lを、反応炉搬送機
構4の有する油圧シリンダー5に連動した反応炉保持機
構(不図示)によって吊上げた状態で、搬送機構4によ
って接続位置11あるいは12上まで移動させる。
To form a film using the apparatus shown in Figure 1, first, a substrate corresponding to the desired product is installed in the reactor l at a substrate installation part (not shown) provided at a predetermined position. do. While the reactor l with the base body installed in this manner is lifted by a reactor holding mechanism (not shown) linked to the hydraulic cylinder 5 of the reactor transport mechanism 4, the reactor l is moved to the connection position 11 or 12 by the transport mechanism 4. move it to the top.

なお、反応炉lに基体を設置した時点で、反応炉内を排
気系により排気しておくことが好ましい。
Note that, when the substrate is installed in the reactor I, it is preferable to exhaust the inside of the reactor using an exhaust system.

このようにして予め排気を行なっておくと、以後の成膜
に際しての排気を効率良くすることができる。
By performing the evacuation in advance in this manner, the evacuation during subsequent film formation can be made more efficient.

接続位置11あるいは12上で停止した反応炉は、この
位置に移動してきた反応炉設置部8に設置される。この
とき、排気系、反応ガス導入系等の付帯設備が反応炉l
にワンタッチで接続される。
The reactor that has stopped on the connection position 11 or 12 is installed in the reactor installation section 8 that has been moved to this position. At this time, ancillary equipment such as an exhaust system and a reaction gas introduction system are connected to the reactor.
connected with one touch.

反応炉lが反応炉設置部に設置されたら、反応炉内を、
排気系(一般に用いられているもので良い)により、再
び通常I X 10〜10= Torr程度に真空排気
する。そして、一般に用いられている反応ガス流量コン
トローラー(不図示)によlりその流量及び圧力を調節
しながら堆積膜形成用の原料カス及び必要に応じてキャ
リアーガスあるいは形成される膜中に不純物を導入する
ためのドーピングガス等を反応炉内に導入する。
When the reactor l is installed in the reactor installation part, the inside of the reactor is
Using an evacuation system (any commonly used evacuation system may be used), the vacuum is again evacuated to about I x 10 to 10 Torr. Then, while adjusting the flow rate and pressure using a commonly used reaction gas flow rate controller (not shown), impurities are added to the raw material residue for forming the deposited film and, if necessary, to the carrier gas or the film to be formed. Doping gas and the like are introduced into the reactor.

例えば、水素化アモルファスシリコン膜を形成するため
には、SiH,、Si2H6、5i3HB 、 5i4
H1o等のシラン化合物ガス、あるいはこれらにH2や
He、A「等の希ガスを適量比で混合したものを反応炉
内に導入する。具体例としてSiH4ガスを用いる場合
には、基体温度を200〜400℃に設定し、SiH4
ガス5〜40容量%とH295〜60容量%の混合ガス
を反応炉内にカス圧0.1〜2 Torr、カス流量0
.1〜2t/ra1nで導入し、高周波電源から整合回
路を通して、カソード電極に高周波電力を印加し、基体
とカソード電極との間にグロー放電を勘気し、反応ガス
を分解して基体上に水素化アモルファスシリコン膜を形
成することができる。
For example, to form a hydrogenated amorphous silicon film, SiH, Si2H6, 5i3HB, 5i4
A silane compound gas such as H1O or a mixture of these and a rare gas such as H2, He, or A in an appropriate ratio is introduced into the reactor.As a specific example, when using SiH4 gas, the substrate temperature is set to 200℃. Set to ~400℃, SiH4
A mixed gas of 5-40% by volume of gas and 95-60% by volume of H2 is placed in the reactor at a gas pressure of 0.1-2 Torr and a gas flow rate of 0.
.. 1 to 2 t/ra1n, high frequency power is applied to the cathode electrode from a high frequency power source through a matching circuit, a glow discharge is generated between the substrate and the cathode electrode, the reaction gas is decomposed, and hydrogen is deposited on the substrate. An amorphous silicon film can be formed.

なお、反応炉に導入されるガスには上記のようなガスの
ほかに、形成される堆積膜へのフッソ原子導入用の5i
F4.pまたはn型不純物導入用のB2H6、PH3、
AsH3、窒素原子導入用のN2、NH3、酸素原子導
入用のN20 、 NO1炭素炭素原子用入用えばOH
4,C2H4等の炭化水素化合物をはじめ、その他のプ
ラズマCVD法によって堆積膜内へ含有させることので
きる原子を含む化合物からなる反応ガスを、ガス流量コ
ントローラー等を用いて、所定の比率で混合して導入す
ることもできる。
In addition to the above-mentioned gases, the gases introduced into the reactor also include 5i for introducing fluorine atoms into the deposited film to be formed.
F4. B2H6, PH3, for p or n type impurity introduction
AsH3, N2 for nitrogen atom introduction, NH3, N20 for oxygen atom introduction, NO1 carbon OH if necessary for carbon atom introduction
4. A reaction gas consisting of a hydrocarbon compound such as C2H4 and other compounds containing atoms that can be incorporated into the deposited film by the plasma CVD method is mixed at a predetermined ratio using a gas flow controller or the like. It can also be introduced.

なお、本発明の装置は、このようなアモルファスシリコ
ン膜の形成に限らず、所望の原料ガスを用いて、Si3
N4. S+C、5102、SiO等の絶縁性膜、ある
いは有機樹脂膜などを製造することもできる。これらの
堆積膜を反応炉中で形成する場合、成膜時の諸条件は形
成される堆積膜に応じて適宜選択される。
Note that the apparatus of the present invention is not limited to forming such an amorphous silicon film, but can also be used to form an Si3 film using a desired raw material gas.
N4. Insulating films such as S+C, 5102, and SiO, or organic resin films can also be manufactured. When forming these deposited films in a reactor, various conditions during film formation are appropriately selected depending on the deposited film to be formed.

その内部に於いて、上記のような操作にょる成膜中の反
応炉lは、基体搬送機構4と反応炉lとの接続位置11
.12に留まっている必要はなく、円軌道13.14上
の他の位置に移動させておく。このようにして、1つの
反応炉に於いて成膜を行なっている時に、接続位置に新
たに移動させた反応炉を次々と設置台上に設置したり、
設置台上に設置され、成膜が終了した反応炉を設置台か
ら次々に搬出することができる。
Inside the reactor l during film formation by the above operations, the connection position 11 between the substrate transport mechanism 4 and the reactor l is located.
.. It is not necessary to stay at 12, but move it to another position on the circular orbit 13, 14. In this way, while film formation is being performed in one reactor, reactors that have been newly moved to the connection position can be installed one after another on the installation stand, or
The reactors that are installed on the installation table and in which film formation has been completed can be carried out one after another from the installation table.

円軌道13.14上での反応炉設置部8の移動は、接続
位置11.12での反応炉lの搬入が行なわれるように
、また成膜中の反応炉lに於いては、少なくとも接続位
置11.12に戻ったときに成膜が終了しているように
制御される。接続位置11.12に戻った成膜が終了し
た反応炉lの直上には、油圧シリンダー5に連動した反
応炉保持機構(不図示)が移動して停止し、反応炉lを
設置台2.3から取外し、更に基体取出し部(不図示)
へ搬出する。
The movement of the reactor installation part 8 on the circular orbit 13.14 is such that the reactor l is carried in at the connection position 11.12, and in the reactor l during film formation, at least the connection The film formation is controlled so that it is completed when the film returns to the positions 11 and 12. A reactor holding mechanism (not shown) linked to the hydraulic cylinder 5 moves and stops directly above the reactor l, which has returned to the connection position 11.12 and film formation has been completed, and the reactor l is moved to the installation stand 2.12. 3, and then remove the base body from the part (not shown).
Transport to.

基体取出し部へ移送された反応炉lは、真空リークされ
、更に基体の温度を下げる等してから、反応炉lから製
品としての堆積膜が形成されている基体が取出される。
The reactor l transferred to the substrate removal section is vacuum leaked, and after further lowering the temperature of the substrate, etc., the substrate on which the deposited film as a product has been formed is taken out from the reactor l.

なお、反応炉設置台の数は、第1図に示したように2つ
に限定されるでものではなく、1つでも良い。また、反
応炉設置台を3つ以上設けて、設置台上の反応炉の数や
種類を増加させて、より多品種の堆積膜をより効率良く
形成することができる。
Note that the number of reactor installation stands is not limited to two as shown in FIG. 1, but may be one. Further, by providing three or more reactor installation stands, the number and types of reactors on the installation stands can be increased, and a greater variety of deposited films can be formed more efficiently.

また、多層構成の堆積膜を形成する場合には、反応炉設
置部に接続された反応ガス導入系から、形成しようとす
る堆積膜の層構成に応じて、順次反応ガスを反応炉に導
入したり、1つの反応炉設置部からは1種類の堆積膜用
反応ガスを導入するようにして、反応炉を異なる反応ガ
スを導入する反応炉設置部間を順次反応炉搬送機構を用
いて移動させてたりして、多層構成の堆積膜を形成する
ことができる。
In addition, when forming a deposited film with a multilayer structure, reactant gases are sequentially introduced into the reactor from a reactant gas introduction system connected to the reactor installation section according to the layered structure of the deposited film to be formed. Alternatively, one type of reaction gas for deposited film is introduced from one reactor installation part, and the reactor is sequentially moved between reactor installation parts introducing different reaction gases using a reactor conveyance mechanism. It is possible to form a deposited film having a multilayer structure.

更に、この例に於いては反応炉搬送機構は反応炉設置部
が配置された円軌道の接線上に設けられていたが、これ
に限らず、例えば円軌道の法線上に設置しても良く、更
に反応炉搬送機構は一直線状ではなく、装置の形態等に
応じて種々の形状に設けても良い。
Further, in this example, the reactor conveyance mechanism was installed on the tangent to the circular orbit in which the reactor installation part is arranged, but the mechanism is not limited to this, and may be installed on the normal line of the circular orbit, for example. Furthermore, the reactor conveyance mechanism is not linear, but may be provided in various shapes depending on the form of the apparatus.

このようにして、本発明の装置に於いては、製造しよう
とする異なる種類の製品に合わせた基体と反応炉とを自
由に選択して組み合わせて、1系統の生産ラインで効率
良く堆積膜を製造することが可能となった。
In this way, in the apparatus of the present invention, substrates and reactors suitable for different types of products to be manufactured can be freely selected and combined, and deposited films can be efficiently produced in one production line. It became possible to manufacture.

第1図を用いて以上説明した本発明の装置の一例は、反
応炉設置部が円軌道上に配置されているものであったが
、反応炉設置部の配置はこれに限定されるものではなく
、種々の配置が適用可能である。そのような配置の一例
として、第4図に示すように、反応炉設置部の複数個を
それぞれの中心軸が一直線48上に並ぶように配置され
ているものが挙げられる。この例に於ける各部分の操作
は、反応炉設置部を該設置部の配列方向に移動させる以
外は円軌道を用いた先の例と同様である。
In the example of the apparatus of the present invention described above using FIG. 1, the reactor installation part is arranged on a circular orbit, but the arrangement of the reactor installation part is not limited to this. However, various arrangements are applicable. As an example of such an arrangement, as shown in FIG. 4, a plurality of reactor installation parts are arranged so that their central axes are aligned on a straight line 48. The operation of each part in this example is similar to the previous example using a circular orbit, except that the reactor installation part is moved in the direction in which the installation part is arranged.

更に、これらの本発明の装置の例に於いては、反応炉搬
送機構を1系列だけ設けたが、反応炉の反応炉設置台へ
の搬入、及び反応炉設置台からの搬出をより効率良く行
なうために、反応炉搬送機構を2系列以上設けても良い
。そのような構成とし?−4f、例えば第5図および第
6図に示すように、反応炉搬送機構を2系列設け、搬送
機構54−1.64−1によって反応炉の反応炉設置台
への搬送を行ない、搬送機構54−2.64−2によっ
て成膜完T後の反応炉を搬出するようにした構成などを
挙げることができる。
Furthermore, in these examples of the apparatus of the present invention, only one line of the reactor conveyance mechanism was provided, but it is possible to more efficiently carry the reactor into and out of the reactor installation stand. In order to do this, two or more reactor conveyance mechanisms may be provided. With such a configuration? -4f, for example, as shown in FIGS. 5 and 6, two lines of reactor conveyance mechanisms are provided, and the conveyance mechanism 54-1. 54-2.64-2, such as a configuration in which the reactor is transported out after the film formation is completed T.

以上説明してきた本発明の装置の一例は、同軸円筒型の
反応炉を用いたものであったが、例えば第3図を用いて
説明したような平行平板型の反応炉を用いて成膜を行な
うものであってもよい。
Although the example of the apparatus of the present invention described above uses a coaxial cylindrical reactor, it is also possible to form a film using a parallel plate reactor as explained using FIG. It may be something you do.

以上説明した本発明の気相堆積膜製造装置に於いては、
反応炉を固定せずに、反応炉搬送機構を用いて成膜の行
なわれる反応炉設置台に反応炉を順次搬送し、成膜終了
後にそこから搬出するようにしたことによって、所望の
製品に対応した基体と、堆積膜形成能を有する反応炉と
を組合わせて、すなわち随時多品種の製品、特に形状や
大きさに於いて異なる製品の個々に対応した基体と反応
炉とを組み合わせて成膜を行なうことができ、l生産ラ
インで多品種の堆積膜を効率良く大量に製造することが
可能となった。
In the vapor deposition film manufacturing apparatus of the present invention described above,
Instead of fixing the reactor, the reactor is sequentially transported to the reactor installation table where film formation is performed using a reactor transport mechanism, and then taken out from there after film formation has been completed, making it possible to produce the desired product. By combining a corresponding substrate and a reactor capable of forming a deposited film, that is, by combining a substrate and a reactor that can be used for a wide variety of products at any time, especially for products that differ in shape and size. It has become possible to efficiently produce a large variety of deposited films in large quantities on one production line.

以下に本発明の装置を用いたアモルファスシリコン堆積
膜の参考例を示す。
Reference examples of amorphous silicon deposited films using the apparatus of the present invention are shown below.

第1図に示した本発明の堆積膜製造装置により、原料ガ
スとしてSiH4ガスとH2ガスとの混合ガスを用いて
アモルファスシリコン堆積膜を製造した。基体としては
、高純度アルミニウムからなる外径80mmと108 
amの円筒状のものを使用し、これに対応した、2種の
反応炉(カソード電極の内径を、該電極と基体との間隔
が50mmとなるように調節)の4つづつを同一円軌道
上に配置した。
An amorphous silicon deposited film was manufactured using the deposited film manufacturing apparatus of the present invention shown in FIG. 1 using a mixed gas of SiH4 gas and H2 gas as a raw material gas. The base is made of high-purity aluminum with an outer diameter of 80 mm and 108 mm.
A cylindrical type reactor (the inner diameter of the cathode electrode was adjusted so that the distance between the electrode and the substrate was 50 mm) was placed in the same circular orbit. placed above.

反応炉内に於いては、反応炉内圧を1Torr、基体温
度を300℃としたところで、ガス流量コントローラー
によって調節しながら反応炉内にSiH4ガスを400
cc/si nの濃酸で、更にH2ガスを800cc/
+minの流量で、これらガスの圧力が0.5Torr
となるように導入し、反応炉内に原料混合ガスが安定し
て供給されているた状態で、高周波電源によりカソード
電極に、周波数13.58Hz 、 100 Wの高周
波電力を印加し、アース設置された固体との間でグロー
放電を発生させてアモルファスシリコン膜を基体上に堆
積(膜厚25g)jせた。
Inside the reactor, when the reactor internal pressure was 1 Torr and the substrate temperature was 300°C, 400% of SiH4 gas was introduced into the reactor while being controlled by a gas flow controller.
cc/sin of concentrated acid, and additionally 800cc/sin of H2 gas.
At a flow rate of +min, the pressure of these gases is 0.5 Torr.
With the raw material mixed gas being stably supplied into the reactor, high-frequency power with a frequency of 13.58 Hz and 100 W was applied to the cathode electrode using a high-frequency power source, and the cathode was grounded. An amorphous silicon film (film thickness: 25 g) was deposited on the substrate by generating a glow discharge between the substrate and the solid material.

大きさの異なる2種の基体のいづれかを所望に応じて次
々に反応炉内へ設置し、この反応炉を順次搬送機構によ
って反応炉設置台へ搬入し、以後光に説明した操作によ
って堆積膜を形成させ、成膜が終了した時点で、設置台
から搬出し、アモルファスシリコン膜の形成された基体
を反応炉から取り出した。製造されたアモルファスシリ
コン膜は、暗抵抗、光導電性に優れ、均一な膜質を有す
るものであった。
One of the two types of substrates with different sizes is placed in the reactor one after another as desired, and the reactor is sequentially transported to the reactor installation stand by the conveyance mechanism, and the deposited film is then deposited by the operations explained to the light. When the film formation was completed, it was carried out from the installation stand, and the substrate on which the amorphous silicon film was formed was taken out from the reactor. The manufactured amorphous silicon film had excellent dark resistance and photoconductivity, and had uniform film quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図、第5図及び第6図はそれぞれ本発明の
気相法堆積膜製造装置の一例の主要部の該略図、第2図
は同軸円筒型堆積膜製造装置の模式的縦断面図、第3図
は平行平板型堆積膜製造装置の模式的横断面図である。 1.20,33,41.51,61:反応炉2 、3 
、42,43,52,53,62.83:反応炉設置台
4.44.54−1.54−2.84−1.E14−2
:反応炉搬送機構5.55−1.55−2:油圧シリン
ダー6.56−1.58−2 :接線 7:接点 47:交点 8.48.58.88:反応炉設置部 9.10:円軌道中心軸 11.12.57−1.57−2.59−1.59−2
.87−1.87−289−1.89−2 :接続位置 13.14.EIO:円軌道 21.31:カソード電極 22.32:基体 23: ドーナッツ状電気絶縁ガイシ 24:真空チャンバー蓋 25.35:高周波電源 26.36:反応ガス放出パイプ 27.37:真空排気管 28.38:基体加熱用ヒーター 29:基体回転機構 30,40:アース46:搬送機
構設置方向軸 49、Be :反応炉群設置方向軸 第2図 3’/ 第 3 図 L $4 図 い 第 6 図
1, 4, 5 and 6 are schematic diagrams of the main parts of an example of the vapor phase deposited film manufacturing apparatus of the present invention, and FIG. 2 is a schematic diagram of a coaxial cylindrical deposited film manufacturing apparatus. FIG. 3 is a schematic cross-sectional view of a parallel plate type deposited film manufacturing apparatus. 1.20, 33, 41. 51, 61: Reactor 2, 3
, 42, 43, 52, 53, 62.83: Reactor installation stand 4.44.54-1.54-2.84-1. E14-2
: Reactor transport mechanism 5.55-1.55-2: Hydraulic cylinder 6.56-1.58-2 : Tangent line 7: Contact point 47: Intersection point 8.48.58.88: Reactor installation part 9.10: Circular orbit center axis 11.12.57-1.57-2.59-1.59-2
.. 87-1.87-289-1.89-2: Connection position 13.14. EIO: Circular orbit 21. 31: Cathode electrode 22. 32: Substrate 23: Donut-shaped electrically insulating insulator 24: Vacuum chamber lid 25. 35: High frequency power source 26. 36: Reaction gas discharge pipe 27. 37: Vacuum exhaust pipe 28. 38: Substrate heating heater 29: Substrate rotation mechanism 30, 40: Ground 46: Transfer mechanism installation direction axis 49, Be: Reactor group installation direction axis Fig. 2 3' / Fig. 3 L $4 Fig. 6

Claims (3)

【特許請求の範囲】[Claims] (1)気相法により基体上に堆積膜を形成させる反応炉
の設置箇所を複数個有する反応炉設置手段の1つ以上と
、該反応炉設置手段に反応炉を搬入し、かつ該反応炉設
置手段から搬出する反応炉搬送手段の1つ以上とを有す
る気相法堆積膜製造装置。
(1) One or more reactor installation means having a plurality of installation locations for reactors that form a deposited film on a substrate by a vapor phase method, and a reactor installed into the reactor installation means, and and one or more reactor transport means for transporting from the installation means.
(2)前記設置手段に設けられた前記反応炉設置箇所の
それぞれが、それらの中心軸が実質的に同一円周上に位
置し、かつこの円の有する中心軸の回りに前記反応炉設
置手段が回転可能である特許請求の範囲第1項記載の気
相法堆積膜製造装置。
(2) Each of the reactor installation locations provided on the installation means has a central axis located on substantially the same circumference, and the reactor installation means is arranged around the central axis of this circle. 2. The vapor phase deposited film manufacturing apparatus according to claim 1, wherein the vapor phase deposited film manufacturing apparatus is rotatable.
(3)前記設置手段に設けられた前記反応炉設置箇所の
それぞれが、それらの中心軸が実質的に一直線上に位置
し、かつ該直線方向に前記反応炉設置手段が移動可能で
ある特許請求の範囲第1項記載の気相法堆積膜製造装置
(3) A patent claim in which the central axes of each of the reactor installation locations provided on the installation means are located substantially in a straight line, and the reactor installation means is movable in the linear direction. The vapor phase deposited film manufacturing apparatus according to item 1.
JP8806484A 1984-05-01 1984-05-01 Apparatus for producing deposited film by vapor phase method Granted JPS60230984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8806484A JPS60230984A (en) 1984-05-01 1984-05-01 Apparatus for producing deposited film by vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8806484A JPS60230984A (en) 1984-05-01 1984-05-01 Apparatus for producing deposited film by vapor phase method

Publications (2)

Publication Number Publication Date
JPS60230984A true JPS60230984A (en) 1985-11-16
JPS6254396B2 JPS6254396B2 (en) 1987-11-14

Family

ID=13932419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8806484A Granted JPS60230984A (en) 1984-05-01 1984-05-01 Apparatus for producing deposited film by vapor phase method

Country Status (1)

Country Link
JP (1) JPS60230984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209852A1 (en) * 2022-04-27 2023-11-02 三星工業株式会社 Stirring/defoaming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970764A (en) * 1982-10-15 1984-04-21 Ulvac Corp Plasma cvd device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970764A (en) * 1982-10-15 1984-04-21 Ulvac Corp Plasma cvd device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209852A1 (en) * 2022-04-27 2023-11-02 三星工業株式会社 Stirring/defoaming apparatus

Also Published As

Publication number Publication date
JPS6254396B2 (en) 1987-11-14

Similar Documents

Publication Publication Date Title
EP0742848B1 (en) Plasma treatment in electronic device manufacture
US4545328A (en) Plasma vapor deposition film forming apparatus
KR20030042614A (en) Multi-sectored flat board type showerhead used in cvd apparatus
JPS62152171A (en) Thin-film transistor
JPH0559841B2 (en)
US20020000201A1 (en) Plasma chemical vapor deposition apparatus
US5160543A (en) Device for forming a deposited film
GB2043042A (en) Production of semiconductor bodies made of amorphous silicon
US4539934A (en) Plasma vapor deposition film forming apparatus
US4646681A (en) Gaseous phase method accumulated film manufacturing apparatus
JPS60230984A (en) Apparatus for producing deposited film by vapor phase method
AU726151B2 (en) Plasma CVD apparatus
JPS6010618A (en) Plasma cvd apparatus
US4599971A (en) Vapor deposition film forming apparatus
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
JP2001003174A (en) Formation of thin film and induction coupling type plasma cvd device
JPS60230982A (en) Apparatus for forming deposited film by vapor phase method
JPH02248038A (en) Manufacture of polycrystalline semiconductor substance layer
CN109778139B (en) Method and device for improving heating performance of heater in chemical vapor deposition chamber
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPS62142780A (en) Formation of deposited film
JP2670561B2 (en) Film formation method by plasma vapor phase reaction
JPS62188782A (en) Method and apparatus for producing thin compound film by using plural electric fields
JP2649330B2 (en) Plasma processing method
JP2005039051A (en) Coaxial cable for high frequency power supply, plasma surface treatment apparatus comprising the same, and a plasma surface treatment method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees