JPS60230501A - Rotary type high pressure gas rotation device - Google Patents

Rotary type high pressure gas rotation device

Info

Publication number
JPS60230501A
JPS60230501A JP8560784A JP8560784A JPS60230501A JP S60230501 A JPS60230501 A JP S60230501A JP 8560784 A JP8560784 A JP 8560784A JP 8560784 A JP8560784 A JP 8560784A JP S60230501 A JPS60230501 A JP S60230501A
Authority
JP
Japan
Prior art keywords
rotor
pressure gas
gas
casing
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8560784A
Other languages
Japanese (ja)
Inventor
Jiro Sakurai
桜井 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKURAI Ltd
Original Assignee
SAKURAI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKURAI Ltd filed Critical SAKURAI Ltd
Priority to JP8560784A priority Critical patent/JPS60230501A/en
Publication of JPS60230501A publication Critical patent/JPS60230501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To obtain a simple construction and high efficiency gas rotation system for converting gas pressure energy to rotational energy by constructing the system with a pair of disc type stationary bases having a casing cam plane, a rotor provided with two sliding vanes, and a rotor guide frame. CONSTITUTION:During operation, a high pressure gas A flows alternately into four cylinders 13 partitioned with a casing cam plane 2, a rotor 3, and a rotor guide frame 8 through high pressure gas intake ports 10 provided at ends of flow-in passages 11 arranged positionally parting 90 deg. with each other overall to right and left stationary bases 1, 1. By the pressure of the high pressure gas A the plate surfaces of the alternately disposed sliding vanes 5 are pressed and the rotor 3 begins to rotate. With the rotation of the rotor 3, the sliding vanes 5 move leftwards corresponding to the cam displacement of the cam plane 2 and the cylinder chambers 13 which have hitherto been in small volume, are expanded successively, and the pressing force is increased. On the other hand, the low pressure gas within cylinder chambers 13b are exhausted through exhaust ducts 6, an annular duct 7, and a flow-out passage 12.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は冷vs魚気圧、空気圧等より得る高圧ガスの流
入圧を回転エネルギーに変換する如(したロータリ一式
高圧ガス回転装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a rotary-type high-pressure gas rotating device that converts the inflow pressure of high-pressure gas obtained from cold vs. fish pressure, air pressure, etc. into rotational energy. .

〈従来技術〉 一般に、高圧流体の導入と低圧流体の排出を用いロータ
ーを回転させる回転装置としては、例えばアウターロー
ターとインナーローターを組合せたジェロータ−と呼ば
れるポンプモーターが知られている。しかし、これらの
各軸芯は偏心軸構成を採っているため、製作が面倒であ
り、又これらの駆動力はインナーローター本体の外周面
厚く幅)のみの小さな押圧面積をもってなすため、極め
て大なる高圧流体を必要とするものであった。
<Prior Art> In general, a pump motor called a gerotor, which is a combination of an outer rotor and an inner rotor, is known as a rotating device that rotates a rotor by introducing high-pressure fluid and discharging low-pressure fluid. However, since each of these axes has an eccentric shaft configuration, it is troublesome to manufacture, and the driving force is generated by a small pressing area of only the outer peripheral surface of the inner rotor body (thick and wide), so it is extremely large. It required high pressure fluid.

〈発明の目的〉 本発明は上記実情に鑑み、ローターをケーシングと同一
軸構成とし且つ押圧を両翼タイプとし高能率の簡易回転
装置を提供することを目的としたものである。
<Object of the Invention> In view of the above circumstances, an object of the present invention is to provide a highly efficient and simple rotating device in which the rotor and the casing are coaxially configured and the press is of a double-blade type.

〈発明の構成〉 本発明は対向する側面に、凹凸部を夫々2箇所もつ展開
断面が正弦波状のケーシングカム面を、その凹凸が対向
するよう対称形成した一対の円盤型固定ベースを設け、
この対向ケーシングカム面のもつ一定111mにロータ
ーを軸架介在すると共に、該ローターの側面をケーシン
グカム面の凸部に接触させ、該ケーシングカム面の凹部
空間をシリンダー室とし、且つローターの周縁部の2箇
所に、両端を対向のケーシングカム面に接触する長さを
もった摺動羽根を軸方向と平行に貫通装着し、該摺動羽
根の回転方向前面に設けたガス排気溝とローターの外周
面に設けた環状ガス誘導溝を連通し、該ガス誘導溝を両
固定ベース間にあってローターを覆うローター案内枠体
の排出孔に導き、且つ前記両固定ベースのケーシングカ
ム面の左右4箇所となる各凸部近傍に高圧ガスの吸気口
を臨ませ、この全体として交互位置に配された吸気口よ
りの高圧ガス流入でロータリー側の横突出の摺動羽根を
交互に押圧し、該ローターを回転させる如くしたもので
ある。
<Structure of the Invention> The present invention includes a pair of disk-shaped fixed bases each having a casing cam surface having a sinusoidal developed cross section and having two convex and concave portions formed symmetrically so that the concave and convex portions face each other on opposing sides.
A rotor is mounted on a shaft in a constant 111 m of this opposing casing cam surface, and the side surface of the rotor is brought into contact with the convex part of the casing cam surface, and the recess space of the casing cam surface is used as a cylinder chamber, and the peripheral edge of the rotor A sliding vane with a length so that both ends are in contact with the opposing casing cam surface is installed in two places parallel to the axial direction, and a gas exhaust groove provided on the front surface of the sliding vane in the rotational direction and a gas exhaust groove of the rotor. An annular gas guide groove provided on the outer peripheral surface is communicated with the gas guide groove, and the gas guide groove is guided to a discharge hole of a rotor guide frame that is located between the fixed bases and covers the rotor, and is connected to four places on the left and right of the casing cam surface of the fixed bases. A high-pressure gas inlet is placed near each convex portion, and the inflow of high-pressure gas from the inlets arranged at alternate positions alternately presses the horizontally protruding sliding blades on the rotary side, causing the rotor to It is designed to rotate.

〈実施例〉 以下、本発明を実施例の図面に基づいて説明すれば、次
の通りである。
<Example> The present invention will be described below based on the drawings of the example.

1.1は対向する側面1a、1aに夫々カム変位となる
凹凸部2a、2bを2波連続し断面正弦波状の正面カム
型ケーシングカム面2,2を形成した一対の円盤型固定
ベースで、この場合ケーシングカム面2.2の凹凸波形
は対称位置に配し、該ケーシングカム面2.2間の間隙
pが絶えず一定となるよう構成している。3は固定ベー
ス1.1間に摺接介在するローターで、該ローター3は
側面3a 、3aがケーシングカム面2,2の凸部2b
、2b端面に接触する幅すをもつと共に、中央部には少
なくともケーシングカム面2,2の凹部2a、2aの幅
aにみあうローター段部3b、3bをもち、且つ該ロー
ター3の軸4を固定ベース1,1の中央へ軸架してなる
。5はローター3の側面3a 、 3a部に横貫通した
両端が外側のケーシングカム面2.2に達する長さCを
もつ板状摺動羽根で、該摺動羽根5は軸4を中心とした
対称4′)2箇所に平行となるよう配し、且つ該震動羽
根5の回転方向前面には適宜深さをもつ皿状の低圧ガス
用ガス排気溝6を刻設する。又、このガス排気溝6部は
ローター3の外周面3Cの中央位置に切込みした環状ガ
ス誘導溝7の一部に臨み外方へ連通となる。8は対向の
固定ベース1,1の外周縁間に介在するドラム型ロータ
ー案内枠体で、該ローター案内枠体8の内面にローター
3の外周面3Cを摺接させ、且つ内面中央に設けた環状
受溝9と環状ガス誘導溝7を合致させてなる。、10は
各固定ベース1のケーシングカムの頂部近傍に配した高
圧ガス用吸気口で、該吸気口10は固定ベース1中を経
て流入通路11へ連通している。12はローター案内枠
体8に突出したこの受溝9へ臨む流出通路である。
1.1 is a pair of disk-shaped fixed bases having two successive waves of concavo-convex portions 2a, 2b, which cause cam displacement, on opposite side surfaces 1a, 1a, forming front cam-type casing cam surfaces 2, 2 having a sinusoidal cross section; In this case, the concave and convex waveforms of the casing cam surface 2.2 are arranged symmetrically so that the gap p between the casing cam surfaces 2.2 remains constant. Reference numeral 3 denotes a rotor that is slidably interposed between the fixed base 1.1, and the rotor 3 has a side surface 3a, and 3a is a convex portion 2b of the casing cam surface 2, 2.
, 2b, and has rotor stepped portions 3b, 3b in the central portion that match at least the width a of the concave portions 2a, 2a of the casing cam surfaces 2, 2, and the shaft 4 of the rotor 3. is mounted on the center of fixed bases 1, 1. Reference numeral 5 denotes a plate-shaped sliding blade having a length C that passes through the side surfaces 3a and 3a of the rotor 3 and has both ends reaching the outer casing cam surface 2.2. Symmetry 4') A dish-shaped gas exhaust groove 6 for low-pressure gas is arranged at two parallel locations and has an appropriate depth on the front surface of the vibrating blade 5 in the rotational direction. Further, this gas exhaust groove 6 portion faces a part of an annular gas guide groove 7 cut into the center of the outer circumferential surface 3C of the rotor 3, and communicates with the outside. Reference numeral 8 denotes a drum-shaped rotor guide frame interposed between the outer circumferential edges of the opposing fixed bases 1, 1, and the outer circumferential surface 3C of the rotor 3 is brought into sliding contact with the inner surface of the rotor guide frame 8, and is provided at the center of the inner surface. The annular receiving groove 9 and the annular gas guide groove 7 are made to match. , 10 are high-pressure gas intake ports arranged near the top of the casing cam of each fixed base 1, and the intake ports 10 communicate with the inflow passage 11 through the inside of the fixed base 1. Reference numeral 12 designates an outflow passageway projecting from the rotor guide frame 8 and facing this receiving groove 9.

いまこの作用を説明すると、先ずこの高圧ガスを、例え
ば冷凍機関における冷媒のもつガス圧とかコンプレッサ
ーの空気圧等をもって得るものである。
To explain this effect now, first, this high-pressure gas is obtained using, for example, the gas pressure of the refrigerant in a refrigeration engine or the air pressure of a compressor.

ここにおいて、高圧ガス八を左右の固定ベース1.1で
全体として四方位置く90°間隔位置)に配された流入
通路11へ導き、該流入通路11の先端の高圧ガス用吸
気口10よりケーシングカム面2の凹部2aとローター
3の側面3a及びローター案内枠体8の内面8aにて密
閉区画させた4個の三日月形シリンダー室13へ交互に
流入させる。この場合、左右のシリンダー室13,13
.13.’13は、ケーシングカム面2,2の凹凸波を
対称位置(片側が凸部2bのとぎ他側は凹部2aを呈す
)とし中央をいる。
Here, the high-pressure gas 8 is guided to inflow passages 11 arranged at 90° intervals on all sides on the left and right fixed bases 1.1, and the high-pressure gas inlet 10 at the tip of the inflow passage 11 is introduced into the casing. The water alternately flows into four crescent-shaped cylinder chambers 13 that are hermetically divided by the recess 2a of the cam surface 2, the side surface 3a of the rotor 3, and the inner surface 8a of the rotor guide frame 8. In this case, the left and right cylinder chambers 13, 13
.. 13. In '13, the concave and convex waves of the casing cam surfaces 2, 2 are placed in a symmetrical position (one side has a convex portion 2b and the other side has a concave portion 2a) and is located in the center.

即ち、先ず説明上、片方の固定ベース1の吸気口10よ
り高圧ガスAが流入することから述べると、WIB図1
の展開図にあって左側(図示にあって)下部位置の吸気
口10より流入する高圧ガスAのガス圧にて、直交に配
された摺動羽根5の板面を押圧するため、該摺動羽根5
を取付けたロータ−3自体が軸4を中心として噴流方向
へ回転しだす。このように、ローター3が回転づ−れば
、摺動羽根5は、両端が一定間隙ぶをもって対向せるケ
ーシングカム面2,2に接衝しているため、このカム変
位に応じ左側(図示において)へ案内長孔14を摺動移
行し、これに伴い、シリンダー室13中、今まで小室で
あったシリンダー室13aがカム変位置となる凹部2a
に応じ順次拡張され(第8図■参照)、突出する摺動羽
根5の押圧面積も拡大され益々押圧力を高める。勿論、
このことは前後位置となる2枚のwJll1羽根5,5
とも同様に作動するものである。
That is, for the sake of explanation, first of all, starting from the fact that high-pressure gas A flows in from the intake port 10 of one fixed base 1, WIB Fig. 1
In the developed view, the gas pressure of the high-pressure gas A flowing in from the intake port 10 at the lower position on the left side (in the figure) presses the plate surface of the sliding blades 5 arranged orthogonally. Moving blade 5
The rotor 3 itself to which the rotor 3 is attached begins to rotate about the shaft 4 in the direction of the jet flow. As described above, when the rotor 3 rotates, the sliding blades 5 are in contact with the casing cam surfaces 2, 2, which are opposed to each other with a certain gap at both ends. ), and as a result, the cylinder chamber 13a, which was previously a small chamber, becomes a recessed portion 2a in which the cam changes position in the cylinder chamber 13.
The sliding blade 5 is gradually expanded in accordance with the increase in pressure (see Fig. 8), and the pressing area of the protruding sliding blade 5 is also enlarged, further increasing the pressing force. Of course,
This means that the two wJll1 blades in the front and rear positions are 5,5
Both operate in the same way.

又、前記摺動羽根5の回転方向前方位置(図面にあって
上方)となるシリンダー室13bにあっては、抑圧作用
が無(なった低圧ガスBが詰まった状態となっているが
、この低圧ガスBは高圧ガス八により拡張されるシリン
ダー室13aに反比例して縮小するシリンダー室13b
のため、摺動羽根5の回転°方向前面に設けたガス排気
溝6よりローター3中より、該ガス排気溝6と環状ガス
誘導溝7の接点に構成される連通部7aを経て■状の環
状ガス誘導溝7へ導かれ、該環状ガス誘導溝7に対向の
ローター案内枠体8の環状受溝9を通り流出通路12へ
排気されるものである。
In addition, the cylinder chamber 13b, which is in the forward position in the rotational direction of the sliding vane 5 (upper side in the drawing), is filled with low-pressure gas B, which has no suppressing effect. The low-pressure gas B is a cylinder chamber 13b that shrinks in inverse proportion to the cylinder chamber 13a that is expanded by the high-pressure gas 8.
Therefore, from the inside of the rotor 3 from the gas exhaust groove 6 provided on the front surface of the sliding blade 5 in the rotation degree direction, a ■-shaped The gas is guided to the annular gas guide groove 7, passes through the annular receiving groove 9 of the rotor guide frame 8 facing the annular gas guide groove 7, and is exhausted to the outflow passage 12.

一方、第8図■にあって右側下部位置へ突出の摺動羽根
5は、大となるシリンダー室13c位置にあってカム変
位により順次抑圧面積を小さくする。この場合、同摺動
羽根5の前方に有するシリンダー室13dは順次縮小す
るので、該摺動羽根5のガス排気溝6より低圧ガスBが
ローター3を経て排気される。この状態で摺動羽根5の
右端が凸部2bの頂点に近づくにしたがい更に押圧面積
が小さくなり、凸部2bの頂点e位置に摺動羽根5の右
端が達した時、シリンダー室13cの高圧ガスAの押圧
面積が零になり、この時反対位置(左側)へ摺動した摺
動羽根5の押圧面積は最大(100%)となって高圧ガ
スAのガス圧を受ける。この後、ローター3の回転に伴
い摺動羽根5の右端が凸部2bの頂点eを通過すれば(
第8図■参照)、この頂点0を少し過ぎた位置に高圧ガ
ス用吸気口10が臨んでなるため、ローター3位置より
右側へ少し突出して来る摺動羽根5の後面がただちに押
圧面積となり、以下順次摺動羽根5の押圧面積が増大す
ると共に、逆に反対側(左側)の抑圧面積は小さくなっ
ていく(展開図中、焦域は高圧ガスA域で、細斜線域は
低圧ガスB域を示す)。
On the other hand, the sliding vane 5 protruding toward the lower right side position in FIG. In this case, the cylinder chamber 13d in front of the sliding vane 5 is gradually reduced in size, so that the low-pressure gas B is exhausted from the gas exhaust groove 6 of the sliding vane 5 via the rotor 3. In this state, as the right end of the sliding blade 5 approaches the apex of the convex portion 2b, the pressing area further becomes smaller, and when the right end of the sliding blade 5 reaches the position e of the apex of the convex portion 2b, the high pressure in the cylinder chamber 13c The pressing area of the gas A becomes zero, and the pressing area of the sliding blade 5, which has slid to the opposite position (left side) at this time, becomes maximum (100%) and receives the gas pressure of the high-pressure gas A. After that, as the rotor 3 rotates, if the right end of the sliding blade 5 passes the apex e of the convex portion 2b, (
(See Figure 8 (■)), the high-pressure gas intake port 10 faces a position slightly past this apex 0, so the rear surface of the sliding blade 5 that protrudes slightly to the right from the rotor 3 position immediately becomes a pressing area. Thereafter, as the pressing area of the sliding vane 5 increases sequentially, the suppressing area on the opposite side (left side) decreases (in the developed diagram, the focal area is the high pressure gas area A, and the thin diagonal line area is the low pressure gas B area). area).

−8−1このように、中央に配すローター3を界とし両
側にシリンダーカム面2,2の凹部2a。
-8-1 In this way, the recesses 2a of the cylinder cam surfaces 2, 2 are formed on both sides with the rotor 3 disposed in the center as a boundary.

2aをもって形成された三日月形のシリンダー室13a
 、 13b 、 13c 、 13d群が左右交互の
千鳥状配列を採り、且つ各室に高圧ガス用吸気口10が
有するため、該0−ター3に直交したスライド自在の摺
動羽根5,5にはいずれかのガス圧を受け、全体として
実質的両翼抑圧使用となり、従ってローター3の回転を
円滑とする。
A crescent-shaped cylinder chamber 13a formed with 2a
, 13b, 13c, and 13d are arranged in a staggered arrangement with left and right alternating, and each chamber has a high-pressure gas intake port 10, so that the sliding blades 5, 5, which are slidable perpendicular to the 0-tar 3, have Either of the gas pressures is applied, and as a whole, both wings are substantially suppressed, thus making the rotation of the rotor 3 smooth.

又、このWIvJ羽根5の回転方向前面に残留せる低圧
ガスBは、該摺動羽根5のガス排気溝6が広幅で少なく
とも中間位置(いずれかの先端が凸部2bの頂点eに達
しない位置)にあって左右のシリンダー室13.13へ
臨む連通状態を採るため、低圧ガスBの排気作用に融通
性が生じこの点からも円滑な排気が遂行しえる。尚、こ
の装置は、全体として円盤型のコンパクトタイプである
ため、例えば第9図に示す如き複数個の装置を連設し人
なる駆動力を得ることも可能である。
Also, the low pressure gas B remaining on the front surface of the WIvJ blade 5 in the rotational direction is removed when the gas exhaust groove 6 of the sliding blade 5 is wide and at least at an intermediate position (a position where one of the tips does not reach the apex e of the convex portion 2b). ) and communicates with the left and right cylinder chambers 13, 13, flexibility is created in the exhaust action of the low-pressure gas B, and from this point of view as well, smooth exhaust can be achieved. Since this device is a compact disk-shaped device as a whole, it is also possible to obtain human driving force by connecting a plurality of devices as shown in FIG. 9, for example.

〈発明の効果〉 上述のように本発明のロータリ一式高圧ガス′回転装置
は、ケーシングカム面をもつ円盤型固定ベースを2個と
摺動羽根を2枚配りローター及びローター案内枠体の簡
略した構成よりなるため、装置全体がコンパクトとなる
。しかも、正弦波状ケーシングカム面とローター及び摺
動羽根に区画されるシリンダー室が少な(とも左右交互
に4室配し、摺動羽根が180°回転で元の位置へ戻る
構成とし、実質的な両翼駆動方式となるため、高速回転
が可能で、能率の良いガス圧力エネルギーを回転エネル
ギーに変換し得るものである。勿論、この高圧ガスは、
冷媒圧。
<Effects of the Invention> As described above, the rotary complete high-pressure gas rotating device of the present invention has two disc-shaped fixed bases with a casing cam surface and two sliding blades, and has a simplified rotor and rotor guide frame. Because of this structure, the entire device becomes compact. Moreover, the number of cylinder chambers divided by the sinusoidal casing cam surface, rotor, and sliding blades is small (four chambers are arranged alternately on the left and right, and the sliding blade returns to its original position by rotating 180 degrees, so Because it uses a double-blade drive system, it can rotate at high speed and efficiently convert gas pressure energy into rotational energy.Of course, this high-pressure gas
Refrigerant pressure.

空気圧・・・・・・等の如き高圧気体を得るものなら何
でも対処し得、汎用性に富むものである。又、本発明の
高圧ガス供給は、直接各シリンダー室、へ導けばよく、
従来の加圧機関のように分配弁等の附属部品を必要とせ
ず、故障、誤動作を招かず堅牢タイプとなる。又、使用
後の低圧ガスの排気はシリンダー室を摺動する摺動羽根
自体よりローターを経て排出されるため、無理のない排
気が出来る等の効果を奏する。尚本装置は複数基連設す
ることも出来、又必要にあってはケーシングカム面の正
弦波の波状及び摺動羽根の増減も自在である。
It can be used with anything that obtains high-pressure gas such as air pressure, etc., and is highly versatile. Further, the high pressure gas supply of the present invention may be directly led to each cylinder chamber,
Unlike conventional pressurized engines, it does not require accessory parts such as distribution valves, and is a robust type that does not cause breakdowns or malfunctions. In addition, since the low-pressure gas is exhausted after use through the rotor from the sliding vane itself that slides in the cylinder chamber, it is possible to exhaust the gas without strain. It is also possible to connect a plurality of devices, and if necessary, the sinusoidal wave shape of the casing cam surface and the number of sliding blades can be increased or decreased.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示づもので、第1図は一部切欠
斜面図、第2図は周分離せる斜面図、第3図1. Il
、 IIIはローターにおける摺動羽根の摺動状態を示
す説明図、第4図1.T[は固定ベース部の内面を示す
正面図、第5図はローターの正面図、第6図はローター
案内枠体の正面図、第7図1.Iは摺動羽根の排気状態
を示づ説明図、第8図I、n、firはケーシングカム
面とローター及び摺動羽根の関係を示す展開図、第9図
は複数基を連設した平面図である−01・・・固定ベー
ス、1a・・・側面、2・・・ケーシングカム面、2a
・・・凹部、2b・・・凸部、3・・・ローター、4・
・・軸、5・・・摺動羽根、6・・・ガス排気溝、7・
・・環状ガス誘導溝、8・・・ローター案内枠体、9・
・・環状受溝、10・・・吸気口、11・・・流入通路
、12・・・流出通路。 第6図 (If)(I) 第9図 第8図 (I) (II) (III)
The drawings show an embodiment of the present invention, and FIG. 1 is a partially cutaway slope view, FIG. 2 is a slope view with the circumference separated, and FIG. Il
, III is an explanatory diagram showing the sliding state of the sliding blades in the rotor, FIG. 4 1. T[ is a front view showing the inner surface of the fixed base part, FIG. 5 is a front view of the rotor, FIG. 6 is a front view of the rotor guide frame, and FIG. 7 is a front view of the rotor guide frame. I is an explanatory diagram showing the exhaust state of the sliding vanes, Figure 8 I, n, and fir are developed diagrams showing the relationship between the casing cam surface, rotor, and sliding vanes, and Figure 9 is a plane with multiple units connected in series. -01...Fixed base, 1a...Side surface, 2...Casing cam surface, 2a
... Concave portion, 2b... Convex portion, 3... Rotor, 4.
・・Shaft, 5・Sliding vane, 6・Gas exhaust groove, 7・
...Annular gas guide groove, 8...Rotor guide frame, 9.
...Annular receiving groove, 10...Intake port, 11...Inflow passage, 12...Outflow passage. Figure 6 (If) (I) Figure 9 Figure 8 (I) (II) (III)

Claims (1)

【特許請求の範囲】[Claims] 1、対向する側面に凹凸部をもつ断面正弦波状のケーシ
ングカム面を対称形成した一対の円盤型固定ベースを、
この対向ケーシングカム面が一定間隙をもつよう対峙す
ると共に、該両固定ベース間に、両側面がゲージングカ
ム面の凸部に接触する巾をもったローターを軸架介在し
、ケーシングカム面の各四部空間をシリンダー室とし、
且つ該ローターの周縁部に両端を対向のケーシングカム
面に接触する長さをもった摺動羽根を軸方向と平行に貫
通装着し、該摺動羽根の回転方向前面に設けたガス排気
溝とローターの外周面に設けた環状ガス誘導溝を連通し
、該ガス誘導溝を両固定ベース間にあってローターを覆
うローター案内枠体の排出孔に導き、且つ前記両固定ベ
ースのケーシングカム面の各凸部近傍位置に高圧ガスの
吸気口を臨ませたことを特徴とするロータリ一式高圧ガ
ス回転装置。
1. A pair of disk-shaped fixed bases with symmetrically formed casing cam surfaces with a sinusoidal cross section and uneven parts on opposing sides.
The opposed casing cam surfaces face each other with a constant gap, and a rotor having a width such that both side surfaces contact the convex portion of the gauging cam surface is mounted between the fixed bases, and each of the casing cam surfaces The four-part space is used as a cylinder chamber,
Further, a sliding blade having a length such that both ends thereof contact the opposing casing cam surface is mounted on the peripheral edge of the rotor in parallel with the axial direction, and a gas exhaust groove is provided on the front surface of the sliding blade in the rotational direction. An annular gas guide groove provided on the outer circumferential surface of the rotor is communicated, and the gas guide groove is guided to a discharge hole of a rotor guide frame that is located between both fixed bases and covers the rotor, and each convex on the casing cam surface of both fixed bases is connected. A rotary complete high-pressure gas rotating device characterized by having a high-pressure gas intake port facing the vicinity of the rotary unit.
JP8560784A 1984-04-27 1984-04-27 Rotary type high pressure gas rotation device Pending JPS60230501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8560784A JPS60230501A (en) 1984-04-27 1984-04-27 Rotary type high pressure gas rotation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8560784A JPS60230501A (en) 1984-04-27 1984-04-27 Rotary type high pressure gas rotation device

Publications (1)

Publication Number Publication Date
JPS60230501A true JPS60230501A (en) 1985-11-16

Family

ID=13863513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8560784A Pending JPS60230501A (en) 1984-04-27 1984-04-27 Rotary type high pressure gas rotation device

Country Status (1)

Country Link
JP (1) JPS60230501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015679A1 (en) * 1990-04-11 1991-10-17 Mohammad Mahdavi Hezavehi Rotary corradial-vane compressor
US7140853B2 (en) * 2004-09-07 2006-11-28 Osama M Al Hawaj Axial vane rotary device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292108A (en) * 1976-01-30 1977-08-03 Hitachi Metals Ltd Axial sliding blade type liquid rotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292108A (en) * 1976-01-30 1977-08-03 Hitachi Metals Ltd Axial sliding blade type liquid rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015679A1 (en) * 1990-04-11 1991-10-17 Mohammad Mahdavi Hezavehi Rotary corradial-vane compressor
US7140853B2 (en) * 2004-09-07 2006-11-28 Osama M Al Hawaj Axial vane rotary device

Similar Documents

Publication Publication Date Title
JP2899063B2 (en) Rotary hydraulic machine
US20020157636A1 (en) Two-dimensional positive rotary displacement engine
US6607371B1 (en) Pneudraulic rotary pump and motor
US3902829A (en) Rotary power device
CN112032051B (en) Four-cylinder rolling rotor type compressor
JP3488430B2 (en) Rotary axial engine
JPH05507536A (en) rotary piston internal combustion engine
JPS61261687A (en) Moving blade pump
JPS60230501A (en) Rotary type high pressure gas rotation device
US6070409A (en) Engine for powering by water
US4826407A (en) Rotary vane pump with ballast port
JP2943104B2 (en) Positive displacement piston mechanism with rotating piston structure
US1525332A (en) Centrifugal fluid vacuum pump
US3941522A (en) Modified rotary compressor yielding sinusoidal pressure wave outputs
DE69508440D1 (en) ROTATIONAL DISPLACEMENT MACHINE
US2698130A (en) Rotary pump or expansion engine
EP1709310B1 (en) Improvements in intersecting vane machines
US4437818A (en) Oil-free rotary compressor
CN112032052A (en) Three-cylinder rolling rotor compressor
US5803713A (en) Multi-stage liquid ring vacuum pump-compressor
RU2289039C2 (en) Centrifugal fluid-actuated device
NL1004426C1 (en) Reversible rotary volume-expansion engine, compressor or pump
US310053A (en) Rotary engine
US4312629A (en) Universal rotating machine for expanding or compressing a compressible fluid
RU2067220C1 (en) Rotor vane hydraulic machine