JPS60229680A - Rotary machine - Google Patents

Rotary machine

Info

Publication number
JPS60229680A
JPS60229680A JP59083809A JP8380984A JPS60229680A JP S60229680 A JPS60229680 A JP S60229680A JP 59083809 A JP59083809 A JP 59083809A JP 8380984 A JP8380984 A JP 8380984A JP S60229680 A JPS60229680 A JP S60229680A
Authority
JP
Japan
Prior art keywords
center
rotating
movable body
stretchable
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59083809A
Other languages
Japanese (ja)
Other versions
JPH0440952B2 (en
Inventor
Tadao Totsuka
戸塚 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59083809A priority Critical patent/JPS60229680A/en
Publication of JPS60229680A publication Critical patent/JPS60229680A/en
Publication of JPH0440952B2 publication Critical patent/JPH0440952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/105Cycloid or wobble motors; Harmonic traction motors

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a low speed rotation with a simple configuration by rotating the center of a movable unit around the output shaft of a rotor, thereby rotating the rotor around its own axis. CONSTITUTION:A bearing 2 for supporting the output shaft 10 of a rotor 12 is secured to the center on the bottom of a cylindrical stationary frame 1 having the bottom, and stretchable units 5A-7A, 5B-7B which are made of piezoelectric elements provided with buffer rubbers 4 on both side surfaces are secured to the inner peripheral wall 3 of the frame 1. When sinusoidal AC voltages which are displaced at 120 deg. of phase are respectively applied to the units 5A and 5B, 6A and 6B, 7A and 7B, the center of a movable element 1 rotates around the center of a rotor 12, and the rotor 12 starts rotating at a low speed around its own axis by the rotation of the element 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、低速度の回転出力が得られる回転機に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rotating machine that can obtain low-speed rotational output.

〔従来技術〕[Prior art]

従来から、回転機としては電動機が最も一般的であるが
、一般に低速度の回転出力を得る為にはロータ軸の回転
を減速して出力軸に伝達する為の減速機構を必要として
いた。
Conventionally, electric motors have been the most common rotating machine, but generally, in order to obtain low-speed rotational output, a speed reduction mechanism is required to reduce the rotation of the rotor shaft and transmit it to the output shaft.

しかしながら、従来のこのような減速機構付きの電動機
によると、一般に減速機構を多数の歯車等で形成するた
めに構造が複雑となり製造コストが上昇するばかりでな
く、電動機自体の重量の増加や外形寸法の増大を招きコ
ンパクトに設計することは困難であった。
However, with conventional electric motors equipped with such reduction mechanisms, the reduction mechanism is generally formed with a large number of gears, etc., which not only complicates the structure and increases manufacturing costs, but also increases the weight and external dimensions of the motor itself. It has been difficult to design a compact design due to the increase in

〔発明の概要〕[Summary of the invention]

本発明はこのような点に鑑みてなされたもので、その目
的とするところは、構造が簡単で安価に製作することが
でき、しかもコンパクトに設計のできる低速度回転出力
を得る回転機を提供することにある。
The present invention has been made in view of these points, and its purpose is to provide a rotating machine that has a simple structure, can be manufactured at low cost, and can be designed compactly and obtains a low-speed rotational output. It's about doing.

このような目的を達成するために本考案は、円筒状の可
動体の内周壁面によって形成される空間部に出力軸を有
する円板状の回転体を配置し、さらにこの回転体を回転
自任に固定枠体に支持し、駆動手段によって前記可動体
中心を前記回転体の出力軸に対して公転させ前記可動体
の内周壁面と前記回転体の外周面を係合させて前記回転
体な回転するようKしたものである。
In order to achieve such an objective, the present invention arranges a disc-shaped rotating body having an output shaft in the space formed by the inner circumferential wall surface of a cylindrical movable body, and furthermore, this rotating body can be freely rotated. The movable body is supported on a fixed frame by a driving means, and the center of the movable body is caused to revolve around the output shaft of the rotary body, and the inner circumferential wall surface of the movable body and the outer circumferential surface of the rotary body are engaged with each other. It is designed so that it rotates.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る回転機の一実施例を図面に基づいて
詳細に説明する。第1図は本発明に係る回転機の第1実
施例を示す分解斜視図である。図において1は底面を有
する円筒状の固定枠体で、その底面の中央には回転体1
2の出力軸10の先端部10mを支持できるように軸受
2が固着されている。そして、固定枠体1の内周壁面3
にId@撃力を緩和するための緩衝ゴム4を両面に設け
た圧電素子よシなる伸縮体5A、5B、 6A、6B、
 7A、 7B が固着され、伸縮体5Aと5B 、6
Aと6B。
Hereinafter, one embodiment of a rotating machine according to the present invention will be described in detail based on the drawings. FIG. 1 is an exploded perspective view showing a first embodiment of a rotating machine according to the present invention. In the figure, 1 is a cylindrical fixed frame with a bottom surface, and a rotating body 1 is located in the center of the bottom surface.
A bearing 2 is fixed so as to be able to support the tip end 10m of the second output shaft 10. Then, the inner peripheral wall surface 3 of the fixed frame 1
Stretchable bodies 5A, 5B, 6A, 6B, such as piezoelectric elements, with cushioning rubber 4 provided on both sides to reduce Id @ impact force.
7A, 7B are fixed, and elastic bodies 5A, 5B, 6
A and 6B.

7Aと7Bは互いに面対向するように設けられており、
かつ伸縮体5A 、 6A 、 7Aは120度の間隔
をもって夫々配置されている。各伸縮体は同一形状の圧
電素子であり、互いに面対向する伸縮体は3相交流電源
に結線されており、正電圧が加わると伸縮体5A 、 
6A 、 7Aは第2図(c)に示す様に電圧に比例し
伸張して伸状態となり、伸縮体5B。
7A and 7B are provided so as to face each other,
Moreover, the stretchable bodies 5A, 6A, and 7A are arranged at intervals of 120 degrees. Each stretchable body is a piezoelectric element of the same shape, and the stretchable bodies facing each other are connected to a three-phase AC power source, and when a positive voltage is applied, the stretchable body 5A,
As shown in FIG. 2(c), 6A and 7A expand in proportion to the voltage and become in an extended state, resulting in the expansion and contraction body 5B.

6B 、 7Bは第2図(、)に示す様に電圧に比例し
縮退して線状態となるようになっている。また、負電圧
が加わると伸縮体5A 、 6A 、 7Aは第2図(
、)の様に電圧に比例し縮退して線状態となり、伸縮体
5B 、 6B 、 7Bは第2図(C)の様に電圧に
比例し伸張して伸状態となるようになっている0このよ
うな伸縮体5A 、 5B〜7A 、 7Bによって駆
動手段を構成している0なお、第2図(b)は電圧を印
加する前の各伸縮体の状態を示す。伸縮体5A 、 5
B〜7A 、 7Bによって囲まれた空間部には、円筒
状の可動体8が各伸縮体の緩衝ゴム4により弾性力を持
って挟圧され揺動自在に保持されている091円板状の
回転板で、その中心には出力軸10がその平面に直角に
貫通して固定されておシ、外周面9aの円周に沿って形
成された溝状の陥没部9bには環状のゴム11が外周面
9&より張出し弾性力をもって係止されている0このよ
うな回転板S、出力軸10.環状のゴム11によυ構成
された回転体12は、出力軸10の先端部10aを固定
枠体1に固着された軸受2に挿入し、出力端10bを回
転支持枠体13の軸受部14に挿通することによって可
動体8の内周壁面8aにより形成された空間部に回転自
在に支持されるよう罠なっている。このとき、回転体1
2の環状のゴム11と可動体8の内周壁面8aとの間隙
は、伸縮体が最大変化したときに可動体8の内周壁面8
aが環状のゴム11に接して所定の圧力で抑圧できる寸
法になっている。
As shown in FIG. 2 (,), 6B and 7B degenerate in proportion to the voltage and become linear. Furthermore, when a negative voltage is applied, the expandable bodies 5A, 6A, and 7A behave as shown in Fig. 2 (
, ), it degenerates and becomes a line state in proportion to the voltage, and the stretchable bodies 5B, 6B, and 7B extend in proportion to the voltage and become a stretched state, as shown in Figure 2 (C). These stretchable bodies 5A, 5B to 7A, and 7B constitute a driving means. FIG. 2(b) shows the state of each stretchable body before voltage is applied. Expandable body 5A, 5
In the space surrounded by B~7A and 7B, there is a 091 disc-shaped movable body 8 which is elastically compressed by the cushioning rubber 4 of each elastic body and held so as to be swingable. It is a rotary plate, and an output shaft 10 is fixed at the center thereof passing through at right angles to the plane thereof, and an annular rubber 11 is installed in a groove-shaped depression 9b formed along the circumference of the outer peripheral surface 9a. The rotating plate S and the output shaft 10. A rotary body 12 configured by an annular rubber 11 has a tip end 10a of an output shaft 10 inserted into a bearing 2 fixed to a fixed frame 1, and an output end 10b inserted into a bearing 14 of a rotation support frame 13. By inserting the movable body 8 into the space formed by the inner circumferential wall surface 8a of the movable body 8, the trap is rotatably supported. At this time, the rotating body 1
The gap between the annular rubber 11 of No. 2 and the inner peripheral wall surface 8a of the movable body 8 is such that the gap between the inner peripheral wall surface 8a of the movable body 8 and the inner peripheral wall surface 8a of the movable body 8 is
A has a size that allows it to be in contact with the annular rubber 11 and to be suppressed with a predetermined pressure.

以下、このように構成さnた本発明の回転機の動作を説
明する。第3図は出力軸10の出力端10b側からみた
回転体12の動作を示す正面図であり、説明を理解しや
すくするために各伸縮体の両面に設けた緩衝ゴム4およ
び出力軸10は省略しである。なお、PIは回転体12
の中心を示し、P2は可動体8の中心を示す。第3図(
、)は伸縮体5A 、 5B 〜7A 、7B K交流
重圧を印加する前の状態を示し、このとき回転体12の
中心P1と可動体8の中心P2の位置は一致している。
Hereinafter, the operation of the rotating machine of the present invention configured as described above will be explained. FIG. 3 is a front view showing the operation of the rotating body 12 seen from the output end 10b side of the output shaft 10. To make the explanation easier to understand, the cushioning rubber 4 provided on both sides of each elastic body and the output shaft 10 are shown in FIG. It is omitted. Note that PI is the rotating body 12
, and P2 indicates the center of the movable body 8. Figure 3 (
, ) show the state before application of AC heavy pressure to the extensible bodies 5A, 5B to 7A, 7BK, and at this time, the center P1 of the rotating body 12 and the center P2 of the movable body 8 are aligned.

このような初期状態において伸縮体5A、5Bに第4図
のAに示すような正弦波交流電圧を、伸縮体6A、6B
にAの正弦波交流電圧よりも位相の120゜ずれたBに
示すような正弦波交流電圧を、伸縮体γA、7BKBの
正弦波交流電圧よりもさらに(rx相の120°ずれた
Cに示すような正弦波交流電圧を印加すると、可動体8
の中心P2が回転体12の中心P+に対して公転し、そ
の公転によって回転体1.2が円滑な低速度回転を始め
るようになる。
In such an initial state, a sinusoidal AC voltage as shown in A in FIG. 4 is applied to the stretchable bodies 5A and 5B.
The sine wave AC voltage as shown in B, which is 120° out of phase with the sine wave AC voltage of A, is applied further (shown in C, which is 120° out of phase with the rx phase) than the sine wave AC voltage of the elastic body γA, 7BKB. When a sinusoidal AC voltage like this is applied, the movable body 8
The center P2 of the rotating body 1.2 revolves around the center P+ of the rotating body 12, and due to the revolution, the rotating body 1.2 starts to smoothly rotate at a low speed.

すなわち、第4図のa時点で上述のように各伸縮体に正
弦波交流電圧を印加すると、枦、3図(&)において伸
縮体5A、5Bには正弦波交流電圧Aにより正の最大電
圧が印加され、伸縮体5Aは伸張して最大伸状態となり
伸縮体5Bは縮退して最小線状態となる。また、伸縮体
6A、6BKは正弦波交流電圧Bにより負の電圧が印加
されて伸縮体6Aはその電圧に比例した線状態と々す、
伸縮体6Bはその電圧に比例した伸状態となる。さらに
、伸縮体7A、7Bにも正弦波交流電圧Cにより負の電
圧が印加されて伸縮体7Aは線状態となり、伸縮体7B
は伸状態となる。そして、可動体8け伸縮体5A 、 
6B 、γBにより押圧され、伸縮体5Bの方向へ移動
して、可動体8の内周壁面8aが回転体12の環状のゴ
ム11に接して所定の圧力で押圧する。このとき、第4
図には図示していないが各伸縮体の両面に設けられてい
る緩衝ゴム4が衝撃を緩和する。このようにして、第3
図(b)に示すように可動体8の中心P!は図において
回転体12の中心P+の右に位置するようになる。
That is, when a sinusoidal AC voltage is applied to each stretchable body as described above at point a in Fig. 4, the maximum positive voltage is applied to the stretchable bodies 5A and 5B due to the sinusoidal AC voltage A in Figure 3 (&). is applied, and the stretchable body 5A expands and becomes the maximum stretch state, and the stretchable body 5B contracts and becomes the minimum line state. Further, a negative voltage is applied to the stretchable bodies 6A and 6BK by the sinusoidal AC voltage B, and the stretchable body 6A assumes a linear state proportional to the voltage.
The expandable body 6B is in an expanded state proportional to the voltage. Furthermore, a negative voltage is applied to the stretchable bodies 7A and 7B by the sinusoidal AC voltage C, so that the stretchable body 7A becomes a line state, and the stretchable body 7B
is in a stretched state. And a movable 8-piece telescopic body 5A,
6B and γB, the movable body 8 moves in the direction of the expandable body 5B, and the inner circumferential wall surface 8a of the movable body 8 comes into contact with the annular rubber 11 of the rotary body 12 and presses it with a predetermined pressure. At this time, the fourth
Although not shown in the figure, cushioning rubber 4 provided on both sides of each elastic body cushions the impact. In this way, the third
As shown in Figure (b), the center P of the movable body 8! is located to the right of the center P+ of the rotating body 12 in the figure.

次に、第4図のb時点になると伸縮体7A、7Bには負
の最大電圧が印加されて伸縮体7Aはさらに縮退して最
少縮状態となシ、伸縮体7Bはさらに伸張して最大伸状
態となる。また、伸縮体5A、5Bには引き続き正の電
圧が印加されるが、正の最大電圧よシも低くなり伸縮体
5Aは最大伸状態よりも縮んだ伸状態となり、伸縮体5
Bは最少縮状態よりも伸びた縮状態となる0 また、伸縮体6A 、 6Bにも正電圧が印加されて伸
縮体6Aはその電圧に比例した伸状態となり、伸縮体6
Bは縮状態となる。そして、可動体8は内周壁面8aと
ゴム11とが接触した状態で伸縮体5B 、 6A 、
 7B により押圧されて回転体12を矢印方向に回転
させながら第3図(C)に示す位置まで移動する。この
とき緩衝ゴム4の弾力によって移動を円滑に行なうこと
ができる。そして、可動体8の中心P2は回転体12の
自転方向とは逆に移動し始めて回転体12の中心PIの
斜右上に位置するようになる。そしてさらに、第4図の
C時点になると伸縮体6A、6Bには正の最大電圧が印
加され、伸縮体5A、5B 、7A、7Bには負の電圧
が印加されることによって各伸縮体が上述のように変形
し、可動体8が伸縮体5B。
Next, at time b in FIG. 4, the negative maximum voltage is applied to the stretchable bodies 7A and 7B, and the stretchable body 7A further contracts and becomes the minimum contracted state, while the stretchable body 7B further expands and reaches the maximum. It becomes a stretched state. Further, although a positive voltage continues to be applied to the stretchable bodies 5A and 5B, the maximum positive voltage also decreases, and the stretchable body 5A enters a stretched state that is more contracted than the maximum stretched state, and the stretchable body 5
B is in a contracted state that is more extended than the minimum contracted state.0 In addition, a positive voltage is also applied to the stretchable bodies 6A and 6B, and the stretchable body 6A is in a stretched state proportional to the voltage, so that the stretchable body 6
B is in a contracted state. Then, the movable body 8 expands and contracts with the inner circumferential wall surface 8a and the rubber 11 in contact with the elastic bodies 5B, 6A,
7B, the rotating body 12 is rotated in the direction of the arrow and moved to the position shown in FIG. 3(C). At this time, the elasticity of the buffer rubber 4 allows smooth movement. Then, the center P2 of the movable body 8 begins to move in the opposite direction to the rotation direction of the rotary body 12, and comes to be located diagonally above and to the right of the center PI of the rotary body 12. Further, at time point C in FIG. 4, the maximum positive voltage is applied to the stretchable bodies 6A, 6B, and the negative voltage is applied to the stretchable bodies 5A, 5B, 7A, 7B, so that each stretchable body is Deformed as described above, the movable body 8 is the extensible body 5B.

6A 、7Aに押圧されて回転体12を矢印方向に回転
させながら第3図(d)に示す位置に移動する。
6A and 7A, the rotating body 12 is rotated in the direction of the arrow and moved to the position shown in FIG. 3(d).

そして、中心P2は回転体12の中心P1の斜左上12
位置する。同様にして、第4図のd時点になると可動体
8が伸縮体5B 、 6B 、 7Aに押圧されて回転
体12を矢印方向に回転させながら第3図(@)に示す
位置に移動するとともに、中心P!は中心P1の左に位
置し、第4図のe時点になると第3図(f)に示すよう
に斜左下に位置するようになる。
The center P2 is 12 diagonally upper left of the center P1 of the rotating body 12.
To position. Similarly, at time point d in FIG. 4, the movable body 8 is pressed by the stretchable bodies 5B, 6B, and 7A, and moves to the position shown in FIG. 3 (@) while rotating the rotating body 12 in the direction of the arrow. , Center P! is located to the left of the center P1, and at time e in FIG. 4, it is located diagonally to the lower left as shown in FIG. 3(f).

さらに、第4図のf時点になると第3図(r)に示すよ
うに中心P!は中心Plの斜右下に位置するようKなる
。そして、第4図の次のa時点になると、可動体8は伸
縮体5A、6A、7Bに押圧されて再び第3図(b)に
示す位置に回転体12を回転させながら移動するととも
K、可動体8の中心P2は回転体12の中心P!に対し
て右位置に戻る。このようにして、可動体8の中心P3
は回転体12の中心Plに対して公転を続けるようにな
る。しかも、その公転軌跡は各伸縮体に印加する電圧が
位相のずれた正弦波交流電圧なのでPiに対して同心円
形となる。このように、可動体8の内壁面8aが回転体
12と接触しながら可動するので回転体12は円滑に、
しかも低速度で回転を続けるようKなる。また、第4図
に示す各電圧の位相を変えることによって逆回転も可能
である。
Furthermore, at time point f in FIG. 4, the center P! as shown in FIG. 3(r)! becomes K so that it is located diagonally below and to the right of the center Pl. Then, at the next point a in FIG. 4, the movable body 8 is pressed by the stretchable bodies 5A, 6A, and 7B and moves again to the position shown in FIG. 3(b) while rotating the rotating body 12. , the center P2 of the movable body 8 is the center P of the rotating body 12! Return to right position against. In this way, the center P3 of the movable body 8
continues to revolve around the center Pl of the rotating body 12. Furthermore, since the voltage applied to each expandable body is a sinusoidal alternating current voltage with a phase shift, the orbital locus becomes a concentric circle with respect to Pi. In this way, since the inner wall surface 8a of the movable body 8 moves while being in contact with the rotary body 12, the rotary body 12 moves smoothly.
Moreover, it becomes K so that it continues to rotate at a low speed. Further, reverse rotation is also possible by changing the phase of each voltage shown in FIG.

第5図は本発明に係る回転機の第2実施例を示す正面図
である。図中、第1図と同一符号は同一部分を示しその
説明は省略する。15は各伸縮体によシ弾性力をもって
挟圧され揺動自在に支持された円筒状の可動体で、その
内周壁面には全周にわたって11!15&がきざまれて
いる。そして、この可動体15の内周壁面によって形成
される空間部には、円板状の回転板に出力軸10が貫通
して固定された回転体16が固定枠体1により回転自任
に軸支されており、回転体16の外周面には全周にわた
って11116aがきざまれている。回転体16にきざ
まれた歯161Lは可動体15の内周壁面にきざまれた
歯15mと同ピツチであり、歯数は可動体15の歯数よ
シも1枚少なく形成されている。
FIG. 5 is a front view showing a second embodiment of the rotating machine according to the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same parts, and the explanation thereof will be omitted. Reference numeral 15 denotes a cylindrical movable body which is elastically compressed and supported swingably by each elastic body, and has 11!15& cut out on its inner peripheral wall surface over its entire circumference. In the space formed by the inner circumferential wall surface of the movable body 15, a rotary body 16, which is fixed to a disc-shaped rotary plate through which the output shaft 10 passes, is rotatably supported by the fixed frame 1. The outer peripheral surface of the rotating body 16 is notched with 11116a over the entire circumference. The teeth 161L notched on the rotating body 16 have the same pitch as the teeth 15m notched on the inner peripheral wall surface of the movable body 15, and the number of teeth is one less than the number of teeth on the movable body 15.

このようにして構成された回転機の各伸縮体に第4図の
ような3相正弦波交流電圧を夫々印加すると上述の実施
例のように可動体15の中心は回転体16の中心に対し
て円形の公転軌跡を描いて公転する。このとき、可動体
15の内周壁面にきざまれた1915mと回転体16の
外周面にきざまれだ歯16aとがかみあい、可動体15
の中心が回転体16の中心に対して1公転すると回転体
16は可動体15の公転方向とは逆方向に歯数1枚分だ
け回転する。こnは、回転体16の外周面にきざまれた
歯16mが可動体15の内周壁面にきざまれた歯15a
と同ピツチであシ、シかも歯数が可動体15の歯数より
も1枚少なく形成さnているからである。このように可
動体15の内周壁面と回転体16の外周面に歯をきざむ
ことによって、第1実施例はスリップすることもあるが
この第2実施例はスリップすることはなく、また減速比
も正確に一&シ安定した低速度回転を得ることができる
When a three-phase sinusoidal alternating current voltage as shown in FIG. It revolves in a circular orbit. At this time, the 1915 m notched on the inner peripheral wall surface of the movable body 15 and the tooth 16a notched on the outer peripheral surface of the rotary body 16 mesh with each other, and the movable body 15
When the center of the movable body 16 makes one revolution with respect to the center of the rotary body 16, the rotary body 16 rotates by one tooth in a direction opposite to the direction of revolution of the movable body 15. In this case, teeth 16m notched on the outer circumferential surface of the rotating body 16 are teeth 15a notched on the inner circumferential wall surface of the movable body 15.
This is because the number of teeth is formed at the same pitch as the number of teeth of the movable body 15 by one less than the number of teeth of the movable body 15. By providing teeth on the inner circumferential wall surface of the movable body 15 and the outer circumferential surface of the rotating body 16 in this way, the first embodiment may slip, but the second embodiment does not slip, and the reduction ratio You can also precisely obtain stable low-speed rotation.

しかも、歯数の差を変えることによって減速比をかえる
こともできる。
Moreover, the reduction ratio can be changed by changing the difference in the number of teeth.

第6図は本発明に係る回転機の第3実施例を示す一部破
断正面図であり、第7図は第6図の■−■線断面図であ
る。図において、17は底面を有する円筒状の磁性体よ
シなる固定枠体で、その底面の中心には軸受1BがJ着
されてお勺、その内周壁面17鳳にはコイル19の巻か
れた突極磁極17bが内周に溢って60°間隔で6箇所
に設けられている。そして、固定枠体17の開口端部に
は内方に向ってフランジ17cが形成されておシ、その
フランジ17cの内周面には可動体20の自転防止のた
めにII 17dが全周にわたってきざまれている。固
定枠体1Tの各突極磁極17bによυ形成される空間部
には、外方に向ってフランジ20mの形成された円筒状
の磁性体よりなる可動体20が揺動自在に遊嵌されてお
り、フランジ20mの外周面には全周にわたって歯20
bがきざまれている。また、可動体20の内周壁面には
全周にわたって歯20dがきざまれている。そして、可
動体20の内周壁面により形成される空間部には、前述
の実施例と同一の回転体16が固定枠体1Tの軸受1B
によシ回転自在に支持されている。可動体20の内周壁
面にきざまれた歯20dは回転体16にきざまれた歯1
5mと同ピツチであシ、歯数は回転体16の歯数よシも
1枚多く形成されている。
FIG. 6 is a partially cutaway front view showing a third embodiment of the rotating machine according to the present invention, and FIG. 7 is a sectional view taken along the line ■--■ in FIG. 6. In the figure, reference numeral 17 denotes a fixed frame body made of a cylindrical magnetic material having a bottom surface.A bearing 1B is mounted at the center of the bottom surface of the fixed frame body, and a coil 19 is wound around the inner peripheral wall surface 17 of the frame body. The salient magnetic poles 17b are provided at six locations at 60° intervals over the inner circumference. A flange 17c is formed inward at the open end of the fixed frame 17, and an II 17d is provided on the inner peripheral surface of the flange 17c over the entire circumference to prevent the movable body 20 from rotating. It is marked. A movable body 20 made of a cylindrical magnetic body with an outwardly formed flange 20m is loosely fitted into the space defined by each salient magnetic pole 17b of the fixed frame 1T so as to be freely swingable. The outer peripheral surface of the flange 20m is provided with 20 teeth over the entire circumference.
b is notched. Further, the inner peripheral wall surface of the movable body 20 is provided with teeth 20d over the entire circumference. In the space formed by the inner circumferential wall surface of the movable body 20, a rotating body 16, which is the same as that in the above embodiment, is mounted on the bearing 1B of the fixed frame body 1T.
It is rotatably supported. The tooth 20d notched on the inner peripheral wall surface of the movable body 20 is the tooth 1 notched on the rotating body 16.
The pitch is the same as that of 5m, and the number of teeth is one more than the number of teeth of the rotating body 16.

このようにして構成された回転機の内周壁面17mに6
0°間隔で設けられた夫々の突極磁極17bのコイル1
9に順次位相の600ずつずれた正弦波交流電圧を加え
ると、各突極磁極17bが順次磁化されて可動体20は
夫々の突極磁極17bに吸引されて、可動体20の中心
は出力軸10に対して公転運動を始める。このとき、可
動体20は歯20bと歯17dとがかみあうので自転す
ることはない。また可動体20の中心が出力軸10に対
して公転を始めることによって、可動体20の内周壁面
にきざまれた@ 20dと回転体16の外周面にきざま
れた歯15&とがかみあい、可動体20の中心が回転体
16の中心に対して1公転すると回転体16は菌数1枚
分だけ回転するようになる。このように、可動体20を
運転させることによって回転体16を自転させる回転手
段として電磁力を利用してもよく、マた可動体20が運
動するときに自転しないように歯20bと歯17dを設
けたので信頼性の高い回転数を得ることができる。なお
、歯2Qb 、 17dは必ずしも全周に設ける必要は
なく一部分でもよい0 また、上述した各実施例において回転手段を得る為に圧
電素子および電磁石を使用したが、これに限ることはな
く形状記憶合金、バイメタル等の手段でもよい。さらに
、電気エネルギに限ることはなく、熱エネルギを直接使
用してもよい。
6 on the inner peripheral wall surface 17m of the rotating machine configured in this way.
Coil 1 of each salient magnetic pole 17b provided at 0° intervals
When a sinusoidal AC voltage with a phase shift of 600 is sequentially applied to 9, each salient magnetic pole 17b is sequentially magnetized, the movable body 20 is attracted to each salient magnetic pole 17b, and the center of the movable body 20 is aligned with the output shaft. It begins to revolve around 10. At this time, the movable body 20 does not rotate because the teeth 20b and 17d engage with each other. Further, as the center of the movable body 20 starts to revolve around the output shaft 10, @20d notched on the inner circumferential wall surface of the movable body 20 and teeth 15& notched on the outer circumferential surface of the rotary body 16 mesh with each other, and the movable body 20 becomes movable. When the center of the body 20 makes one revolution with respect to the center of the rotating body 16, the rotating body 16 rotates by the number of bacteria. In this way, electromagnetic force may be used as a rotation means to rotate the rotating body 16 by operating the movable body 20, and the teeth 20b and 17d may be used to prevent the rotating body 16 from rotating when the movable body 20 moves. Since this is provided, a highly reliable rotation speed can be obtained. It should be noted that the teeth 2Qb and 17d do not necessarily need to be provided on the entire circumference and may be provided on a part of the circumference.In addition, in each of the above-mentioned embodiments, a piezoelectric element and an electromagnet were used to obtain the rotation means, but the invention is not limited to this, and shape memory An alloy, bimetal, etc. may also be used. Furthermore, the present invention is not limited to electrical energy, and thermal energy may be used directly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による回転機によると、可動
体の中心を回転体の出力軸に対して公転させることによ
って、回転体を自転させているので、従来のように両車
を多数使うことなく低速度回転を得ることができるoし
かも、構造が簡単になるので製作コストも下が9コンパ
クトに設計ができるようになる0
As explained above, according to the rotating machine according to the present invention, the center of the movable body revolves around the output shaft of the rotary body to rotate the rotary body, so it is not necessary to use a large number of both wheels as in the conventional case. It is possible to obtain low speed rotation without any problems.In addition, the structure is simpler, which reduces manufacturing costs9 and allows for a more compact design0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図(a) 、 (b) 、 (c)はこの
回転機に用いる伸縮体の動作を示す説明図、第3図はこ
の回転機に用いる回転体の動作を示す出力軸よシみた正
面図、第4図はこの回転機に用いる各伸縮体に印加する
電圧を示す波形図、第5図は本発明に係る回転機の第2
実施例を示す正面図、第6図は本発明に係る回転機の第
3実施例を示す一部破断正面図、第7図は第6図の■−
■線断面図である。 1.17一−@争固定枠体、5A、5B、6A。 6B、7A、7B−−−−伸縮体、8,15.20・・
曇・可動体、10・・・・出力軸、11・・・・ゴム、
12.16・・・・回転体。 特許出願人 戸 塚 忠 男 〜臣区 鵬 l × Uコ
Figures 1, 2 (a), (b), and (c) are explanatory diagrams showing the operation of the telescopic body used in this rotating machine, and Figure 3 is an output shaft showing the operation of the rotating body used in this rotating machine. 4 is a waveform diagram showing voltages applied to each expandable body used in this rotating machine, and FIG. 5 is a second waveform diagram of the rotating machine according to the present invention.
FIG. 6 is a partially cutaway front view showing a third embodiment of the rotating machine according to the present invention, and FIG. 7 is a front view showing the third embodiment of the rotating machine according to the present invention.
■It is a line sectional view. 1.17-@Fixed frame, 5A, 5B, 6A. 6B, 7A, 7B---Extensible body, 8, 15.20...
Cloud/movable body, 10...output shaft, 11...rubber,
12.16...Rotating body. Patent applicant Tadao Totsuka ~ Shinku Peng x Uko

Claims (1)

【特許請求の範囲】[Claims] 外部エネルギにより揺動する円筒状の可動体と、この可
動体の内周壁面によって形成される空間部に配置された
出力軸を有する円板状の回転体と、この回転体を回転自
在に支持する固定枠体と、前記可動体中心を前記回転体
の出力軸に対して公転させることによって前記可動体の
内周壁面と前記回転体の外周面を係合させて前記回転体
を回転せしめる駆動手段とを備えた回転機。
A cylindrical movable body that swings by external energy, a disc-shaped rotating body that has an output shaft located in a space formed by the inner circumferential wall of this movable body, and a rotatable support for this rotating body. a fixed frame body that rotates, and a drive that rotates the rotating body by causing the center of the movable body to revolve around the output axis of the rotating body, thereby engaging the inner circumferential wall surface of the movable body and the outer circumferential surface of the rotating body. A rotating machine comprising means.
JP59083809A 1984-04-27 1984-04-27 Rotary machine Granted JPS60229680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083809A JPS60229680A (en) 1984-04-27 1984-04-27 Rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083809A JPS60229680A (en) 1984-04-27 1984-04-27 Rotary machine

Publications (2)

Publication Number Publication Date
JPS60229680A true JPS60229680A (en) 1985-11-15
JPH0440952B2 JPH0440952B2 (en) 1992-07-06

Family

ID=13812990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083809A Granted JPS60229680A (en) 1984-04-27 1984-04-27 Rotary machine

Country Status (1)

Country Link
JP (1) JPS60229680A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154792U (en) * 1986-03-20 1987-10-01
JPS6311075A (en) * 1986-07-01 1988-01-18 Yokogawa Electric Corp Motor
US4743792A (en) * 1985-12-23 1988-05-10 Dainippon Screen Mfg. Co., Ltd. Piezoelectric motor
JPH0241692U (en) * 1988-09-14 1990-03-22
US5144187A (en) * 1990-03-23 1992-09-01 Rockwell International Corporation Piezoelectric motor
US5742113A (en) * 1996-05-07 1998-04-21 K Laser Technology, Inc. Device for tilt-free translation of one plate relative to a reference plate
EP1019971A1 (en) * 1997-07-08 2000-07-19 CUNNINGHAM, John Piezoelectric motor
JP2010538776A (en) * 2007-09-17 2010-12-16 シーメンス アクチエンゲゼルシヤフト Multi-leaf collimator provided with electromechanical rotary motor and method for operating the multi-leaf collimator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326911A (en) * 1976-08-25 1978-03-13 Yokogawa Hokushin Electric Corp Pulse motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326911A (en) * 1976-08-25 1978-03-13 Yokogawa Hokushin Electric Corp Pulse motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743792A (en) * 1985-12-23 1988-05-10 Dainippon Screen Mfg. Co., Ltd. Piezoelectric motor
JPS62154792U (en) * 1986-03-20 1987-10-01
JPS6311075A (en) * 1986-07-01 1988-01-18 Yokogawa Electric Corp Motor
JPH0241692U (en) * 1988-09-14 1990-03-22
US5144187A (en) * 1990-03-23 1992-09-01 Rockwell International Corporation Piezoelectric motor
US5742113A (en) * 1996-05-07 1998-04-21 K Laser Technology, Inc. Device for tilt-free translation of one plate relative to a reference plate
EP1019971A1 (en) * 1997-07-08 2000-07-19 CUNNINGHAM, John Piezoelectric motor
EP1019971A4 (en) * 1997-07-08 2004-11-03 John Cunningham Piezoelectric motor
KR100575596B1 (en) * 1997-07-08 2006-05-03 커닝햄, 존 Piezoelectric Motor
JP2010538776A (en) * 2007-09-17 2010-12-16 シーメンス アクチエンゲゼルシヤフト Multi-leaf collimator provided with electromechanical rotary motor and method for operating the multi-leaf collimator
US8335296B2 (en) 2007-09-17 2012-12-18 Siemens Aktiengesellschaft Multi-leaf collimators and operating method

Also Published As

Publication number Publication date
JPH0440952B2 (en) 1992-07-06

Similar Documents

Publication Publication Date Title
CN1538598A (en) Electric motor
Gardner et al. Comparison of surface permanent magnet coaxial and cycloidal radial flux magnetic gears
JPS60229680A (en) Rotary machine
TWM381953U (en) Generator structure
JPS6311863B2 (en)
JPH1077996A (en) Rotary blade
US4338536A (en) Reversible direct current machine with movable stator
KR20130111197A (en) Disk type coaxial inversion power generator and wind power generation device using the disk type coaxial inversion power generator
JPH11511952A (en) Piezoelectric stepping motor
JPS62152381A (en) Rotating power device
JP2002130278A (en) Flywheel type power-storing device and magnetic bearing device
JPH0448346Y2 (en)
JPH10336996A (en) Motor
JP2675586B2 (en) Electrostatic actuator
JPH02129436A (en) Actuator
WO2004001936A1 (en) Power generation apparatus
JP2001211625A (en) Dc motor and armature structure of the same
JP7392677B2 (en) electric drive device
JPH11178312A (en) Variable gas type motor with eccentric rotor
JP3815193B2 (en) Revolving actuator
JP2693510B2 (en) Electrostatic actuator
KR200416007Y1 (en) Generator
JP3159335B2 (en) Spiral type variable air gap motor
JP3980000B2 (en) 2-axis compound motor
JP2019035500A (en) Reduction gear and motor with reduction gear

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term