JPS60229283A - Processing of magnetic head slider groove - Google Patents

Processing of magnetic head slider groove

Info

Publication number
JPS60229283A
JPS60229283A JP8524184A JP8524184A JPS60229283A JP S60229283 A JPS60229283 A JP S60229283A JP 8524184 A JP8524184 A JP 8524184A JP 8524184 A JP8524184 A JP 8524184A JP S60229283 A JPS60229283 A JP S60229283A
Authority
JP
Japan
Prior art keywords
mask
groove
head slider
scanning speed
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8524184A
Other languages
Japanese (ja)
Inventor
Masanari Mihashi
三橋 眞成
Yasuhiro Otsuka
泰弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8524184A priority Critical patent/JPS60229283A/en
Publication of JPS60229283A publication Critical patent/JPS60229283A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion

Abstract

PURPOSE:To work uniformly a groove depth by disposing a prescribed mask on the surface to be processed of a head slider material, projecting a laser beam so that a scanning speed of a mask opening can be constant, and working a groove. CONSTITUTION:A magnetic head slider material 52 is put into an etching solution 53, while a stainless steel mask 55 having anti-corrosion against the etching solution 53 is placed on a surface to be processed. An overshot extent l of a beam scanning distance is set larger than a distance corresponding to a speed- reducing process of the scanning speed. When laser beams are scanned in this condition, the scanning speed of an opening of the mask 55 is kept constant, and the density of beam energy can be also made constant accordingly. As a result, a quadrangular groove end at the left side is not deeply worked, and the groove depth can be uniformly worked, thereby a slider excellent in floating characteristic is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は硬質材料の溝加工に関し、更に具体的に言えば
、磁気へラドスライダの溝加工に関する。 (従来技術の問題点) 磁気ディスク装置において、磁気ディスク面上に浮揚す
る磁気へ、トス2イダの浮揚形式は磁気ディスクの回転
開始時及び回転停止時に磁気へラドスライダが磁気ディ
スク面上に接触して摺動するコンタクト・スタート・ス
ト、プ方式が採用されている。このため、磁気へ、トス
ライダ材はAtumlna−Ticセラミックのごとき
高硬度で耐層性のある材料が用いられている。Atum
lna−Ticセラミ、りの俊度はビッカース硬度で2
000と非常に硬い材料であり、通常の機械的加工法に
よってはAtutnina −Ticセラミ、り材に微
小な四角溝を加工することは困難である。Atamin
a −Ticセラミ、りを工、チング液(KOH溶液)
中に浸し、レーザビームを照射し、Atumina−T
icの工、チングを促進して溝加工することが可能であ
ることがガ、トフェルド(Gutfeld )らによっ
て報告(Appt、Phys 、 Lett 、 40
(4) P2S5〜354 )された。第1図は磁気へ
、トスライダilk型の1例を示す図である。第1図に
おいて11.12はスライダ面、13は四角形状の加工
溝である。磁気へラドスライダ材であるAtumlna
−Ticセラミックを工、チング液(KOH溶液)中に
浸し、第2図に点線にて示すレーザビーム走査軌跡23
のようにレーザビームを走査させながらへ、トスライダ
に四角溝を加工し九ところ、第3図に示す加工溝断面図
のように溝端8部(@U)が他端に比べ深く(2〜3倍
)加工されることが判明した。この溝深式の不拘−祉磁
気へ、トスライダの浮揚特性を損うものであり、ヘッド
スライダの加工溝として、十分満足できるものではない
。 (発明の目的) 本発明はこのような従来の欠点を除去せしめて、磁気へ
、トスライダの四角溝深さを均一に加工できる加工方法
を提供することを目的とする。 (発明の構成) 本発明によれば磁気へ、トスライダ材をエツチング液中
に浸し、エネルギビームを照射して加工する方法におい
て、所要加工溝形状の開口部含有し、かつ前記工、チン
ダ液に対して耐蝕性のあるマスクを該ヘッドスライダ材
の被加工面上に配置し、エネルギビームを該マスク開口
部における走査速度が一定になるように走査的に照射し
て、スライダ溝加工を行なうことt−%徴とする磁気へ
ラドスライダ溝の加工方法が得られる。 (本発明の作用・原理) 出力W (Watt) 、スポット直径d
(Industrial Application Field) The present invention relates to grooving of hard materials, and more specifically to grooving of magnetic helide sliders. (Problems with the prior art) In a magnetic disk drive, due to the magnetic field floating above the magnetic disk surface, the levitation type of Toss 2 Ida has a magnetic disk slider that comes into contact with the magnetic disk surface when the magnetic disk starts and stops rotating. A contact-start-stop method is adopted in which the product slides. For this reason, a highly hard and layer-resistant material such as Atumlna-Tic ceramic is used as the magnetic slider material. Atum
lna-Tic ceramic has a Vickers hardness of 2
Atutnina-Tic ceramic is a very hard material, and it is difficult to machine minute square grooves in Atutnina-Tic ceramic using ordinary mechanical processing methods. Atamin
a-Tic ceramic, rinsing, tinging solution (KOH solution)
Atumina-T
It was reported by Gutfeld et al. that it is possible to process grooves by promoting IC machining and ching (Appt, Phys, Lett, 40).
(4) P2S5-354). FIG. 1 is a diagram showing an example of a tosslider ILK type magnet. In FIG. 1, 11 and 12 are slider surfaces, and 13 is a rectangular machined groove. Atumlna, a magnetic helad slider material
- Tic ceramic is machined and immersed in a quenching solution (KOH solution), and the laser beam scanning trajectory 23 shown by the dotted line in Fig. 2
A square groove was machined on the tosslider while scanning the laser beam as shown in Figure 3.As shown in the cross-sectional view of the machined groove, the groove end 8 (@U) was deeper (2~3 mm) than the other end. It turned out that it was processed. This deep-groove type unrestricted magnetism impairs the floating characteristics of the toss slider, and is not fully satisfactory as a machined groove for a head slider. (Objective of the Invention) An object of the present invention is to eliminate such conventional drawbacks and provide a processing method that can uniformly process the depth of the rectangular groove of a magnetic toss slider. (Structure of the Invention) According to the present invention, there is provided a method of magnetically processing a tosslider material by dipping it in an etching solution and irradiating it with an energy beam, which includes an opening in the shape of a desired processing groove, and which is etched in the etching solution. In contrast, a corrosion-resistant mask is placed on the surface to be machined of the head slider material, and the slider groove is machined by irradiating the energy beam in a scanning manner so that the scanning speed at the opening of the mask is constant. A method for machining a magnetic rad slider groove with a t-% characteristic is obtained. (Operation and principle of the present invention) Output W (Watt), Spot diameter d

〔0〕のエネ
ルギビームが磁気へラドスライダ材の被加工面全速度v
 Ctm/−== )で走査している時の被加工面にお
けるビームスポット走査中心線上のエネルギ密度Eは式
(1)で表わされる。 第4図は第2図に示すようにエネルギビーム走査した時
の四角溝端B部(第3図)近傍におけるエネルギビーム
の走査速度を示すグラフである。四角溝端部においてエ
ネルギビームは折返し運動を行なっているので、減速停
止および増速の繰り返し運動を行う。すなわち、第4図
に示すように四角溝B端部においてエネルギビーム走査
速度マが減少し、式(1)で示したビームエネルギ密度
Eは走査速度マに反比例して増大する。このために四角
溝端部に大きなエネルギが照射され、他部に比べてより
大きく工、チングが促進され、よシ深く加工される。 次に本発明による方法、すなわち磁気へラドスライダ材
をそのスライダ材のエツチング液中に浸し、所要加工溝
形状の開口部を有し、かつ前記工、チング液に対して耐
蝕性のあるマスクを該へ。 トスライダ材の被加工面上に配置し、前記マスクの開ロ
St−含む面積上にエネルギビーム全走査しながら照射
してスライダ溝加工を行なう方法について述べる。この
場合、四角溝端部におけるエネルギビーム走査距離の行
き過ぎ量tをビーム走査速度が減速過程となる距離U(
第4図)より大きく設定することKより、四角溝端部に
おけるビーム走査速度は他部と同じ一定速度となり、よ
ってビームエネルギ密度も同一となる。前記エツチング
液に対して耐蝕性のあるマスクを用いることKより、マ
スクは加工されずにマスク開口部の範囲外に照射された
エネルギビームを遮断できるので、所要の四角形状の均
−深さ溝加工を行なうことが可能となる。 これにより、磁気へラドスライダの四角溝端部が深く加
工されるという従来の欠点が解決される。 (実施例) 以下、本発明の実施例について図面全参照して詳細に説
明する。第5図は本発明の一実施例を示す断面図で、試
料台51上に配置された磁気へ、トスライダ材(例えば
Atumina−Ticセラミック)52を工、チンダ
液(例えばKOH水溶液;20mot/1)53が入り
た容器54中に配置し、磁気へ、トスライダ材(Atu
mlna −Ticセラミ、り)52の被加工面上に対
応して四角形状(縦37朋。 横2.01n)の開口部を有したステンレスマスク(厚
さ0.05mm)55に配置し、アルゴンレーザビーム
(出力1.Owatt ) 56を走査(走査速度5酊
/5ee)して、ステンレスマスク55およヒ磁気へ。 トス2イダ材52の被加工面上にアルゴンレーザビ−ム
を照射している。第6図に本実施例におけるレーザビー
ム走査軌跡61を示す。 なお、第6図において62はステンレスマスク、63.
64は磁気へ多トスライダ材を示す。 (発明の効果) 本実施列において、レーザビーム走査距離の行き過ぎ量
tt=1m(t>U−0,5m:Uは走査速度が減速過
程となる距離)に設定することによ)、ステンレスマス
ク62の開口部におけるレーザビーム走査速度を一定(
マー5朋/see )とすることができる。ステンレス
マスク52はKOH水浴液に耐蝕性を示し、マスク開口
部の範囲外に照射されたアルゴンレーザビームtm断す
るので磁気へラドスライダ材、(Atumlna−Ti
C) 63の被加工面上に所要四角形の溝加工を行なう
ことができる。レーザビーム走査の横送りピッチを5μ
mに設定して前記条件にて加工した結果、四角形状の均
−深さ溝(深さ4μm ) 57 ′t−加工すること
ができた。本実施例によって溝加工した磁気へラドスラ
イダの浮揚特性は優れており、0.15μmの微小すき
間まで磁気ディスク面上を安定して浮揚させることがで
きた。 以上説明したように、磁気へラドスライダ材を該ヘッド
スライダ材のエツチング液中に浸し、所要加工溝形状の
開口部を有し、かつ前記エツチング液に対して耐蝕性の
あるマスクを該ヘッドスライダ材の被加工面上に配置し
、該マスク開口部におけるエネルギビーム走査速度が一
定になるように走査的にエネルギビームを照射しながら
ヘッドスライダ溝加工を行なうことKより、磁気へ、ト
スライダの四角溝深さを均一に加工できる利点がある。 なお、本発明の一実施例においては、エネルギビームと
してアルゴンレーザを用いたが、炭酸ガスレーザ、YA
Gレーザ、赤外線等を用いても良い。
The energy beam of [0] is the total speed v of the workpiece surface of the magnetic Rad slider material
The energy density E on the beam spot scanning center line on the surface to be processed during scanning at Ctm/-== is expressed by equation (1). FIG. 4 is a graph showing the scanning speed of the energy beam in the vicinity of the square groove end B (FIG. 3) when the energy beam is scanned as shown in FIG. 2. Since the energy beam is performing a turning motion at the end of the square groove, it repeatedly decelerates, stops, and accelerates. That is, as shown in FIG. 4, the energy beam scanning speed Ma decreases at the end of the square groove B, and the beam energy density E shown in equation (1) increases in inverse proportion to the scanning speed Ma. For this reason, a large amount of energy is irradiated to the ends of the square grooves, which promotes machining and chiming to a greater extent than other parts, resulting in deeper machining. Next, the method according to the present invention, that is, immersing the magnetic slider material in an etching solution for the slider material, and applying a mask having openings in the desired groove shape and corrosion resistant to the etching solution. fart. A method of machining a slider groove by placing the slider material on the surface to be processed and irradiating the area including the opening of the mask with an energy beam while scanning the entire area will be described. In this case, the overshoot amount t of the energy beam scanning distance at the end of the square groove is reduced to a distance U (
(Fig. 4) By setting K to a larger value, the beam scanning speed at the ends of the square groove becomes the same constant speed as at other parts, and therefore the beam energy density also becomes the same. By using a mask that is resistant to corrosion by the etching solution, the mask can block the energy beam irradiated outside the mask opening without being processed. It becomes possible to perform processing. This solves the conventional drawback that the square groove ends of the magnetic herad slider are machined deeply. (Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to all the drawings. FIG. 5 is a cross-sectional view showing one embodiment of the present invention, in which a slider material (for example, Atumina-Tic ceramic) 52 is applied to the magnetic field placed on a sample stage 51, and a tinde liquid (for example, KOH aqueous solution; 20mot/1 ) 53 is placed in a container 54 containing a toslider material (Atu
A stainless steel mask (thickness: 0.05 mm) 55 having a rectangular opening (length: 37 mm, width: 2.01 nm) corresponding to the surface to be processed of the mlna-Tic ceramic material (R) 52 was placed, and argon gas was applied to the mask. The laser beam (output 1.Owatt) 56 is scanned (scanning speed 5/5ee) to the stainless steel mask 55 and the magnetic field. An argon laser beam is irradiated onto the surface of the toss 2 material 52 to be processed. FIG. 6 shows a laser beam scanning locus 61 in this embodiment. In addition, in FIG. 6, 62 is a stainless steel mask, 63.
64 indicates a magnetic multi-slider material. (Effects of the invention) In this embodiment, by setting the laser beam scanning distance overshoot amount tt=1m (t>U-0,5m: U is the distance at which the scanning speed is decelerated), the stainless steel mask The laser beam scanning speed at the aperture 62 is kept constant (
It can be set as Mar5ho/see). The stainless steel mask 52 exhibits corrosion resistance to KOH water bath liquid and cuts off the argon laser beam tm irradiated outside the range of the mask opening.
C) A required rectangular groove can be machined on the machined surface of 63. The horizontal feed pitch of laser beam scanning is 5μ.
As a result of machining under the conditions described above, it was possible to machine a rectangular, uniform-depth groove (depth: 4 μm) of 57't. The levitation characteristics of the magnetic herad slider processed with grooves according to this example were excellent, and it was possible to stably levitate it over the magnetic disk surface up to a minute gap of 0.15 μm. As explained above, a magnetic rad slider material is immersed in an etching solution for the head slider material, and a mask having openings in the desired groove shape and corrosion resistant to the etching solution is applied to the head slider material. The head slider grooves are machined while scanningly irradiating the energy beam so that the energy beam scanning speed at the mask opening becomes constant. It has the advantage of being able to process to a uniform depth. In one embodiment of the present invention, an argon laser was used as the energy beam, but carbon dioxide laser, YA
G laser, infrared rays, etc. may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気へラドスライダの1例を示す概観 “図、
第2図は従来の加工方法におけるレーザビーム走査軌跡
金示す平面図、第3図は従来の加工方法によって加工し
た場合の磁気へ、ラドスライダの溝形状を示す断面図、
第4図は四角溝端部近傍におけるレーザビームの走査速
度を示すグラフ、第5図は本発明の1j!施例に係る磁
気へラドスライダの溝加工方法を示す断面図、第6図は
本発明の実施例に係るレーザビーム走査軌跡を示す平面
図を示す図である。図面中、11,12.21,22,
63゜64は磁気へ、トスライダ面、13.57は加工
溝、23.61はレーザビーム走査軌跡、51は試料台
、52は磁気へラドスライダ材、53はエツチング液、
54は容器、55.62はステンレスマスク、56はア
ルゴンレーザビーム、57は加工溝である。 ノ 72図 1 第3 図
Figure 1 shows an overview of an example of a magnetic herad slider.
Fig. 2 is a plan view showing the laser beam scanning locus in the conventional processing method, Fig. 3 is a sectional view showing the groove shape of the magnetic Radoslider when processed by the conventional processing method,
FIG. 4 is a graph showing the scanning speed of the laser beam near the end of the square groove, and FIG. 5 is a graph showing the scanning speed of the laser beam near the end of the square groove. FIG. 6 is a cross-sectional view showing a groove processing method for a magnetic herad slider according to an embodiment, and FIG. 6 is a plan view showing a laser beam scanning locus according to an embodiment of the present invention. In the drawings, 11, 12, 21, 22,
63° and 64 are magnetic, toslider surface, 13.57 is a processing groove, 23.61 is a laser beam scanning trajectory, 51 is a sample stage, 52 is a magnetic helad slider material, 53 is an etching liquid,
54 is a container, 55 and 62 are stainless steel masks, 56 is an argon laser beam, and 57 is a processing groove. 72Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 磁気へ、トスライダ材を工、チンダ液中に浸し、エネル
ギビームを照射して加工する方法において、咳へ、トス
ライダ材の被加工物面上に所要溝形状の開口部を有し、
かつ前記エツチング液に対して耐蝕性のあるマスクを咳
へラドスライダ材の被加工物面上に配置し、該マスク開
口部におけるエネルギビーム走査速度が一定になるよう
に走査的にエネルギビームを照射しながらヘッドスライ
ダ溝加工を行なうことを特徴とする磁気へ、トスライダ
溝の加工方法。
In a method of magnetically processing a toslider material by immersing it in a tinda liquid and irradiating it with an energy beam, the toslider material has an opening in the desired groove shape on the workpiece surface,
A mask that is resistant to corrosion by the etching solution is placed on the surface of the workpiece of the RAD slider material, and the energy beam is irradiated in a scanning manner so that the energy beam scanning speed at the opening of the mask is constant. A method of machining a head slider groove in a magnetic head, characterized by machining a head slider groove.
JP8524184A 1984-04-27 1984-04-27 Processing of magnetic head slider groove Pending JPS60229283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8524184A JPS60229283A (en) 1984-04-27 1984-04-27 Processing of magnetic head slider groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8524184A JPS60229283A (en) 1984-04-27 1984-04-27 Processing of magnetic head slider groove

Publications (1)

Publication Number Publication Date
JPS60229283A true JPS60229283A (en) 1985-11-14

Family

ID=13853063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8524184A Pending JPS60229283A (en) 1984-04-27 1984-04-27 Processing of magnetic head slider groove

Country Status (1)

Country Link
JP (1) JPS60229283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256938A2 (en) * 1986-08-08 1988-02-24 Quantum Corporation Lithographic technique using laser for fabrication of electronic components and the like
EP0416938A2 (en) * 1989-09-08 1991-03-13 Ngk Insulators, Ltd. Method of producing a core for magnetic head
US5104483A (en) * 1989-01-09 1992-04-14 Ngk Insulators, Ltd. Method of producing a negative-pressure type magnetic head slider
US5221422A (en) * 1988-06-06 1993-06-22 Digital Equipment Corporation Lithographic technique using laser scanning for fabrication of electronic components and the like

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256938A2 (en) * 1986-08-08 1988-02-24 Quantum Corporation Lithographic technique using laser for fabrication of electronic components and the like
US5221422A (en) * 1988-06-06 1993-06-22 Digital Equipment Corporation Lithographic technique using laser scanning for fabrication of electronic components and the like
US5104483A (en) * 1989-01-09 1992-04-14 Ngk Insulators, Ltd. Method of producing a negative-pressure type magnetic head slider
EP0416938A2 (en) * 1989-09-08 1991-03-13 Ngk Insulators, Ltd. Method of producing a core for magnetic head

Similar Documents

Publication Publication Date Title
US5041189A (en) Method of producing a core for magnetic head
KR950024836A (en) Laser processing method and apparatus thereof
ATE33680T1 (en) PROCESSES FOR IMPROVING THE SURFACE PROPERTIES OF ROLLERS.
KR970069201A (en) Method and apparatus for precision turning of workpieces made of heat-treated steel by cutting tools
JPS60229283A (en) Processing of magnetic head slider groove
JPS6431956A (en) Manufacture of stainless steel member for semiconductor-manufacturing equipment
US6552302B2 (en) Method for correcting surface shape of magnetic head slider and magnetic head slider
JPH09141480A (en) Ablation machining method
KR960002610B1 (en) Method of producing a core for magnetic head
JPS6176689A (en) Production of floating head slider
JPS57164418A (en) Vertical heat magnetic recording medium
JPH05339737A (en) Method for working dry process coating thereof
KR920004216B1 (en) Method of producing a core for magnetic head
US6165583A (en) Surface modification of magnetic recording substrates to control subsequent laser texturing
JPS60154892A (en) Laser cutting device
JP3223034B2 (en) Metal removal processing method
Geissler et al. Temperature Controlled Laser Transformation Hardening.(Retroactive Coverage)
EP0414969B1 (en) Method of producing a core for magnetic head
Hatayama et al. Bending process for thin metal sheets by YAG laser
JPH04356380A (en) Laser marking method
JPS6052892B2 (en) Wire cut electrical discharge machining method
JPH0313951B2 (en)
JPH06107500A (en) Method for machining non-magnetic single crystal
SU1686008A1 (en) Method for obtaining parts of magnet soft iron-cobalt alloys
Rajasekhara et al. Development of Hard Cutting Tool Edges by Laser Processing.(Retroactive Coverage)