JPS60228970A - System for measuring carrier wave power/noise power ratio - Google Patents

System for measuring carrier wave power/noise power ratio

Info

Publication number
JPS60228970A
JPS60228970A JP8388584A JP8388584A JPS60228970A JP S60228970 A JPS60228970 A JP S60228970A JP 8388584 A JP8388584 A JP 8388584A JP 8388584 A JP8388584 A JP 8388584A JP S60228970 A JPS60228970 A JP S60228970A
Authority
JP
Japan
Prior art keywords
power
noise
signal
carrier wave
bpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8388584A
Other languages
Japanese (ja)
Inventor
Kanshiro Kashiki
勘四郎 樫木
Yutaka Yasuda
豊 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP8388584A priority Critical patent/JPS60228970A/en
Publication of JPS60228970A publication Critical patent/JPS60228970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To measure a carrier wave power/noise power ratio (C/N), by calculating the power ratio of outputs of two filters different in a pass band width. CONSTITUTION:The band width B2 of second BPF3 is set narrowly in a range imparting no strain to a passing signal component and the band width B1 of first BPF2 is set in a range receiving no influence of the other signal so as to be made wider than the band width B2. Then, an input signal 1 is allowed to pass through first BPF2 and only the noise of the input signal 1 receives band restriction. The output signal 5 of first BPF2 passes through second BPF3 and only the noise of the signal 5 receives band restriction. Next, powers of the output signal 5 of first BPF2 and the output signal 4 of second BPF3 are respectively measured by power measuring instruments 6, 7 and measured values 8, 9 are guided to a C/N operation circuit 10 to receive operation.

Description

【発明の詳細な説明】 (技術分野) 本発明は、無線通信システムの受信側における搬送波電
力対雑音電力比の測定方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for measuring carrier power to noise power ratio on the receiving side of a wireless communication system.

(背景技術) 無線通信システムにおいて、受信波の搬送波電力対雑音
電力比(以下rc/NJ )を知ることは、受信信号の
品質を監視する上で、また、通信系を構成する送信器、
受信器および中継器などの動作状態を監視する上で重要
である。特に、回線設計上規定された回線品質を保証す
る意味で、受信側において、常時まだは随時にC/Nを
測定でき、また監視できることが望ましい。
(Background Art) In a wireless communication system, knowing the carrier wave power to noise power ratio (hereinafter referred to as rc/NJ) of a received wave is useful for monitoring the quality of the received signal and also for transmitters making up the communication system.
This is important for monitoring the operating status of receivers, repeaters, etc. In particular, in order to guarantee the line quality specified in the line design, it is desirable that the C/N can be measured and monitored at all times or at any time on the receiving side.

従来、一般的に行われているC/N測定法は、回線設定
時などにおいて、電波が発射されていない状態で、受信
周波数スロット内の雑音電力を測定しておき、電波が発
射された後、(搬送波十雑音)電力を測定し、2つの測
定結果からC/Nをめるものである。この測定法によれ
ば測定精度は高いが、通信中では連続的にC/N測定を
行うことができない。
Conventionally, the commonly used C/N measurement method is to measure the noise power within the reception frequency slot when no radio waves are being emitted, such as when setting up a line, and then measure the noise power within the receiving frequency slot after the radio waves have been emitted. , (carrier plus noise) power is measured, and the C/N is calculated from the two measurement results. Although this measurement method has high measurement accuracy, it is not possible to continuously measure C/N during communication.

この点を改善したC/N測定法が5CPC(Singl
eChannel per Carrier )システ
ムやTDMAシステムにみられる。
A C/N measurement method that improves this point is 5CPC (Singl
This can be seen in eChannel per Carrier (eChannel per Carrier) systems and TDMA systems.

例えば、5CPCシステムでは、雑音測定用の周波数ス
ロットを設けたシ、空スロットを利用して雑音電力を測
定し、目的スロットで(搬送波+雑音)電力を測定して
演算によりC/Nをめている。
For example, in a 5CPC system, a frequency slot is provided for noise measurement, the noise power is measured using the empty slot, the (carrier wave + noise) power is measured in the target slot, and the C/N is determined by calculation. There is.

しかし、この方法には、雑音電力を測定するスロットと
目的スロットとの間に雑音密度NOの差があれば測定結
果の信頼度が低くなるという欠点がある。
However, this method has the drawback that if there is a difference in noise density NO between the slot in which the noise power is measured and the target slot, the reliability of the measurement result will be low.

また、TDMAシステムでは、バースト中に搬送波再生
用として割当てられた無変調部分の一瞬時値を標本化し
、その標本化系列を統計的に処理することによりC7N
値を得ている(水野他、”TDMA衛星通信用CN比測
定方式”電子通信学会、信学技報C382−73,19
82,10)。しかし、この方式では、1バースト中に
含まれる無変調部分が少ないだめ、処理に充分な標本数
を得るまで長時間を要し、また、この時間中に信号レベ
ルが変動すると測定精度が低下する。短時間に測定を行
う為に、雑音測定用として無変調状態のタイムスロット
を設定する方式が考えられるが、この場合には伝送効率
が低下する。さらに、これらの方式では、キャリア位相
同期が確立した後でなければ測定できず、また、デジタ
ル変調波にしか適用できないという欠点がある。
In addition, in the TDMA system, the C7N
(Mizuno et al., “CN ratio measurement method for TDMA satellite communication,” Institute of Electronics and Communication Engineers, IEICE Technical Report C382-73, 19
82, 10). However, with this method, since the unmodulated portion included in one burst is small, it takes a long time to obtain a sufficient number of samples for processing, and measurement accuracy decreases if the signal level fluctuates during this time. . In order to perform measurements in a short period of time, a method of setting unmodulated time slots for noise measurement may be considered, but in this case, the transmission efficiency decreases. Furthermore, these methods have the disadvantage that they can only be measured after carrier phase synchronization has been established, and that they can only be applied to digitally modulated waves.

以上のように従来技術には、特別な測定条件が要求され
たり、測定精度が低いなどの欠点があった0 (発明の目的) 本発明は、上述した従来技術の欠点を解決するもので、
アナログおよびデジタル両システムに適用でき、信号(
受信波)が存在する期間内では常時測定可能であり、か
つ測定精度が高く、さらに回路構成も極めて簡単なC/
N測定法を提供することを目的とする。
As described above, the prior art has drawbacks such as requiring special measurement conditions and low measurement accuracy. (Objective of the Invention) The present invention solves the drawbacks of the prior art described above.
Applicable to both analog and digital systems, signal (
The C/C/C
The purpose is to provide a method for measuring N.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

(発明の構成及び作用) 本発明の特徴は、通過帯域幅が互いに異なる2つのフィ
ルタを用い、それぞれのフィルタの出力電力値の差から
C/N 直を測定することである。
(Structure and operation of the invention) A feature of the present invention is that two filters having different passband widths are used, and the C/N ratio is measured from the difference in the output power values of the respective filters.

第1図は本発明の一実施例であり、2つのフィルタとし
ては帯域通過フィルタ(BPF )を想定している。図
において、2は帯域幅B、を有する第1のBPF、3は
帯域幅B2を有する第2のBPF 。
FIG. 1 shows one embodiment of the present invention, and assumes that the two filters are band pass filters (BPF). In the figure, 2 is a first BPF having a bandwidth B, and 3 is a second BPF having a bandwidth B2.

6.7は電力測定器、10はC/N演算回路、11は復
調器、他の符号は信号を示す。ここで、第2のBPFの
帯域l@B 2は、通過する信号成分に歪を与えない範
囲で狭く(例えば、受信波の占有周波数帯域幅程度)設
定され、第1のBPFの帯域幅B、は他の信号の影響を
受けない範囲でB2より広く設定される。
6.7 is a power measuring device, 10 is a C/N calculation circuit, 11 is a demodulator, and other symbols indicate signals. Here, the band l@B2 of the second BPF is set to be narrow (for example, about the occupied frequency bandwidth of the received wave) within a range that does not cause distortion to the signal components passing through, and the band l@B2 of the first BPF is , is set wider than B2 within a range that is not affected by other signals.

入力信号1はRF倍信号たはRF倍信号周波数変換され
たIF倍信号どで、搬送波に雑音が相加された信号であ
る。この入力信号1が第1のBPF2を通過することに
よシ、入力信号1の雑音のみが帯域制限を受ける。この
第10BPF 2の出力信号5が第2のBPF 3によ
って、信号5の雑音のみがさらに帯域制限を受ける。第
1のBPF 2の出力信号5と第2のBPF 3の出力
信号40篭力が、それぞれ電力測定器6,7によって測
定され、測定1直8,9がC/N演算回路10に導かれ
る。
The input signal 1 is an RF multiplied signal or an IF multiplied signal obtained by converting the frequency of the RF multiplied signal, and is a signal in which noise is added to a carrier wave. By passing this input signal 1 through the first BPF 2, only the noise of the input signal 1 is band-limited. The output signal 5 of the 10th BPF 2 is passed through the second BPF 3, so that only the noise of the signal 5 is further band-limited. The output signal 5 of the first BPF 2 and the output signal 40 of the second BPF 3 are measured by power measuring devices 6 and 7, respectively, and the measurement 1 signals 8 and 9 are guided to the C/N calculation circuit 10. .

ここで、入力信号1の搬送波電力をC1雑音電力密匿を
No、iた第1のBPF 2の出力電力をPl、第2の
BPF 3の出力電力をP2とすれば、PI 。
Here, if the carrier power of the input signal 1 is C1, noise power concealment is No, the output power of the first BPF 2 with i is Pl, and the output power of the second BPF 3 is P2, then PI.

P2は次のように表わされる P 1” C+ No Bl ・・・(1)P 2−=
 C十No B2 − (2)さらに、式(11、(2
)よシ、C/Noは次式によってまる。
P2 is expressed as follows: P 1'' C+ No Bl... (1) P 2-=
C1No B2 − (2) Furthermore, equations (11, (2
), C/No is determined by the following formula.

本発明は上記(3)式の値をめるものである。The present invention calculates the value of the above equation (3).

入力信号1の占有帯域幅をBwとすれば、この帯域幅内
でのC/Nは次式によりまる。
If the occupied bandwidth of the input signal 1 is Bw, the C/N within this bandwidth is determined by the following equation.

C/N = c/(No −Bw) −(4)通信シス
テムにおいては、占有帯域幅Bwは回線設計上予め定ま
るものである。以上の演算を行うのがC/N演算回路1
oである。但し、上記説明で明らかなように、本実施例
において、c/Nをめる上での未知数はPlおよびPま
たけである。しだがって、C/N演算回路11は演算結
果を記憶したROMヲ、PI r B2のデノタル化し
た値をアドレスとして読出すことで達成できる。すなわ
ち、C/N演算回路10は、Pl+P2を・母うメータ
とする変換表であってもよい。
C/N = c/(No - Bw) - (4) In a communication system, the occupied bandwidth Bw is determined in advance based on line design. The C/N calculation circuit 1 performs the above calculations.
It is o. However, as is clear from the above description, in this embodiment, the unknown quantity in calculating c/N is Pl and P. Therefore, the C/N calculation circuit 11 can achieve this by reading out the digitalized value of PI r B2 from the ROM that stores the calculation result as an address. That is, the C/N arithmetic circuit 10 may be a conversion table in which Pl+P2 is a standard meter.

ここで、本実施例の変形について述べておく。Here, a modification of this embodiment will be described.

復調器11内には、復調して得られるベースバンド信号
の周波数帯域を制限するだめ、ベースバンドフィルタ(
通常低域通過フィルタ)を有する。
In the demodulator 11, a baseband filter (
usually has a low-pass filter).

このベースバンドフィルタ通過後の信号電力は、第2の
BPF 3の出力信号の電力P2に換算することができ
る。したがって、ベースバンドフィルタ出力の電力が得
られれば、これを信号9としてC/N演算回路11に与
え、第2のBPF 3を取除くことができる。ただし、
電力P2への換算を予め、またはC/N演算回路11で
行う必要がある。
The signal power after passing through this baseband filter can be converted into the power P2 of the output signal of the second BPF 3. Therefore, if the power of the baseband filter output is obtained, it can be applied as the signal 9 to the C/N calculation circuit 11 and the second BPF 3 can be removed. however,
It is necessary to convert it into electric power P2 in advance or by the C/N calculation circuit 11.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

本実施例はAGC(Automatic Ga1n C
ontrol )技術を用い、Pl もしくはB2のい
ずれか一方を常に既知の一定値になるよう制御し、他方
を測定することのみでC/Nをめるものである。第2図
(a)。
This example uses AGC (Automatic Galn C
C/N is determined by controlling either Pl or B2 to a known constant value and measuring the other by using the above technology. Figure 2(a).

(b)に構成例を示す。(、) 、 (b)例とも、第
1図の実施例の第1のBPF 2と第2のBPF 3と
の間に電力制御回路12を設けたものであり、(a)の
例ではB2を一定にするように、(b)の例ではP、を
一定にするように、電力制御回路12が信号電力の制(
財)を゛行う。
A configuration example is shown in (b). In both examples (, ) and (b), a power control circuit 12 is provided between the first BPF 2 and the second BPF 3 of the embodiment shown in FIG. The power control circuit 12 controls the signal power (
to carry out (goods).

(a)の例では、Plを測定することによりC/Nを得
ることができるが、その原理について述べる。
In the example (a), C/N can be obtained by measuring Pl, and the principle thereof will be described below.

第1のBPF 2通過後の搬送波電圧を01雑音電力密
度をN。とする。また、電力制御回路12通過後の搬送
波電力をC′、雑音電力密度をNO4とする。
The carrier voltage after passing through the first BPF 2 is 01, the noise power density is N. shall be. Further, the carrier wave power after passing through the power control circuit 12 is C', and the noise power density is NO4.

電力制御回路が線形動作を行っているとすれば、CとN
oの比(C/No)はC′とNO4の比(C′/Noり
に等しくなる。このような定義を行った場合、電力P1
及びB2は以下のようになる。
If the power control circuit operates linearly, C and N
The ratio of o (C/No) is equal to the ratio of C' and NO4 (C'/No).If such a definition is made, the power P1
and B2 are as follows.

P l= C’ +No’ ・B l−(5)P 2 
”= C’十No’・B2−(既知)・・・(6)この
場合の搬送波対雑音電力比(C/No)は :としてめ
ることができる。
P l= C' + No' ・B l-(5) P 2
"=C'10No'.B2-(known) (6) The carrier-to-noise power ratio (C/No) in this case can be expressed as:

式(7)で、C/Noをめる上での未知数はptのみで
ある。変換表17はP、の測定結果を、式(4)と(7
)を用いてC/Hに変換する機能を有しておシ、例えば
ROMによシ構成することができる。
In equation (7), the only unknown quantity in determining C/No is pt. Conversion table 17 converts the measurement results of P into equations (4) and (7
) and can be configured in a ROM, for example.

一方、(b)の例では、未知e P 2を測定すること
により、C/Nをめることができ、その原理は(a)例
と同じである。なお、本実施例では、第2図(b)に示
すように第2のBPF 3の入力電力を基に電力制御を
行う構成以外に、第1のBPF 2の出力電力を基に制
御を行う構成も可能である。即ち、前者はフィードバッ
ク型、後者はフィードフォワード型である。
On the other hand, in the example (b), the C/N can be reduced by measuring the unknown e P 2, and the principle is the same as in the example (a). Note that in this embodiment, in addition to the configuration in which power control is performed based on the input power of the second BPF 3 as shown in FIG. 2(b), control is performed based on the output power of the first BPF 2. Configuration is also possible. That is, the former is a feedback type, and the latter is a feedforward type.

第2図(、) 、 (b)に示す実施例では、構成要素
として電力制御回路を含んでいるが、通常の受信器では
、入力信号レベルが変動しても復調器が正常に動作でき
るように、電力制御回路が予め組み込まれている。また
雑音除去用として第1のBPFも通常組み込まれている
。従って、第2のBPFの迫力口のみで実現できるので
、価格の安い、構成の簡単なC/N方式と言える。さら
に、先に述べた復調器のペースバンドフィルり通過後の
電力カ;得られ、且つそれを基に電力制御回路が動作す
るような構成をとれば、受信器構成に新たに桟有ヒを追
カロする必要は無くなる。
The embodiment shown in Figures 2(,) and (b) includes a power control circuit as a component, but in a normal receiver, the demodulator is designed to operate normally even if the input signal level fluctuates. A power control circuit is pre-installed in the device. A first BPF is also usually incorporated for noise removal. Therefore, since it can be implemented using only the powerful port of the second BPF, it can be said to be a C/N method that is inexpensive and has a simple configuration. Furthermore, if a configuration is adopted in which the power after passing through the pace band filter of the demodulator described above is obtained and the power control circuit is operated based on it, a new advantage is added to the receiver configuration. There is no need to add extra calories.

(発明の効果) 以上説明したように、本発明によるC/N 111定方
式は、通過帯域幅の異なる2つのフィルり出力の電力差
によりC/Nを測定するものである。本方式は2つのフ
ィルタを備えるだけで簡単に構成でき、まだディノタル
及びアナログ通信両方式において常時C/Nを測定でき
るという利点を有している。
(Effects of the Invention) As explained above, the C/N 111 constant method according to the present invention measures the C/N based on the power difference between two fill outputs having different passband widths. This method can be easily constructed by only having two filters, and still has the advantage of being able to constantly measure C/N in both di-notal and analog communication systems.

さらに、電力制御回路を適用する方式では、この制御回
路が正常に(線形に)動作する範囲内であれば、受信器
入力レベルに関係なく一点の電力を測定することによυ
、CZN値を得ること妙ぶてきるO 本方式を5cpcシステムに適用する場合、2つのBl
 を大きくすれば@接チャネル信号の影響を受ける。通
常、5CPCシステムではガートバンドが設けられてい
るので、このバンドを含むようにB。
Furthermore, in the method that applies a power control circuit, as long as the control circuit is within the range that operates normally (linearly), the power at one point is measured regardless of the receiver input level.
, CZN value is obtained. When applying this method to a 5cpc system, two Bl
If it is made large, it will be influenced by the @ adjacent channel signal. Usually, a guard band is provided in the 5CPC system, so B should include this band.

の値を設定すればよい。これは、本方式をTDMAシス
テムに適用する場合にも同様であシ、各々のバーストが
送出されている間のみCハ測定を行う構成とすればよい
であろう。
Just set the value of . This also applies when this method is applied to a TDMA system, and it would be sufficient to adopt a configuration in which C measurement is performed only while each burst is being transmitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による雑音電力比測定装置のブロック図
、第2図(a)及び(b)は本発明による雑音電力比測
定装置の別の実施例のブロック図である。 1・・・雑音が相加された搬送波、2・・・第1のBP
F 。 3・・・第2のBPF、6,7,14,16・・・電力
測定器、10・・・C/N演算回路、11・・・復調器
、12・・・電力制御回路、17・・・変換表、その他
・・・各種信号。
FIG. 1 is a block diagram of a noise power ratio measuring device according to the present invention, and FIGS. 2(a) and 2(b) are block diagrams of another embodiment of the noise power ratio measuring device according to the present invention. 1... Carrier wave to which noise is added, 2... First BP
F. 3... Second BPF, 6, 7, 14, 16... Power measuring device, 10... C/N calculation circuit, 11... Demodulator, 12... Power control circuit, 17...・Conversion table, etc.・Various signals.

Claims (1)

【特許請求の範囲】[Claims] 通信システムの受信系に通過帯域幅の互いに異なる第1
のフィルタと第2のフィルタを備え、該第2のフィルタ
の通過帯域幅を受信信号に歪を与えない範囲で狭く設定
しかつ第1のフィルタの通過帯域幅を第2のフィルタの
通過帯域幅より広く設定し、該第1のフィルタの出力電
力と第2のフィルタの出力電力との関係から搬送波電力
対雑音電力比を得ることを特徴とする搬送波電力対雑音
電力比測定方式。
In the receiving system of the communication system, first
and a second filter, the passband width of the second filter is set to be narrow within a range that does not cause distortion to the received signal, and the passband width of the first filter is set to be narrower than the passband width of the second filter. A carrier wave power to noise power ratio measurement method characterized in that the carrier wave power to noise power ratio is set wider and the carrier wave power to noise power ratio is obtained from the relationship between the output power of the first filter and the output power of the second filter.
JP8388584A 1984-04-27 1984-04-27 System for measuring carrier wave power/noise power ratio Pending JPS60228970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8388584A JPS60228970A (en) 1984-04-27 1984-04-27 System for measuring carrier wave power/noise power ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8388584A JPS60228970A (en) 1984-04-27 1984-04-27 System for measuring carrier wave power/noise power ratio

Publications (1)

Publication Number Publication Date
JPS60228970A true JPS60228970A (en) 1985-11-14

Family

ID=13815108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8388584A Pending JPS60228970A (en) 1984-04-27 1984-04-27 System for measuring carrier wave power/noise power ratio

Country Status (1)

Country Link
JP (1) JPS60228970A (en)

Similar Documents

Publication Publication Date Title
JPS61240725A (en) Method and apparatus for measuring quality of wireless transmission channel
EP0411756B1 (en) Radio telephone receiver with gain control
US7088967B2 (en) Data-compensating power measurement
US4563681A (en) Tone receiver for digital data communication systems
US6232761B1 (en) Frequency estimating system
JPS60228970A (en) System for measuring carrier wave power/noise power ratio
JP3185175B2 (en) Serial / digital measuring device and cable measuring method
US4365346A (en) Built-in linearity testing arrangement for an FM radio system
JP2546523B2 (en) High-frequency amplifier circuit power consumption reduction method
US6178316B1 (en) Radio frequency modulation employing a periodic transformation system
JPH03278733A (en) Burst position detector
JPH0646013A (en) C/n measuring instrument
JPS59182659A (en) Circuit for measuring receiving signal versus noise power ratio
JP2000111641A (en) Dme system with broadcasting function
Liebscher et al. Frequency noise in travelling-wave tubes
JP2504214B2 (en) Automatic Level Control Method for Micro Satellite Communication Equipment
JP2531377B2 (en) Modulation method identification circuit
SU1195455A1 (en) Device for checking communication channels
JP3145492B2 (en) Method of measuring frequency of π / 4 shift QPSK TDMA burst wave
SU1035818A1 (en) Communication channel checking device
JPS6313150B2 (en)
JPH088540B2 (en) Multi-carrier control device
JPH0134351B2 (en)
JP2000036784A (en) Transmission power controller
JPS58148528A (en) Squelch circuit