JPS60228676A - Treatment for smoothing surface of rotor and stator vanes - Google Patents

Treatment for smoothing surface of rotor and stator vanes

Info

Publication number
JPS60228676A
JPS60228676A JP8192384A JP8192384A JPS60228676A JP S60228676 A JPS60228676 A JP S60228676A JP 8192384 A JP8192384 A JP 8192384A JP 8192384 A JP8192384 A JP 8192384A JP S60228676 A JPS60228676 A JP S60228676A
Authority
JP
Japan
Prior art keywords
vanes
tin
tic
rotor
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8192384A
Other languages
Japanese (ja)
Inventor
Masaharu Nakamori
正治 中森
Hisataka Kawai
久孝 河合
Ichiro Fukue
福江 一郎
Yoshiaki Tsukuda
嘉章 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8192384A priority Critical patent/JPS60228676A/en
Publication of JPS60228676A publication Critical patent/JPS60228676A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent sticking of foreign matter such as soot and dust on the surface of the rotor and stator vanes of an axial flow compressor or the like by forming a TiN-TiC layer on the vane surfaces by chemical vapor deposition under the same heat treating conditions as in the ordinary practice. CONSTITUTION:The rotor and stator vanes of the axial flow compressor consisting of, for example, a 12% Cr steel are cleaned for 3-10min according to the degree of contamination by an aq. 10-15% Na2CO3 soln. and are further cleaned by an alkali then washed. The vanes after washing are dried and are subjected to steam cleaning by a comercially marketed fluorine solvent. The cleaned vanes are then subjected to composite TiN-TiC coating to 10mum film thickness as target. The CVD conditions for TiN-TiC in this case are set at 900 deg.CX4hr. Gaseous N2 is sucked into the coating layer to cool the coated vanes down to about 100 deg.C, then the temp. in the vessel is increased to 650-750 deg.C and the vanes are subjected to a tempering treatment. The tempered vanes are cooled and the vane surfaces are lightly buffed to remove the deposits from the surface, by which the surfaces are finished.

Description

【発明の詳細な説明】 (従来技術の概要) コンプレッサー等に代表される軸流圧縮機は多くの機器
やプラントに用いられているが、その効率は翼表面粗度
と関係が深く、表面が平滑なものほど好ましいことが知
られている。
[Detailed Description of the Invention] (Summary of the Prior Art) Axial flow compressors, such as compressors, are used in many devices and plants, but their efficiency is closely related to the blade surface roughness. It is known that the smoother the material, the more preferable it is.

このため、各々の翼は機械加工や手研磨等種々の方法を
用いて表面を平滑化しているが、これら工程は多くの工
数を要すため、これが翼コスト上昇の要因となる欠点が
ある。
For this reason, the surface of each blade is smoothed using various methods such as machining and hand polishing, but these processes require a large number of man-hours, which has the disadvantage of increasing the cost of the blade.

また軸流送風機が浮遊粉塵等不純物を多量に含む環境下
で用いられた場合、翼表面にこれら物質が付着し、ター
ビン効率を低下させるばかりか、極端な場合は運転不能
となるので、できるだけ異物の付着・堆積し難いものが
望まれているが、付着機構そのものが複雑なこともあり
十分対策されていないのが現状である。
In addition, if an axial flow blower is used in an environment containing a large amount of impurities such as suspended dust, these substances will adhere to the blade surface and not only reduce the efficiency of the turbine, but in extreme cases, it will become impossible to operate. Although it is desirable to have a material that is difficult to adhere to and accumulate, there are currently no adequate countermeasures because the adhesion mechanism itself is complex.

(本発明の目的) 本発明の目的は、軸流圧縮機等の翼表面を平滑化し、ば
いじん等異物の付着を防止する動・静翼表面の平滑化処
理方法を提供せんとすることにある。
(Object of the present invention) An object of the present invention is to provide a method for smoothing the surfaces of movable and stationary blades of an axial flow compressor, etc., to prevent the adhesion of foreign matter such as soot and dust. .

(本発明の知見) 本発明は機械加工後の翼を翼材料に応じた適切な温度条
件下でTiN及びTiCの混合物を0VD(Chemi
cal Vapor Deposition =化学蒸
着法−以下OVDと記す)によりコーティングし、その
後簡単な研磨を行うことによって、平滑で付着物の付き
難い表面が得られることに着目してなされたものである
(Findings of the present invention) The present invention provides a method for preparing a blade after mechanical processing using a mixture of TiN and TiC at 0VD (Chemical) under appropriate temperature conditions depending on the blade material.
This method was developed based on the fact that a smooth surface that is resistant to deposits can be obtained by coating by cal vapor deposition (chemical vapor deposition (hereinafter referred to as OVD)) and then simple polishing.

(本発明の構成) 本発明は、翼材料に通常施こされる熱処理条件(温度9
時間)と同一温度1時間条件でTiNとTiCの複合C
VDコーティングを行うことを特徴とし、その後焼戻し
後、簡単な研磨を行うことにより翼表面を平滑化し、異
物の付着を防止するものである。
(Structure of the present invention) The present invention is based on heat treatment conditions (temperature 9
Composite C of TiN and TiC under the same temperature and 1 hour conditions as
The blade is characterized by VD coating, and then tempered and then simply polished to smooth the blade surface and prevent foreign matter from adhering to it.

(本発明の効果) 本発明は、次に示すような効果がある。(Effects of the present invention) The present invention has the following effects.

(1)従来の手研磨に比較し、短時間、安価に平滑化で
きる。
(1) Compared to conventional manual polishing, smoothing can be achieved in a shorter time and at a lower cost.

(2) 翼表面は平滑で硬いTiCとTiN混合物で覆
われるため、大気中の異物によるエロージョンや付着を
防止できる。
(2) The blade surface is covered with a smooth and hard TiC and TiN mixture, which prevents erosion and adhesion caused by foreign substances in the atmosphere.

(3)(1) 、 (2)の結果、圧縮機の効率向上、
保持が期待できる。
(3) As a result of (1) and (2), compressor efficiency improved;
We can expect retention.

(4) 翼材料の熱処理条件(温度2時間)にて、CV
Dコーティングを行うため、別途新しく熱処理を行う必
要がない。
(4) Under the heat treatment conditions of the blade material (temperature 2 hours), CV
Since D-coating is performed, there is no need for additional heat treatment.

(5)本処理層の硬度は著しく高いため、エロージョン
等の発生を防止することができる。
(5) Since the hardness of this treated layer is extremely high, occurrence of erosion etc. can be prevented.

(本発明の詳細な説明) 軸流圧縮機、動・静翼には12XOr鋼が使用されるこ
とが多いので、該材料を被処理物とした具体的態様を以
下説明する。
(Detailed Description of the Present Invention) Since 12XOr steel is often used in axial flow compressors and moving/stationary blades, a specific embodiment using this material as a workpiece will be described below.

被処理物である動・静翼を10〜15 X Ha、 C
o3水溶液によシ汚染程度に応じ3〜10分間洗浄し、
アルカリ洗浄後の動・静翼を更に水で3〜5分洗浄して
、翼表面のアルカリを除去した。
The movable and stationary blades to be treated are 10 to 15 X Ha, C
Wash with o3 aqueous solution for 3 to 10 minutes depending on the degree of contamination,
After the alkali cleaning, the moving and stationary blades were further washed with water for 3 to 5 minutes to remove the alkali on the blade surface.

次に翼を100〜120℃の温風に1〜3分間さらし、
乾燥した。乾燥後、翼をクロロセンNu(フッ素系溶剤
:米ダウケミカル社商品名)にて6〜5分間、蒸気洗浄
を行った。
Next, expose the wing to warm air at 100-120℃ for 1-3 minutes,
Dry. After drying, the blade was steam-cleaned for 6 to 5 minutes using chlorocene Nu (fluorinated solvent: trade name of The Dow Chemical Company, USA).

洗浄後、動・静翼をTiN −TiCコーテイング槽に
設置し、膜厚10μmを目標にTin −TiC複合コ
ーティングを実施した。Ti、N ’−Tie のOV
D反応式は下記の通りである。
After cleaning, the movable and stationary blades were placed in a TiN-TiC coating bath, and a Tin-TiC composite coating was applied with a target film thickness of 10 μm. Ti, N'-Tie's OV
The D reaction formula is as follows.

2TiOL4+ Hz + 5馬十〇H4→2TiON
 −1−8HOL4−鳥この反応条件は次のようにして
設定した。
2TiOL4+ Hz + 5 horses 10H4 → 2TiON
-1-8HOL4-Bird The reaction conditions were set as follows.

動・静翼の素材は12XOr鋼であるので、その焼入条
件を考慮し、TiN −TiCのOVD条件は、900
℃×4時間としだ。
Since the material of the dynamic and stationary blades is 12XOr steel, considering the quenching conditions, the OVD conditions for TiN-TiC are 900
℃×4 hours.

と\では、反応温度と時間を上記の如く決定したが、反
応温度と時間の関係は950℃、0.5時間の焼入条件
を基準とし、850〜1050℃、12時間〜α5時間
の間で次式によりめることができる。
In and\, the reaction temperature and time were determined as above, but the relationship between reaction temperature and time was based on the quenching conditions of 950°C and 0.5 hours, and 850 to 1050°C for 12 hours to α5 hours. can be determined by the following formula.

(T1+273)(20+10g t+ )=(T* 
+273)(20+1og ta )ただし、上式でT
、 、 tlは基準焼入条件の温度と時間(すなわち、
T、:950℃+ tl+= Q、5Hrである)’r
、 t ttはTiN −TiCのOVD 条件におけ
る温度。
(T1+273)(20+10g t+)=(T*
+273) (20+1og ta) However, in the above formula, T
, , tl are the temperature and time of the standard quenching conditions (i.e.,
T,:950℃+tl+=Q,5Hr)'r
, t tt is the temperature under OVD conditions of TiN-TiC.

時間である。It's time.

TiN −TiCコーテイング後、コーテイング槽中に
N、ガス を吸引し、6翼を100℃付近まで冷却し、
次にコーテイング槽内の温度を650〜750℃に上昇
させ、1時間の焼戻し処理を行った。
After TiN-TiC coating, N and gas were sucked into the coating tank, and the six blades were cooled to around 100°C.
Next, the temperature in the coating tank was raised to 650 to 750°C, and tempering treatment was performed for 1 hour.

コーテイング槽の加熱を終了し、必要に応じてN、ガス
を吹込み6翼の温度が200℃付近になった時点でコー
テイング槽よシ各翼を取出し、6翼の表面を軽くパフ研
磨(1〜2分間)し、表面付着物を除去することにより
、仕上げた。
After heating the coating tank, blow in N and gas as necessary. When the temperature of the 6 blades reaches around 200℃, take out each blade from the coating tank and lightly polish the surface of the 6 blades (1 ~2 minutes) and finishing by removing surface deposits.

こ\で使用した動・静翼は機械加工後のもので、その表
面粗度は6B(4,8〜6−6μm)程度であったが、
上記処理後は粗さの山谷が丸味を有しており、しかも6
日(2,4〜&6μm)s度に平滑化することができた
The moving and stationary blades used here were machined and had a surface roughness of about 6B (4.8 to 6-6 μm).
After the above treatment, the peaks and valleys of roughness are rounded, and
It was possible to smooth the surface within 2.4 to 6 μm.

本発明処理によるコーティング層の硬さは、1500〜
2000 mHvを示しており、基材(200〜300
mHv)に比べ極めて硬くなっていた。
The hardness of the coating layer treated according to the present invention is 1500~
2000 mHv is shown, and the base material (200-300
mHv).

又、電気炉を利用して、空気中で室温8500℃の繰返
し加熱冷却試験を実施したが、コーティング層にはクラ
ックや剥離の発生は認められず、すぐれた密着性と耐熱
性を有することが確認された。
In addition, repeated heating and cooling tests were conducted in air at a room temperature of 8,500°C using an electric furnace, but no cracks or peeling were observed in the coating layer, indicating that it has excellent adhesion and heat resistance. confirmed.

コーティング層の耐食性を調査するため、10X HO
L水溶液(室温)に50時間浸漬し、その変化を調査し
たが、特に著しい変化や減量は認められなかった。
To investigate the corrosion resistance of the coating layer, 10X HO
It was immersed in a L aqueous solution (room temperature) for 50 hours and its changes were investigated, but no particularly significant changes or weight loss were observed.

以上の性能確認の後、本発明による処理翼を実際の軸流
圧縮機一般動・静翼に組込み、約1年間試験的に運転し
た後、開放点検を行い、その結果以下の事実を確認した
After confirming the above performance, the processing blade according to the present invention was incorporated into an actual general moving/stationary blade of an axial flow compressor, and after test operation for about one year, an open inspection was conducted, and the following facts were confirmed as a result. .

従来(無処理)翼は付着物がかなり堆積しており、付着
物を水洗にて除去するとその表面には腐食発生による凹
凸が発生していたが、本発明による処理翼は付着物の付
着がほとんど認められず、平滑で、水洗後の翼表面には
コーティング層の剥離やクラック、腐食発生は認められ
なかった。
Conventional (untreated) blades have a considerable amount of deposits accumulated, and when the deposits are removed by washing with water, the surface becomes uneven due to corrosion, but the treated blades of the present invention have no deposits. Almost no peeling of the coating layer, cracks, or corrosion was observed on the blade surface after washing with water.

前述したように、従来翼はその平滑化に多大の労力を要
していたが、本発明処理は多数の翼を同時に短時間で処
理できるため、機械加工後の平滑化に要するコストを従
来翼に比べ約20%程度低減することができた。
As mentioned above, conventional blades required a great deal of effort to smooth, but the process of the present invention can process a large number of blades simultaneously in a short time, reducing the cost required for smoothing after machining compared to conventional blades. It was possible to reduce the amount by about 20% compared to .

415−415-

Claims (1)

【特許請求の範囲】[Claims] 翼材料に通常流こされる熱処理条件と同一の温度、時間
条件下で翼表面にTiNとTieを化学反応蒸着させて
複合TiN −T10層を形成させることを特徴とする
動・静翼表面の平滑化処理方法〇
The surface of moving and stationary blades is characterized by forming a composite TiN-T10 layer by chemically vapor depositing TiN and Tie on the blade surface under the same temperature and time conditions as the heat treatment conditions normally applied to blade materials. Smoothing processing method〇
JP8192384A 1984-04-25 1984-04-25 Treatment for smoothing surface of rotor and stator vanes Pending JPS60228676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8192384A JPS60228676A (en) 1984-04-25 1984-04-25 Treatment for smoothing surface of rotor and stator vanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8192384A JPS60228676A (en) 1984-04-25 1984-04-25 Treatment for smoothing surface of rotor and stator vanes

Publications (1)

Publication Number Publication Date
JPS60228676A true JPS60228676A (en) 1985-11-13

Family

ID=13759975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8192384A Pending JPS60228676A (en) 1984-04-25 1984-04-25 Treatment for smoothing surface of rotor and stator vanes

Country Status (1)

Country Link
JP (1) JPS60228676A (en)

Similar Documents

Publication Publication Date Title
US6454870B1 (en) Chemical removal of a chromium oxide coating from an article
US8603582B2 (en) Non-stick masking fixtures and methods of preparing same
US20070125459A1 (en) Oxide cleaning and coating of metallic components
EP0455419B1 (en) Coating steel articles
US6465040B2 (en) Method for refurbishing a coating including a thermally grown oxide
US6158957A (en) Thermal barrier removal process
US20070131255A1 (en) Method for removing a layer area of a component
US5944909A (en) Method for chemically stripping a cobalt-base substrate
JP4918253B2 (en) Rotating machine with surface smoothing film
CN105473821B (en) From the method for ceramic matrix composite removal barrier coat, adhesive coatings and oxide skin(coating)
JP2007009330A (en) Titanium treatment to minimize fretting
US20040045936A1 (en) Chemical milling of gas turbine engine blisks
US6328810B1 (en) Method for locally removing oxidation and corrosion product from the surface of turbine engine components
US4089736A (en) Method of removing Al-Cr-Co coatings from nickel alloy substrates
US6194026B1 (en) Superalloy component with abrasive grit-free coating
KR20190074352A (en) Experimental method for high temperature molten salt corrosion of superalloy
JPS60228676A (en) Treatment for smoothing surface of rotor and stator vanes
TW200522191A (en) Method for removing a composite coating containing tantalum deposition and arc sprayed aluminum from ceramic substrates
CN107604175B (en) Platinum recovery method
JPS61204376A (en) Method for smoothening surface of moving or stationary blade
JPS6345462B2 (en)
CN114318314A (en) Metal surface treatment process
CN116005165A (en) Method for removing powder embedded aluminized coating on surface of nickel-based superalloy
CN109023391A (en) The removal liquid of metal surface coat of aluminide and its preparation method and application method
CN117071019A (en) High-temperature oxidation resistant lifting method for main valve rod of in-service steam turbine