JPS60227525A - Automatic equalizer - Google Patents

Automatic equalizer

Info

Publication number
JPS60227525A
JPS60227525A JP8335584A JP8335584A JPS60227525A JP S60227525 A JPS60227525 A JP S60227525A JP 8335584 A JP8335584 A JP 8335584A JP 8335584 A JP8335584 A JP 8335584A JP S60227525 A JPS60227525 A JP S60227525A
Authority
JP
Japan
Prior art keywords
output
circuit
register
signal
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8335584A
Other languages
Japanese (ja)
Inventor
Ikuo Iizuka
飯塚 育生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8335584A priority Critical patent/JPS60227525A/en
Publication of JPS60227525A publication Critical patent/JPS60227525A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/06Control of transmission; Equalising by the transmitted signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To easily integrate circuits and to improve the equalizing accuracy and operation stability of an automatic equalizer, by performing the operation in the automatic equalizer through simple digital operation by using a ternary level taken by bipolar codes. CONSTITUTION:A received signal from the signal input terminal 1 of an automatic equalizer and an equalizing signal from an LPF11 are added to each other at an analog adder 3 and the output of the adder 3 is quantized to a ternary code or a code higher than the ternary code by AD converting devices 12 and 13 and further quantized to ternary codes of 1, 0, and -1 at a decoding circuit 4. The output of the circuit 4 is delayed by a period equal to the bit cycle of a bipolar code at unit delaying circuits 5-1-5-3 and each tap output A1-A3 is inputted to arithmetic circuits GACs 6-1-6-3. Moreover, output of the device 13 is inputted to the GACs 6-1-6-3 and tap coefficients corrected in accordance with the change in tap are outputted from arithmetic circuits CADs 7-1-7-3. Outputs of the circuits 5-1-5-3 are multiplied by the tap coefficients by multipliers 8-1- 8-3 and DA converted 10. The converted output is inputted into the adder 3, and thus, the accuracy and operation of the equalizer are improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 こノ発明はバイポーラパルスの形で伝送される符号の符
号量干渉による波形瓦れを除去するだめの自動等化器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an automatic equalizer for removing waveform distortion caused by code amount interference of codes transmitted in the form of bipolar pulses.

〔従来技術〕[Prior art]

第1図は従来の自動等化器を示すブロック図であって、
(l)は信号入力端子、(2)は信号出力端子、(3)
はアナログ加算器、(4)はバイポーラ信号の復号回路
(図面記号をDECとする)、(5−1) 、 (5−
2) 。
FIG. 1 is a block diagram showing a conventional automatic equalizer,
(l) is a signal input terminal, (2) is a signal output terminal, (3)
is an analog adder, (4) is a bipolar signal decoding circuit (the drawing symbol is DEC), (5-1), (5-
2).

・・・(5−N)はそれぞれ単位遅延回路(図面記号を
Dとする)、(6−1)’ 、 (6−2) 、・・・
(6−N)はそれぞれ演算回路であって仮にGAC回路
と称し、(7−1) 。
... (5-N) are unit delay circuits (drawing symbol is D), (6-1)', (6-2), ...
(6-N) are arithmetic circuits, tentatively called GAC circuits, and (7-1).

(7−2’) 、・・・(7−N)はそれぞれ演算回路
であって仮にCAD回路と称しく8−1) 、 (8−
2) 、・・・(8−N)はそれぞれ掛算器である。
(7-2'), ... (7-N) are arithmetic circuits, which are tentatively called CAD circuits.8-1), (8-
2) , . . . (8-N) are each multipliers.

またx (t)は入力信号波形(tは時間)、y (t
)は出力信号波形、A (t)はy (t)をDEC(
41によシ閾値判定してバイポーラ信号に復号したもの
で、(1゜0、−1)の3値のうちのいずれかで表わさ
れる。
Also, x (t) is the input signal waveform (t is time), y (t
) is the output signal waveform, A (t) is y (t) by DEC (
41, and is decoded into a bipolar signal by threshold value judgment, and is expressed as one of the three values (1°0, -1).

T=l/foは送信パルス間隔であシ、各単位遅延回路
(5−1) 、 (5−2) 、・・・(5−N)では
それぞれTだけの遅延時間を与える。
T=l/fo is the transmission pulse interval, and each unit delay circuit (5-1), (5-2), . . . (5-N) provides a delay time of T.

第1図に示す回路では y (tl = x (tl+Σ’CiA (t + 
iT ) ・・・(1)の帰還演算が行われ、バイポー
ラパルスの反射によって生ずる符号量干渉を除去した波
形y (tlが出力される。但し式(1)においてCi
はタップ係数と称する係数である。まだ、A(t)の値
はiT≦1<(1+1)T(iは整数)については一定
である。
In the circuit shown in FIG. 1, y (tl = x (tl+Σ'CiA (t +
iT )...The feedback calculation in (1) is performed, and the waveform y (tl), which removes the code amount interference caused by the reflection of the bipolar pulse, is output. However, in equation (1), Ci
is a coefficient called a tap coefficient. Still, the value of A(t) is constant for iT≦1<(1+1)T (i is an integer).

等化の評価関数φを2乗誤差とすると φ=Σh2(t−jT)・・・(2) j=1 で与えられる。但し、h (tIはインパルス応答であ
シ時刻tに主パルスが受信されるものとする。タップ係
数Ciはφがなるべく小さく保たれるよう修正される。
When the equalization evaluation function φ is a squared error, it is given by φ=Σh2(t−jT) (2) j=1. However, it is assumed that h (tI is an impulse response and the main pulse is received at time t. The tap coefficient Ci is modified so that φ is kept as small as possible.

このとき、タップ係数C1の修正アルゴリズムとして最
急降下法を用いると、 C,(新)=C1(現)−α(δφ/δc、 )・・・
(3)δφ/δC1−j王。y(t−jT)A(t−J
T+iT)・・・(4)に従って修正すれば良い。なお
、式(4)は式il+で表される第1図の回路にインパ
ルスが入力されたとして導出している。また、インパル
ス入力の影響は、厳密に言えばいつまでも残るので、理
想的には式(4]に示すようにj=〜までの和をめる必
要があるが、均実には周期的な孤立パルスをトレーニン
グ信号として用いるため、その周期内で和を終了する。
At this time, if the steepest descent method is used as the correction algorithm for the tap coefficient C1, C, (new) = C1 (current) - α (δφ/δc, )...
(3) δφ/δC1-j king. y(t-jT)A(t-J
T+iT)...It may be corrected according to (4). Note that equation (4) is derived assuming that an impulse is input to the circuit of FIG. 1 expressed by equation il+. Strictly speaking, the influence of impulse input remains forever, so ideally it is necessary to calculate the sum up to j = ~ as shown in equation (4), but in order to be uniform, periodic isolated pulses Since this is used as a training signal, the summation is completed within that period.

第1図のGAC回路では式(4)の演算を行ってδφ/
δCiを算出し、CAD回路ではとのδφ/δCiO値
を用いて式(3)の演算を行ってタップ係数C1の修正
を行う。
In the GAC circuit shown in Figure 1, the calculation of equation (4) is performed to obtain δφ/
δCi is calculated, and the CAD circuit calculates equation (3) using the δφ/δCiO value to correct the tap coefficient C1.

しかし、アナログ回路によ9式(4)の演算を行うこと
は簡単でないので、従来は式(4)の右辺においてコニ
O以外の項を省略してδφ/δCH= y(t)A (
t+iT’)・・・(5)によって近似するか、又はア
ナログ積分器によって式(4)の演算を行っていた。更
に式(5)の演算を行うのにアナログの掛算器を用いる
場合と、更に簡略化してy(t)を+1又は−1のいず
れかによって近似する(y(t)の極性だけを用いる)
場合とがあった。アナログの積分器又は乗算器は回路が
複雑であって精度が悪く、特にアナログ積分器は直流バ
イアスの一下リフトによって誤差を生じ、また式(5)
の近似精度が充分でないために、この近似を用いた場合
等化器の収束が遅くなるという欠点があった。
However, it is not easy to calculate Equation 9 (4) using an analog circuit, so in the past, terms other than KoniO were omitted on the right side of Equation (4) and δφ/δCH= y(t)A (
t+iT')...(5), or the equation (4) is calculated using an analog integrator. Furthermore, there are cases in which an analog multiplier is used to perform the calculation of equation (5), and y(t) is approximated by either +1 or -1 (using only the polarity of y(t)) for further simplification.
There was a case. Analog integrators or multipliers have complicated circuits and poor accuracy. In particular, analog integrators cause errors due to a downward lift of the DC bias, and equation (5)
Since the accuracy of the approximation is not sufficient, the convergence of the equalizer becomes slow when this approximation is used.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、この発明では出力係号y (tl
をディジタル信号に俊喪した上でGAC回路、CAD回
路、掛算器等における演算をディジタル演算とすること
により、等化精度が高く、かつ動作が安定な自動等化器
を提供するものである。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and in this invention, the output coefficient y (tl
The present invention provides an automatic equalizer with high equalization accuracy and stable operation by converting the signal into a digital signal and performing calculations in the GAC circuit, CAD circuit, multiplier, etc. as digital calculations.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図はこの発明の一実施例を示すブロック図で、第1
図に示す従来の等化器においてN=3である場合に対応
するものである。第2図において第1図と同一符号は同
−又は相当部分を示す。(lj、 l。
FIG. 2 is a block diagram showing one embodiment of the present invention.
This corresponds to the case where N=3 in the conventional equalizer shown in the figure. In FIG. 2, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. (lj, l.

GAC回路(6−1)、 (6−2)、 (6−3)、
CAD回路(7−1)。
GAC circuit (6-1), (6-2), (6-3),
CAD circuit (7-1).

(7−2)、、 (7−3)、掛算器(8−1) 、 
(8−2) 、 (8−3)においてはディジタル演算
が行われる。(9)は加算器、(I(jはD/A変俣器
、α9はローパスフィルタ、(12+はA/D 変換器
、(131は信号形態変換回路であシ、信号Yは信号y
 (t)がA/D変換器[121によってディジタル信
号に変換された上、更に回路(13)によって符号付2
進数(負の数は補数表示)の形に変換された信号を示す
。この明?tAli書では1121と(13)とを総称
してアナログディジタル変換装随という。
(7-2), (7-3), multiplier (8-1),
Digital operations are performed in (8-2) and (8-3). (9) is an adder, (I (j is a D/A transformer, α9 is a low-pass filter, (12+ is an A/D converter, (131 is a signal format conversion circuit, and signal Y is a signal
(t) is converted into a digital signal by the A/D converter [121, and further converted into a signed 2 signal by the circuit (13).
Shows a signal converted to a base number (negative numbers are represented as complements). This light? In the tAli book, 1121 and (13) are collectively referred to as analog-to-digital conversion equipment.

第3図はy(t)とYとの関係を示し、第3図に示す例
ではYは符号共で2進4ビツトで表わきれる。
FIG. 3 shows the relationship between y(t) and Y. In the example shown in FIG. 3, Y can be represented by 4 binary bits, including the sign.

復号回路(4)は第1図の復号回路(41に相当するが
、その入力がディジタル信号であるためゲート回路で構
成され、Y≧4のときA=+1.3≧Y≧−3のときA
=0.−4≧YのときAニー1を出力する。
The decoding circuit (4) corresponds to the decoding circuit (41) in Fig. 1, but since its input is a digital signal, it is composed of a gate circuit, and when Y≧4, A=+1.3≧Y≧-3 A
=0. When −4≧Y, A knee 1 is output.

但し3値信号Aは2ビツトの2値信号で表し+1=rl
OJ、0=r00J、−1=rotJとする。信号Aが
単位遅延回路によってTずつ遅延され、A−□(第1図
のA(t+T)と同様)、A−2(第1図のA(t+2
T)と同様)、A−3の如くなることは第1図の場合と
同様である。2は加算器(9)の出力%Z(りはローパ
スフィルタ(31の出力、Y (t) = x(tl+
z(tl・・・(6は第1図における式(1)に相当す
る。
However, the ternary signal A is expressed as a 2-bit binary signal +1=rl
OJ, 0=r00J, -1=rotJ. Signal A is delayed by T by the unit delay circuit, A-□ (same as A(t+T) in Figure 1), A-2 (A(t+2) in Figure 1),
T) and A-3 are the same as in the case of FIG. 2 is the output %Z of the adder (9) (is the output of the low-pass filter (31), Y (t) = x (tl +
z(tl...(6 corresponds to equation (1) in FIG. 1).

また、第1図における式(4)はGi=jムYjAj−
i ・・・(7)となる。ここにiはタップ位置、jは
孤立パルス到来以降の時刻を表す。ところでA、、の値
は(+1.0.−1’)の3値に限定されるので実行す
ることができる。
Furthermore, equation (4) in FIG.
i...(7). Here, i represents the tap position, and j represents the time after the arrival of the isolated pulse. By the way, since the values of A, , are limited to three values (+1.0.-1'), this can be executed.

第4図は第2図のGAC回路の一実施例を示すブロック
図で、図において04はフルアダーで構成される算術演
算ユニット(以下ALUと略記する)、A9はレジスタ
である。またYj は4ビツト、レジスタ09の入出力
は8ビツトである例が示されている。Aj□=+1の場
合はレジスタa9の内容にYjを加算してGiとし、A
j−4=−1の場合はレジスタ09の内容からY・を減
算してG、とし、Aj−i =Oの場合はALU (1
4を動作させず、前回の01 をそのまま今回のG・ 
とじて出力する。
FIG. 4 is a block diagram showing an embodiment of the GAC circuit of FIG. 2, in which 04 is an arithmetic operation unit (hereinafter abbreviated as ALU) composed of a full adder, and A9 is a register. Further, an example is shown in which Yj is 4 bits and the input/output of register 09 is 8 bits. If Aj□=+1, Yj is added to the contents of register a9 to make Gi, and A
When j-4=-1, subtract Y from the contents of register 09 to get G, and when Aj-i=O, ALU (1
4 is not operated, and the previous G.
Bind and output.

第5図は第2図のCAD回路の一実施例を示すブロック
図で、00はALU 、αηはレジスタである。レジス
タaηにはタップ係数Ciが格納される。式(3)に対
応しCi (新)=ct(現)−αG ・・・(8)の
演算が行われるが、係数αをα=2 、(L=1〜7の
整数)の値に限定することによって、αG、の演算を行
うかわシにC4のビットに対しGiのビットを2進り桁
だけ下位へずらすだけでALU (1Gの右方の入力を
αGiにすることができる。
FIG. 5 is a block diagram showing an embodiment of the CAD circuit shown in FIG. 2, where 00 is an ALU and αη is a register. Tap coefficient Ci is stored in register aη. Corresponding to equation (3), Ci (new) = ct (current) - αG ... (8) is calculated, but the coefficient α is set to α = 2, (L = integer from 1 to 7). By limiting, instead of calculating αG, the right input of ALU (1G) can be made αGi by simply shifting the bits of Gi by binary digits lower than the bits of C4.

式(1)におけるC、A (t + iT )に対応し
て第2図の掛算器(8−i)ではC1A−iの演算遊行
われる。第6図は第2図の掛算器(8−i)の一実施例
を示す接続図で、tlljはオアゲート、aト膚はアン
ドゲート、(ロ)〜(ロ)はエクトクルーシブオアゲー
トである。先に説明したようにA−1は3値で+1は「
1o」すなわち(AO=rlJ、A1=rOJ)0は「
Oo」すなわち(Ao=rOJ、A□=rOJ)、−1
は「01」すなわち(Ao=rOJ 、A、=r I 
J)で表わされるので、A 、=0のときは、オアゲー
1 ト0υの出力が「0」となシ、すべてのアンドゲート四
〜(ハ)の出力は「0」となり、かつA□がrOJであ
るので、すべてのエクスクル−シブオアゲート(イ)〜
(ロ)の出力が「0」となシ、これがC4A−41:な
る、A−i=1及びA1−−1の場合は、アンドゲート
(至)〜(ハ)の出力はCiの各ビットのままで、1i
=1のときはA□が「0」であるので01 の各ビット
はそのままC,A、の各ビットになり、A−。
Corresponding to C and A (t + iT) in equation (1), the multiplier (8-i) in FIG. 2 performs an operation of C1A-i. FIG. 6 is a connection diagram showing an embodiment of the multiplier (8-i) in FIG. be. As explained earlier, A-1 is 3-valued and +1 is "
1o", that is, (AO=rlJ, A1=rOJ)0 is "
Oo'', i.e. (Ao=rOJ, A□=rOJ), -1
is “01”, that is, (Ao=rOJ , A,=r I
J), so when A = 0, the output of OR game 1 and 0υ is "0", the outputs of all AND gates 4 to (C) are "0", and A□ is Since rOJ, all exclusive or gates (a) ~
If the output of (b) is "0", this becomes C4A-41: If A-i = 1 and A1--1, the output of AND gates (to) to (c) is each bit of Ci. Leave it as 1i
When =1, A□ is "0", so each bit of 01 becomes each bit of C, A, and A-.

=−1のとさはA□が「1」であるのでC1の各ビット
の論理が反転されてC,A 、の各ビットとなる。
=-1, since A□ is "1", the logic of each bit of C1 is inverted and becomes each bit of C, A, and so on.

 −1 第7図は第2図の加算器(9)の一実施例を示すブロッ
ク図で、鏝、 cmはそれぞれALUであり、Z=CI
A−1” C2A−2十C3A−3・・・(9)の加算
が行われる。
-1 Figure 7 is a block diagram showing an embodiment of the adder (9) in Figure 2, where trowel and cm are ALUs, and Z=CI
A-1''C2A-20C3A-3...(9) is added.

式(9)の右辺は式(1)のΣC,A (t + iT
 )に相当する。
The right side of equation (9) is ΣC,A (t + iT
).

i=1 1 式(9)で演算された2の値がD/A変侠器adにより
てアナログ信号に変換されローパスフィルタαJを経て
アナログ加算器(3)により式(6)の演算が行われる
i=1 1 The value of 2 calculated by equation (9) is converted into an analog signal by the D/A converter ad, passes through the low-pass filter αJ, and then the calculation of equation (6) is performed by the analog adder (3). be exposed.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、バイポーラ符号のとる
3値レベル性を用いて、自動等化器内での演算を簡単な
ディジタル演算にしたので、回路の集権化が容易であり
、等化精度、動作安定度が良好である。また、ディジタ
ル演算であるため、アルゴリズムの変更に対処し易い。
As described above, according to the present invention, the three-level nature of the bipolar code is used to make the calculations in the automatic equalizer simple digital calculations, making it easy to centralize the circuit and Good accuracy and operational stability. Furthermore, since it is a digital calculation, it is easy to handle changes in the algorithm.

【図面の簡単な説明】 第1図は従来の自動等什器を示すブロック図、第2図は
この発明の一実施例をボすブロック図、第3図は第2図
におけるアナログディジタル変換装置の特性を示す図、
第4図は第2図のGAC回路の一実施例を示すブロック
図、第5図は第2図のCAD回路の一実施例を示すブロ
ック図、巣6図は第2図の掛算器の一実施例を示す接続
図、第7図は第2図の加算器の一実施例を示すブロック
図である。 (1)・・・信号入力端子、(2)・・・信号出力端子
、(3)・・・アナログ加算器、(4)・・・復号回路
、(5−1) 、 (5−2) 。 (5−3)・・・それぞれ単位遅延回路、(6−1) 
、 (6−2) 。 (6−3)・・・それぞれGAC回路、(7−1) 、
 (7−2)。 (7−3)・・・それぞれCAD回路、(8−1) 、
 (8−2) 。 (8−3)・・・それぞれ掛算器、(9)・・・加算器
、+lt1・・・D / A変換器、fill・・・ロ
ーパスフィルタ、(12、(t*・・・アナログディジ
タル変換装置。 尚、各図中同−符−夛は同−又は相当部分を示す、第3
図 Y 第4図 第5図
[Brief Description of the Drawings] Fig. 1 is a block diagram showing a conventional automatic fixture, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a block diagram of an analog-to-digital converter in Fig. 2. A diagram showing the characteristics,
4 is a block diagram showing an embodiment of the GAC circuit in FIG. 2, FIG. 5 is a block diagram showing an embodiment of the CAD circuit in FIG. 2, and FIG. Connection diagram showing an embodiment. FIG. 7 is a block diagram showing an embodiment of the adder in FIG. 2. (1)...Signal input terminal, (2)...Signal output terminal, (3)...Analog adder, (4)...Decoding circuit, (5-1), (5-2) . (5-3)...each unit delay circuit, (6-1)
, (6-2). (6-3)... GAC circuit, (7-1),
(7-2). (7-3)... CAD circuit, (8-1), respectively
(8-2). (8-3)...Multiplier, (9)...Adder, +lt1...D/A converter, fill...Low pass filter, (12, (t*...Analog-to-digital conversion) Apparatus. In addition, the same symbols in each figure indicate the same or corresponding parts.
Figure Y Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 バイポーラ符号の形で伝送された信号を入力して、入力
信号の波形を補正する自動等化器において、 受信信号と等化信号を加算するアナログ加算器と、 このアナログ加算器の出力信号を8値以上の多値に量子
化するアナログディジタル変換装置と、このアナログデ
ィジタル変換装置の出力を更にrlJ、rOJ、r−I
Jの3値に量子化する復号回路と、 単位遅延回路の複数段縦続によって構成され、上記復号
回路の出力を入力して各単位遅延回路ごとに上記バイポ
ーラ符号のビット周期に等しい遅延量を与えて出力し、
各単位遅延回路ごとにタップを構成転遅延装置と、 上記各タップごとに設けられるレジスタであって、当該
単位遅延回路の出力が上記3値のうちのrlJ、r−I
J、rOJのいずれかである場合に従うて上記レジスタ
の内容に上記アナログディジタル変換装置の出力がそれ
ぞれ加算され、減算され、又は上記レジスタの内容に変
化を与えないよう制御される各レジスタと、 この各レジスタごとに設けられ、当該レジスタの内容に
従って当該タップのタップ係数を修正して出力する各デ
ィジタル演算回路と、 この各ディジタル演算回路の出力に、当該タップの単位
遅延回路の出力を掛算する各掛算器と、すべての掛算器
の出力を加算する加算器と、この加算器の出力をアナロ
グ電圧に変換するディジタルアナログ変換器と、 とのディジタルアナログ変換器の出力を平滑化して上記
等化信号とするローパスフィルタとを備えたことを特徴
とする自動等化器。
[Claims] An automatic equalizer that inputs a signal transmitted in the form of a bipolar code and corrects the waveform of the input signal, comprising: an analog adder that adds a received signal and an equalized signal; an analog-to-digital converter that quantizes the output signal of the converter into multi-values of 8 or more;
It is composed of a decoding circuit that quantizes J into three values and a plurality of unit delay circuits connected in series, and receives the output of the decoding circuit and gives each unit delay circuit a delay amount equal to the bit period of the bipolar code. and output
a delay device configured to invert taps for each unit delay circuit; and a register provided for each tap, the output of the unit delay circuit being one of the three values rlJ, r-I.
Each register is controlled such that the output of the analog-to-digital converter is added to or subtracted from the contents of the register, or the contents of the register are not changed depending on whether the register is J or rOJ; Each digital arithmetic circuit is provided for each register and corrects and outputs the tap coefficient of the tap according to the contents of the register, and each digital arithmetic circuit multiplies the output of each digital arithmetic circuit by the output of the unit delay circuit of the tap. a multiplier, an adder that adds the outputs of all the multipliers, a digital-analog converter that converts the output of this adder into an analog voltage, and smoothes the output of the digital-analog converter to obtain the above equalized signal. An automatic equalizer comprising: a low-pass filter;
JP8335584A 1984-04-25 1984-04-25 Automatic equalizer Pending JPS60227525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8335584A JPS60227525A (en) 1984-04-25 1984-04-25 Automatic equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8335584A JPS60227525A (en) 1984-04-25 1984-04-25 Automatic equalizer

Publications (1)

Publication Number Publication Date
JPS60227525A true JPS60227525A (en) 1985-11-12

Family

ID=13800125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8335584A Pending JPS60227525A (en) 1984-04-25 1984-04-25 Automatic equalizer

Country Status (1)

Country Link
JP (1) JPS60227525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007788A1 (en) * 1987-03-26 1988-10-06 Unisys Corporation I-q channel adaptive line enhancer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007788A1 (en) * 1987-03-26 1988-10-06 Unisys Corporation I-q channel adaptive line enhancer

Similar Documents

Publication Publication Date Title
US5353306A (en) Tap-weight controller for adaptive matched filter receiver
TW484285B (en) Data receiver including hybrid decision feedback equalizer
US9219493B1 (en) Analog-to-digital converter with expected value nonlinearity calibration
US5272727A (en) Adaptive maximum likelihood sequence estimator using channel estimators of respective order of impulse response
WO1980001863A1 (en) Coefficient tap leakage for fractionally-spaced equalizers
JP3169646B2 (en) Cross polarization interference compensator
WO1999044289A1 (en) Digital to analogue converter with dynamic element matching
US6067327A (en) Data transmitter and method therefor
US20140159929A1 (en) Delta-modulation signal processors: linear, nonlinear and mixed
US4769808A (en) Method of cancelling echoes in full-duplex data transmission system
JP2687842B2 (en) Signal conversion system and decimation filter
NO143776B (en) DIGITAL / ANALOG CONVERTER.
EP0172532B1 (en) Waveform shaping apparatus
US3573624A (en) Impulse response correction system
US6584159B1 (en) Mixed-mode next/echo canceller for pulse amplitude modulated (PAM) signals
JPS5949747B2 (en) Digital data transmission equipment
US3633014A (en) Digital equalizer in which tap adjusting signals are derived by modifying the signal code format
JPS60227525A (en) Automatic equalizer
JPH0310425A (en) Transversal filter control circuit
JP2718454B2 (en) Digital 2 BIQ transmitter with high accuracy and linear time domain response
JP2795053B2 (en) Demodulator
JPS60263525A (en) Digital-analog converter
JPH03216024A (en) D/a converter
JP2591279B2 (en) Echo canceller circuit
JPH06342367A (en) Multiplying circuit