JPS6022718Y2 - Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration - Google Patents

Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration

Info

Publication number
JPS6022718Y2
JPS6022718Y2 JP4428084U JP4428084U JPS6022718Y2 JP S6022718 Y2 JPS6022718 Y2 JP S6022718Y2 JP 4428084 U JP4428084 U JP 4428084U JP 4428084 U JP4428084 U JP 4428084U JP S6022718 Y2 JPS6022718 Y2 JP S6022718Y2
Authority
JP
Japan
Prior art keywords
polymer piezoelectric
piezoelectric film
ultrasonic transducer
curved
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4428084U
Other languages
Japanese (ja)
Other versions
JPS59166600U (en
Inventor
憲賢 中鉢
恒正 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4428084U priority Critical patent/JPS6022718Y2/en
Publication of JPS59166600U publication Critical patent/JPS59166600U/en
Application granted granted Critical
Publication of JPS6022718Y2 publication Critical patent/JPS6022718Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は湾曲型高分子圧電膜を位相配列した超音波トラ
ンスジューサに関する。
[Detailed Description of the Invention] The present invention relates to an ultrasonic transducer in which a curved polymeric piezoelectric film is phase-aligned.

高分子圧電膜は、低い音響インピーダンスと好ましい可
撓性とを有することにより、液体中超音波用、更に空中
超音波用のトランスジューサとしての応用が最近なされ
ている。
Due to their low acoustic impedance and favorable flexibility, polymeric piezoelectric films have recently found application as transducers for ultrasonic waves in liquids, as well as for ultrasonic waves in air.

ところが、この種のトランスジューサにおいては、無機
圧電材料によるトランスジューサを用いた従来の装置へ
の適用を計る場合、電気音響変換能率が十分でない。
However, this type of transducer does not have sufficient electroacoustic conversion efficiency when applied to conventional devices using transducers made of inorganic piezoelectric materials.

本考案は、このような高分子圧電膜からなり電気音響変
換能率の向上を計り得た液体中、又は空中超音波トラン
スジューサを提供することを目的とする。
An object of the present invention is to provide an ultrasonic transducer in liquid or in air that is made of such a polymeric piezoelectric film and can improve electroacoustic conversion efficiency.

本考案によれば、表裏両面に電極を付着した複数の高分
子圧電膜の伸縮振動を利用する多数配列構成の高分子圧
電膜超音波トランスジューサにおいて、前記複数の高分
子圧電膜が夫々に両端を固定され曲面状とされて半波長
の間隔で配列されており、且つ各々の高分子圧電膜から
放射される超音波が受信点で位相整合条件を満足すべく
各々の高分子圧電膜の表裏の電極が電気的に並列に接続
されてなる超音波トランスジューサが提供される。
According to the present invention, in a polymer piezoelectric membrane ultrasonic transducer having a multi-array configuration that utilizes the stretching vibration of a plurality of polymer piezoelectric membranes having electrodes attached to both the front and back sides, the plurality of polymer piezoelectric membranes each have both ends. They are fixed and curved and arranged at half-wavelength intervals, and the ultrasonic waves emitted from each polymeric piezoelectric film are arranged on the front and back sides of each polymeric piezoelectric film so that the phase matching condition is satisfied at the receiving point. An ultrasonic transducer is provided having electrodes electrically connected in parallel.

以下本考案を図面を参照しつつ詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図に示すように延伸分極処理をほどこしたポリフッ
化ビニリデンなど公知の高分子圧電膜1の表裏に金属電
極2,2′を付着し、この表裏電極間に交流電圧eを印
加すれば、圧電膜1には膜面に平行な伸縮振動3,3′
が生じる。
As shown in FIG. 1, metal electrodes 2 and 2' are attached to the front and back sides of a known polymer piezoelectric film 1 such as polyvinylidene fluoride that has been subjected to a stretch polarization treatment, and an alternating current voltage e is applied between the front and back electrodes. The piezoelectric film 1 has stretching vibrations 3, 3' parallel to the film surface.
occurs.

そこでこの圧電膜1を第2図に示すように湾曲させて、
その両端4,4′を固定すると、膜の伸縮振動を膜面に
垂直なピストン運動5に変換し得、従って膜面を音響放
射面として音波を放射することができる。
Therefore, this piezoelectric film 1 is curved as shown in FIG.
When both ends 4, 4' are fixed, the expansion and contraction vibration of the membrane can be converted into a piston movement 5 perpendicular to the membrane surface, so that sound waves can be radiated using the membrane surface as a sound radiation surface.

これを利用したのが湾曲型変換子である。A curved converter takes advantage of this.

第3図は本考案による一具体例であり、第2図で示した
ような湾曲型変換子law lb、let・・・・・
・。
FIG. 3 shows a specific example of the present invention, in which curved converters such as those shown in FIG. 2, law lb, let...
・.

1nが複数個、ある間隔をおいて重ねて配置されている
A plurality of 1n are arranged one on top of the other at a certain interval.

6,6′は入出力用電気端子であり、交流電圧に接続さ
れる。
Reference numerals 6 and 6' indicate input/output electrical terminals, which are connected to an alternating current voltage.

ここで各湾曲型変換子は独立な振動モードで励振される
ように構威されている。
Here, each curved transducer is configured to be excited in an independent vibration mode.

各々の湾曲型変換子の分極方向を同一方向にそろえた場
合には各湾曲型変換子の間隔7a、7b、・・・・・・
は半波長となるように構威し、各々の圧電膜の表裏の電
極の極性を交互に反転させて電気的に並列に接続すれば
、各湾曲型変換子から独立に放射される超音波は位相整
合条件を満足するのでトランスジューサから十分離れた
軸方向の受音点に於ては出力音圧が重畳される。
When the polarization directions of each curved transducer are aligned in the same direction, the intervals 7a, 7b, . . . between the curved transducers are
If the polarities of the front and back electrodes of each piezoelectric film are alternately reversed and electrically connected in parallel, the ultrasonic waves radiated independently from each curved transducer will be Since the phase matching condition is satisfied, the output sound pressure is superimposed at the sound receiving point in the axial direction that is sufficiently far away from the transducer.

従って同一入力端子に対して湾曲型変換子の数に比例し
た出力音圧の上昇が得られる。
Therefore, the output sound pressure can be increased in proportion to the number of curved transducers for the same input terminal.

尚、第3図の構成で各湾曲型変換子の分極方向がそろっ
ていない場合には、各々の圧電膜から放射される超音波
が位相整合条件を満足するように電気的に結線を行なえ
ば良い。
If the polarization directions of the curved transducers are not aligned in the configuration shown in Figure 3, electrical connections must be made so that the ultrasonic waves emitted from each piezoelectric film satisfy the phase matching condition. good.

各湾曲型変換子の間隔及び圧電膜の大きさを変えること
により出力音圧が重畳される特定方向を変化させること
ができる。
By changing the interval between each curved transducer and the size of the piezoelectric film, the specific direction in which the output sound pressure is superimposed can be changed.

また各々の湾曲型変換子の周囲にバッフル板を設け、バ
ッフル板の一端から圧電膜を経由してもう一つのバッフ
ル板の他端に至る距離を波長との関係で調整し、波の回
折効果を制御するとか、又バッフル板の代わりに圧電膜
の振動方向に平行な方向に音響的に鏡面作用となるよう
に壁面を設ける等により特定方向の音圧上昇効果を顕著
にすることができる。
In addition, a baffle plate is provided around each curved transducer, and the distance from one end of the baffle plate to the other end of the other baffle plate via the piezoelectric film is adjusted in relation to the wavelength, thereby reducing the wave diffraction effect. The effect of increasing sound pressure in a specific direction can be made more noticeable by controlling the sound pressure in a particular direction, or by providing a wall surface instead of a baffle plate so as to have an acoustic mirror effect in a direction parallel to the vibration direction of the piezoelectric film.

第3図では湾曲型変換子を適用した場合について本考案
による一具体例を説明したが、本考案に於ては湾曲型変
換子である必要はなく、無指向性の円筒状若しくは一部
が欠けた円筒状、或いは球状、一部が欠けた球状、例え
ば半球状であっても良い。
In FIG. 3, a specific example according to the present invention is explained in which a curved transducer is applied. However, in the present invention, it is not necessary to use a curved transducer, and the transducer may have an omnidirectional cylindrical shape or a partially shaped transducer. It may be a cylindrical shape with a chipped part, a spherical shape, a spherical shape with a part chipped off, for example, a hemispherical shape.

尚、かかる形状を保持させるためには吸音性の少ない弾
性物質、例えば発泡ポリウレタン等で支える等適当な方
法が採用できる。
In order to maintain this shape, an appropriate method can be adopted such as supporting it with an elastic material with low sound absorbing properties, such as foamed polyurethane.

本考案に用いられる高分子圧電膜としては、フッ化ビニ
リデンホモポリマー、フッ化ビニリデンコポリマー、こ
れらのいずれかを主成分とする組成物等のフッカビニリ
デン系樹脂、フッ化ビニル系樹脂、更には一般のポリマ
ーに圧電性物質を分散させた組成物、これらのいずれか
を一層とする積層物等が用いられるが、最も好ましくは
フッ化ビニリデン系樹脂である。
The polymeric piezoelectric film used in the present invention includes vinylidene fluoride homopolymers, vinylidene fluoride copolymers, vinylidene fluoride resins such as compositions containing any of these as main components, vinyl fluoride resins, and general vinylidene fluoride resins. A composition in which a piezoelectric substance is dispersed in a polymer, a laminate having one layer of any of these, and the like are used, but vinylidene fluoride resin is most preferred.

次に本考案による他の具体例として、ポリフッ化ビニリ
デン圧電膜を用いた空中用トランスジューサについて詳
細に説明する。
Next, as another specific example of the present invention, an aerial transducer using a polyvinylidene fluoride piezoelectric film will be described in detail.

第4図は5枚のポリフッ化ビニリデン圧電膜1a〜1e
を重ねた場合の斜視図である。
Figure 4 shows five polyvinylidene fluoride piezoelectric films 1a to 1e.
FIG.

圧電膜の寸法は4−×4−でその曲率半径は4−であり
、圧電膜相互の間隔は、(図面では誇張して拡大表示し
である力り1277EINとなるように設定した。
The dimensions of the piezoelectric films are 4-x4-, and the radius of curvature is 4-, and the spacing between the piezoelectric films was set to be 1277 EIN (exaggerated and enlarged in the drawing).

各々の圧電膜1a〜1eの両端ABとCDとは金属枠(
図示してない)で固定し、ACとBDとは金属枠(図示
してない)で支える程度にした。
Both ends AB and CD of each piezoelectric film 1a to 1e are metal frames (
(not shown), and the AC and BD were supported by metal frames (not shown).

この場合、金属枠は圧電膜の金属電極2,2′に触れな
いようになっている。
In this case, the metal frame is designed not to touch the metal electrodes 2, 2' of the piezoelectric film.

各々の圧電膜の分極方向はそれぞれ同一方向となるよう
に重ねであるので、電極間の結線は図示してないが、第
3図と同様になされている。
Since the piezoelectric films are stacked so that their polarization directions are the same, the connections between the electrodes are not shown, but are made in the same way as in FIG. 3.

かかるトランスジューサを用い周波数が約14KHzの
場合、一枚の圧電膜の場合の出力電圧をOdBとして相
対音圧レベルで示すと、ある角度においては14dBを
超える出力音圧を得た。
When such a transducer was used and the frequency was about 14 KHz, the output sound pressure exceeded 14 dB at a certain angle, expressed as a relative sound pressure level with the output voltage in the case of one piezoelectric film being OdB.

かくの如く本考案により、電気音響変換能率を著しく改
善することが出来、液体中又は空中、特に好ましい空中
超音波トランスジューサを提供し得る。
As described above, the present invention can significantly improve the electroacoustic transducing efficiency and provide a particularly preferred aerial ultrasonic transducer in liquid or in air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高分子圧電膜の圧電作用を示す説明図、第2図
は高分子圧電膜の電気音響変換作用の説明図、第3図は
本考案による一具体例の説明図、第4図は本考案による
他の具体例の斜視図である。 la、lb・・・・・・圧電膜、2,2′・・・・・・
電極、3.3′・・・・・・伸縮振動方向、4,4′・
・・・・・湾曲圧電膜の両端、5・・・・・・湾曲圧電
膜のピストン運動方向、6,6′・・・・・・入出力用
電気端子、7a、7b・・・・・・湾曲圧電膜間距離。
Fig. 1 is an explanatory diagram showing the piezoelectric action of a polymer piezoelectric film, Fig. 2 is an explanatory diagram of an electroacoustic conversion action of a polymer piezoelectric film, Fig. 3 is an explanatory diagram of a specific example of the present invention, and Fig. 4 FIG. 2 is a perspective view of another embodiment according to the present invention. la, lb...piezoelectric film, 2,2'...
Electrode, 3.3'...Stretching vibration direction, 4,4'.
...Both ends of the curved piezoelectric film, 5...Piston movement direction of the curved piezoelectric film, 6, 6'...Electric terminals for input/output, 7a, 7b...・Distance between curved piezoelectric membranes.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 表裏両面に電極を付着した複数の高分子圧電膜の伸縮振
動を利用する多数配列構成の高分子圧電膜超音波トラン
スジューサにおいて、前記複数の高分子圧電膜が夫々に
両端を固定され曲面状とされて半波長の間隔で配列され
ており、且つ各々の高分子圧電膜から放射される超音波
が受信点て位相整合条件を満足すべく各々の高分子圧電
膜の表裏の電極が電気的に並列に接続されてなることを
特徴とする高分子圧電膜超音波トランスジューサ。
In a polymer piezoelectric film ultrasonic transducer with a multi-array configuration that utilizes the stretching vibration of a plurality of polymer piezoelectric films having electrodes attached to both the front and back sides, each of the plurality of polymer piezoelectric films is fixed at both ends and has a curved surface shape. The front and back electrodes of each polymer piezoelectric film are electrically parallel to each other so that the ultrasonic waves emitted from each polymer piezoelectric film reach the reception point and satisfy phase matching conditions. A polymer piezoelectric membrane ultrasonic transducer characterized by being connected to.
JP4428084U 1984-03-28 1984-03-28 Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration Expired JPS6022718Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4428084U JPS6022718Y2 (en) 1984-03-28 1984-03-28 Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4428084U JPS6022718Y2 (en) 1984-03-28 1984-03-28 Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration

Publications (2)

Publication Number Publication Date
JPS59166600U JPS59166600U (en) 1984-11-08
JPS6022718Y2 true JPS6022718Y2 (en) 1985-07-05

Family

ID=30174814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4428084U Expired JPS6022718Y2 (en) 1984-03-28 1984-03-28 Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration

Country Status (1)

Country Link
JP (1) JPS6022718Y2 (en)

Also Published As

Publication number Publication date
JPS59166600U (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US4140936A (en) Square and rectangular electroacoustic bender bar transducer
US4186323A (en) Piezoelectric high polymer, multilayer electro-acoustic transducers
US4289936A (en) Electrostatic transducers
US4072871A (en) Electroacoustic transducer
US3287692A (en) Bender type electroacoustical apparatus
US3054084A (en) Balanced flexural electroacoustic transducer
US5185549A (en) Dipole horn piezoelectric electro-acoustic transducer design
WO2002019388A2 (en) Class v flextensional transducer with directional beam patterns
CA1202113A (en) Electrostatic transducer having a fixed electrode provided with depressions and through openings
JPS59161800U (en) ultrasonic transducer
US4972390A (en) Stack driven flexural disc transducer
JPS6022718Y2 (en) Polymer piezoelectric membrane ultrasonic transducer with multiple array configuration
JPS6397100A (en) Flat plate type piezoelectric transducer
JPS5932039B2 (en) Polymer piezoelectric transducer
JP2671855B2 (en) Underwater acoustic transmitter
JPH02309799A (en) Transmitter-receiver
WO1996025831A1 (en) Underwater acoustic projector
JPH0511711B2 (en)
JPS6338640Y2 (en)
JPS60264200A (en) Ultrasonic wave vibrator
JPH0323757Y2 (en)
JPS62231589A (en) Piezoelectric wave transmitter-receiver
JP2624957B2 (en) Piezoelectric speaker
JPS6357999B2 (en)
JPS631798B2 (en)