JPS60226836A - Method for distilling styrene - Google Patents

Method for distilling styrene

Info

Publication number
JPS60226836A
JPS60226836A JP59082863A JP8286384A JPS60226836A JP S60226836 A JPS60226836 A JP S60226836A JP 59082863 A JP59082863 A JP 59082863A JP 8286384 A JP8286384 A JP 8286384A JP S60226836 A JPS60226836 A JP S60226836A
Authority
JP
Japan
Prior art keywords
low
column
boiling point
distillation column
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59082863A
Other languages
Japanese (ja)
Other versions
JPH035373B2 (en
Inventor
Tsukumo Horigome
九十九 堀米
Hideyuki Tsuzuki
都築 英之
Kenji Shimada
嶋田 憲二
Masahiro Shibuya
渋谷 雅弘
Norimasa Shirozu
白頭 紀正
Noriyuki Kawabe
川辺 憲之
Mamoru Takigami
瀧上 護
Kunihiko Imai
邦彦 今井
Noriaki Uchiyama
内山 紀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Hitachi Ltd
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Hitachi Ltd
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Hitachi Ltd, Nippon Steel Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59082863A priority Critical patent/JPS60226836A/en
Priority to CN 85102732 priority patent/CN1006786B/en
Priority to KR1019850002763A priority patent/KR900008691B1/en
Priority to US06/727,059 priority patent/US4615769A/en
Priority to DE8585302996T priority patent/DE3569518D1/en
Priority to EP85302996A priority patent/EP0160553B1/en
Publication of JPS60226836A publication Critical patent/JPS60226836A/en
Publication of JPH035373B2 publication Critical patent/JPH035373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To distil a styrene stably with saved energy, by using the heat pump method for putting a dehydrogenated oil obtained from an ethylbenzene into an intermediate part of a distillation column of the vacuum packed column type, compressing adiabatically a low-boiling fraction from the top of the column, and utilizing the heat thereof. CONSTITUTION:A dehydrogenated oil obtaibed by dehydrogenating an ethylbenzene is distilled and separated into styrene and an ethylbenzene. In the process, the dehydrogenated oil is put into an intermediate part of a distillation column 2 of the packed column type under reduced pressure and distilled to withdraw a low-boiling fraction consisting essentially of the ethylbenzene from the top thereof through a pipe 3, and a high-boiling fraction consisting essentially of the styrene is taken out of the bottom of the column 2. All or part of the low-boiling fraction from the above-mentioned pipe 3 is compressed adiabatically in a compressor 7, heated, led to a reboiler 13 of the distillation column 2, and wholly or partially condensed for use as a heat source for the reboiler 13. The condensed low-boiling fraction or part of the uncondensed vapor is returned to a distillation column circulation line 6, and the rest is discharged from the distillation column 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、スチレンとエチルベンゼン等の沸点の近接
した成分を含有するスチレン類含有混合物の蒸溜方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for distilling a styrene-containing mixture containing components with boiling points close to each other, such as styrene and ethylbenzene.

〔従来技術〕[Prior art]

スチレン、ビニルトルエン類、α−メヂルスチレン等の
スチレン類はエチルベンゼン、エチルトルエン類、キュ
メン等の対応するエチルベンゼン類の脱水素によって製
造される。この脱水素油は生成したスチレン類や未反応
エチルベンゼン類を主体とするものであるが、少量のベ
ンゼン、トルエン等の軽質分やスチレン類が一部重合し
た重質分を含有する。従って、スチレン類の製造に当た
っては、上記脱水素油から上記軽質分や重質分を分離除
去することが必要になり、その方法として複数の蒸溜塔
を使用する蒸溜分離法が採用されている。
Styrenes such as styrene, vinyltoluenes, and α-methylstyrene are produced by dehydrogenation of corresponding ethylbenzenes such as ethylbenzene, ethyltoluenes, and cumene. This dehydrogenated oil is mainly composed of generated styrenes and unreacted ethylbenzenes, but also contains small amounts of light components such as benzene and toluene, and heavy components where styrenes are partially polymerized. Therefore, in the production of styrenes, it is necessary to separate and remove the light and heavy components from the dehydrogenated oil, and a distillation separation method using a plurality of distillation columns has been adopted as a method for this purpose.

ところで、スチレン類とエチルベンげン類とは、その沸
点が互いに接近しており、例えば、スチレンとエチルベ
ンゼンの場合には大気圧下において前者の沸点が145
.2℃であって後者の沸点が136.2℃であり、その
間の沸点差は9.0℃にすぎない。
By the way, the boiling points of styrene and ethylbenzene are close to each other. For example, in the case of styrene and ethylbenzene, the boiling point of the former is 145 at atmospheric pressure.
.. 2°C, the boiling point of the latter is 136.2°C, and the boiling point difference therebetween is only 9.0°C.

従って、スチレン類とエチルベンゼン類とを熱面塔で分
離するには、高い熱面効率が必要になり、熱面塔の段数
や還流比を大きくする必要がある。
Therefore, in order to separate styrenes and ethylbenzenes in a hot column, high thermal efficiency is required, and it is necessary to increase the number of stages and the reflux ratio of the hot column.

このため、スチレン類の蒸溜に使用する熱面塔について
は、それが段塔である場合には60段から100段程度
までのトレイが組込まれるのが一般的であり、また、そ
の還流比も10前後とかなり大きくするのが一般的であ
って、塔頂−塔底間の圧力差も大きくなり、90〜25
0+mHgになる。
For this reason, when a hot surface column used for distilling styrenes is a tray column, it is common to have 60 to 100 trays installed, and the reflux ratio is also low. It is common to set the pressure to be quite large, around 10,000 yen, and the pressure difference between the top and bottom of the column is also large.
It becomes 0+mHg.

それゆえ、このような熱面塔においては、熱源として供
給すべきエネルギーが大きいという問題がある。
Therefore, in such a thermal column, there is a problem in that a large amount of energy needs to be supplied as a heat source.

また、熱面塔で使用するエネルギーを低減する方法とし
て、ヒートポンプ方式と称される蒸溜方法が知られてい
る(例えば、特開昭52−111466号公報)。この
蒸溜方法は、塔頂から面出する蒸気を断熱圧縮して昇温
させ、これをリボイラーの熱源として利用するものであ
るが、熱面塔における塔頂温度と塔底温度との間の温度
差が大きくなると圧縮比を大きくする必要があるために
この方法は使用することができず、スチレン類の蒸溜に
はこの方法を採用することができないと考えられていた
Further, as a method of reducing the energy used in the thermal column, a distillation method called a heat pump method is known (for example, Japanese Patent Laid-Open No. 111466/1983). This distillation method adiabatically compresses the steam that emerges from the top of the column to raise its temperature, and uses this as a heat source for the reboiler. If the difference becomes large, this method cannot be used because it is necessary to increase the compression ratio, and it was thought that this method could not be adopted for the distillation of styrenes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はか−かる観点に鑑みて創案されたものであり、
その目的とするところは、エネルギー消費が少なく、し
かも、安定した熱面操作を遂行することができるスチレ
ン類の蒸溜方法を提供することにある。
The present invention has been devised in view of this point of view,
The purpose is to provide a method for distilling styrenes that consumes less energy and can perform stable thermal operations.

〔問題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、エチルベンゼン類を脱水素して得
られた脱水素油を蒸溜し、スチレン類とエチルベンゼン
類とを分離するに当たり、減圧系で運転される充填塔型
式の熱面塔の中間部に上記脱水素油を導入し、上記熱面
塔の塔頂からエチルベンゼンを主体とする低沸点溜升蒸
気を抜出ずと共に塔底からはスチレン類を主体とする高
沸点成分液を抜出し、−F記低沸点溜分蒸気の一部又は
全部を圧縮機に導いて断熱圧縮することにより昇温させ
た後熱溜場のりボイラーに尋ぎ、一部又は全部を凝縮さ
せることにより上記リボイラーの加熱源どして使用し、
次いで凝縮した低沸点溜升又はこれと未凝縮蒸気の一部
を熱面塔循環ラインに戻し、残余は熱面塔から排出させ
るスチレン類の蒸溜方法である。
That is, in the present invention, when dehydrogenated oil obtained by dehydrogenating ethylbenzenes is distilled and styrene and ethylbenzenes are separated, the present invention provides a method for distilling dehydrogenated oil obtained by dehydrogenating ethylbenzenes and separating styrene from ethylbenzenes. The above-mentioned dehydrogenated oil is introduced, and while the low-boiling point vapor mainly containing ethylbenzene is extracted from the top of the above-mentioned thermal column, the high-boiling point liquid mainly containing styrene is extracted from the bottom of the column. Part or all of the low-boiling point steam is introduced into the compressor and adiabatically compressed to raise the temperature, and then the heat source is transferred to the heat reservoir boiler, where part or all of it is condensed. and use
This is a method for distilling styrenes in which the condensed low-boiling distillate or a part of the uncondensed vapor is then returned to the hot-face column circulation line, and the remainder is discharged from the hot-face column.

本発明方法が適用される脱水素油は、エチルベンゼン類
を脱水素して得られたものであり、生成したスチレン類
と未反応エチルベンゼン類とを主成分とするもので、場
合によって少量のベンゼン、トルエン等の重質分、スチ
レン類が一部重合した重質分及び熱温分離過程での重合
を抑制するために添加される重合禁止剤等あるいは水分
、空気、窒素等を含有する。そして、上記スチレン類と
は、スヂレン、ビニルトルエン類、α−メチルスチレン
等であり、また、エチルベンゼン類とは、エチルベンゼ
ン、エチルトルエン類、イソプロピルベンゼン等である
The dehydrogenated oil to which the method of the present invention is applied is obtained by dehydrogenating ethylbenzenes, and contains the produced styrenes and unreacted ethylbenzenes as main components, and may contain small amounts of benzene and toluene. It contains heavy components such as styrenes, partially polymerized styrenes, polymerization inhibitors added to suppress polymerization in the thermal separation process, moisture, air, nitrogen, etc. The styrenes include styrene, vinyltoluenes, α-methylstyrene, and the like, and the ethylbenzenes include ethylbenzene, ethyltoluenes, isopropylbenzene, and the like.

上記脱水素油を蒸溜するための熱面塔の構成型式として
は、例えば、第1塔でエチルベンゼン類より沸点の低い
重質分を分離し、次いで第2塔でエチルベンゼン類とス
チレン類及びそれ以上の沸点の重質分とを分離し、さら
に第3塔でスチレン類と重質分とを分離するようにした
型式のもの、あるいは、第1塔でその塔頂からエチルベ
ンゼン類及びこれより低沸点の重質分を抜出し、また、
その塔底からスチレン類及びそれより高沸点の重質分を
抜出して分離し、次いで塔頂溜出油及び塔底溜出液をそ
れぞれ別の第2塔に装入して上記塔頂溜出油については
重質分とエチルベンゼン類とに分離し、上記塔底溜出液
についてはスチレン類と重質分とに分離するようにした
型式のもの等がある。本発明は上記いずれの型式のもの
に対しても適用することができ、そして、本発明が適用
される熱面塔としては、前者の場合は第2塔であり、ま
た、後者の場合は第1塔である。従って、本発明が適用
される脱水素油としては、エチルベンゼン類を脱水素し
た直後のものであってもよく、また、事前にエチルベン
ゼン類より沸点の低いベンゼン、トルエン等の軽質分を
分離除去したものであってもよい。
As for the configuration type of the hot column for distilling the above-mentioned dehydrogenated oil, for example, the first column separates heavy components with a lower boiling point than ethylbenzenes, and then the second column separates ethylbenzenes, styrenes, and higher components. A type in which styrenes and heavy components with boiling points are separated, and then styrenes and heavy components are separated in a third column, or ethylbenzenes and those with lower boiling points are separated from the top of the first column. Extract the heavy components, and
Styrenes and heavier components with higher boiling points are extracted and separated from the bottom of the column, and then the top distillate oil and the bottom distillate are charged into separate second columns, and the above-mentioned top distillate is extracted. There is a type in which oil is separated into heavy components and ethylbenzenes, and the bottom distillate is separated into styrenes and heavy components. The present invention can be applied to any of the above-mentioned types, and the hot surface column to which the present invention is applied is the second column in the former case, and the second column in the latter case. There is one tower. Therefore, the dehydrogenated oil to which the present invention is applied may be one that has just been dehydrogenated from ethylbenzenes, or one that has previously separated and removed light components such as benzene and toluene, which have a lower boiling point than ethylbenzenes. It may be.

また、本発明が適用される熱溜場は減圧系で運転される
充填塔型式の熱溜場である。この熱溜場に充填される充
填物としては、規則充填物が好ましく、特に理論段数当
たりの差圧が1.51nml−NJ以下、好ましくは0
.8anHQ以下であるものがよい。このような熱溜場
を使用することにより熱部効率が優れ、また、還流比も
小さくすることができる。従って、熱溜場の差圧も11
005H以下、好ましくは70mt−10以下と小さく
、結果的に塔底温度を低くすることができ、塔頂−塔底
間の温麿差を小さくすることができる。
Further, the heat reservoir to which the present invention is applied is a packed column type heat reservoir operated in a reduced pressure system. The packing packed in this heat reservoir is preferably a regular packing, and in particular, the differential pressure per number of theoretical plates is 1.51 nml-NJ or less, preferably 0.
.. It is preferable that it is 8 anHQ or less. By using such a heat reservoir, the efficiency of the heating section is excellent, and the reflux ratio can also be reduced. Therefore, the differential pressure in the heat reservoir is also 11
005H or less, preferably 70mt-10 or less, the bottom temperature can be lowered as a result, and the temperature difference between the top and bottom of the column can be reduced.

上記熱溜場において、その塔頂からはエチルベンゼン類
を主体とする低沸点溜升蒸気を抜出すと共に、その塔底
からはスチレン類を主体とする高沸点成分液を抜出す。
In the above-mentioned heat reservoir, a low-boiling point vapor mainly composed of ethylbenzenes is extracted from the top of the column, and a high-boiling component liquid mainly composed of styrene is extracted from the bottom of the column.

そして、熱溜場の塔頂から抜出された上記低沸点溜升蒸
気の一部又は全部を圧1illに導き、この圧縮機で断
熱圧縮することにより昇温させ、この昇温した低沸点溜
升蒸気を熱溜場のりボイラーに導き、このリボイラーで
一部又は全部の未凝縮蒸気を残して大部分を凝縮させる
ことによりリボイラーの加熱源として使用する。
A part or all of the low boiling point steam extracted from the top of the heat reservoir is brought to a pressure of 1ill, and the temperature is raised by adiabatically compressing it with this compressor. The steam is led to a heat reservoir boiler, where the majority of the steam is condensed, leaving some or all of the uncondensed steam, and is used as a heating source for the reboiler.

特に、エチルベンゼン類より沸点の低いベンゼン、トル
エン等の軽質分を含まない場合は全部を凝縮させるのが
好ましく、軽質分を含有しているときは未凝縮蒸気を残
すことが好ましい。ここで、上記圧縮機に導く低沸点溜
升蒸気の割合については、熱溜場に装入される脱水素油
の成分組成、熱溜場の塔頂から抜出される低沸点溜升蒸
気の成分組成やその蒸気間、圧縮機の性能やこの圧縮機
で加えられる熱量、熱溜場のりボイラーで必要とする熱
量等を考慮して決定される。また、このリボイラーで凝
縮した低沸点溜升及び未凝縮蒸気の一部は熱溜場循環ラ
インに戻され、残余は熱溜場から損出される。
In particular, if it does not contain light components such as benzene and toluene, which have a lower boiling point than ethylbenzenes, it is preferable to condense all of the components, and if it does contain light components, it is preferable to leave uncondensed vapor. Here, regarding the proportion of the low-boiling distillate steam led to the compressor, the component composition of the dehydrogenated oil charged to the heat reservoir, the component composition of the low-boiling distillate steam extracted from the top of the heat reservoir It is determined by considering the performance of the compressor, the amount of heat added by the compressor, the amount of heat required by the heat reservoir boiler, etc. Further, a portion of the low boiling point distillate and uncondensed steam condensed in this reboiler is returned to the heat reservoir circulation line, and the remainder is lost from the heat reservoir.

〔作用〕[Effect]

以下、本発明の一例を図面に示すフローシー1〜に従っ
て詳細に説明する。
Hereinafter, an example of the present invention will be described in detail according to flowcharts 1 to 1 shown in the drawings.

第1図において、脱水素油は、装入ライン(1)から減
圧系で運転される充填塔型式の熱溜場(2)の中間部に
装入され、この熱溜場(2)で減圧下に熱面されてその
塔頂のライン(3)からエチルベンゼン類を主体とする
低沸点溜升蒸気が抜出されると共に、その塔底のライン
(4)からはスチレン類を主体とする高沸点成分液が抜
出される。
In Fig. 1, dehydrogenated oil is charged from a charging line (1) to the middle part of a packed column type heat reservoir (2) operated in a reduced pressure system, and in this heat reservoir (2) under reduced pressure. At the same time, low-boiling distillate vapor mainly composed of ethylbenzenes is extracted from the top line (3) of the column, and high-boiling components mainly styrene are extracted from the bottom line (4). The liquid is drained.

上記ライン(3)から抜出された低沸点溜升蒸気は、必
要に応じてフンデンυ−(5)側のライン(6)と圧縮
機(7)側のライン(8)とに振分けられ、上記ライン
(6)側に振分けられた低沸点溜升蒸気は上記コンデン
サー(5)で冷却された後一旦溢流ドラム(9)に装入
され、この渦流ドラム(9)を出た低沸点溜升はその一
部がライン(10)から上記熱溜場(2)の上部に還流
されると共に、残部がライン(11)から外部に抜出さ
れる。また、上記ライン(8)側に振分けられた低沸点
溜升蒸気は上記圧縮機(7)で断熱圧縮により昇温され
てからライン(12)よりリボイラー(13)に装入さ
れ、熱溜場(2)に導入された脱水素油の加熱源として
使用される。
The low boiling point distilled steam extracted from the line (3) is distributed as necessary to the line (6) on the Funden υ-(5) side and the line (8) on the compressor (7) side, The low-boiling distillate vapor distributed to the line (6) side is cooled in the condenser (5), and then once charged into the overflow drum (9), and the low-boiling distillate vapor that exits the whirlpool drum (9) is A part of the cell is returned to the upper part of the heat reservoir (2) through the line (10), and the remainder is extracted to the outside through the line (11). In addition, the low boiling point distilled steam distributed to the line (8) side is heated by adiabatic compression in the compressor (7) and then charged into the reboiler (13) from the line (12), where it is transferred to the heat reservoir. It is used as a heating source for the dehydrogenated oil introduced in (2).

上記低沸点溜升蒸気のコンデンサー(5)側のライン(
6)と圧縮機(7)側のライン(8)とへの振分けは、
主として圧縮機(7)へ導入される低沸点溜升蒸気の蒸
気量を設定値にコントロールするために行なわれるもの
で、その制御方法としては、例えば、コンデンサー(5
)内に低沸点溜升蒸気の凝縮液を溜めてその液面を液面
81と凝縮液出口のコントロール弁とで制御することに
よりこのコンデンサー(5)の伝熱面を増減させて制御
する方法やライン(6)の]ンデン4ノー(5)入口側
にコントロール弁を設【ノて直接制御する方法等、任意
の方法を採用することができる。
The line on the condenser (5) side of the above low boiling point distillation steam (
6) and the line (8) on the compressor (7) side:
This is mainly done to control the amount of low boiling point distilled steam introduced into the compressor (7) to a set value.
) A method of controlling the heat transfer surface of this condenser (5) by increasing or decreasing the heat transfer surface by storing a condensate of low boiling point steam in a tank (5) and controlling the liquid level with the liquid level 81 and a control valve at the condensate outlet. Any method can be adopted, such as installing a control valve on the inlet side of line (6) or line (6) to directly control it.

また、圧縮1(7)に導入される低沸点溜升蒸気が飽和
蒸気であると、この圧縮機(7)で断熱圧縮された際に
圧縮機(7)内あるいはその出口ラインで凝縮し、圧縮
機(7)内では液滴によりインペラートラブル又はスチ
レンモノマーの重合を引起こし、多大の損害を被ること
もあるので、好ましくは上記ライン(8)に予熱器(1
4)を設け、圧縮11(7)に導入される低沸点面分蒸
気を予め加熱してその温度を上昇させておくのがよい。
Furthermore, if the low boiling point distilled steam introduced into the compression 1 (7) is saturated steam, when it is adiabatically compressed by this compressor (7), it will condense within the compressor (7) or at its outlet line. In the compressor (7), droplets can cause impeller trouble or polymerization of styrene monomer, which can cause great damage, so it is preferable to install a preheater (1) in the line (8).
4), and the low boiling point steam introduced into the compression 11 (7) is preferably heated in advance to raise its temperature.

上記ライン(8)を通って圧、縮1(7)に導入され、
この圧縮1!(7)で断熱圧縮により昇温されてからラ
イン(12)よりリボイラー(13)に装入された低沸
点面分蒸気は、熱溜場(2)に導入された脱水素油の加
熱源として使用された後、ライン(15)から気液分離
槽(16)に装入され、この気液分離槽(16)におい
て上記リボイラー(13)で凝縮した低沸点溜升と未凝
縮の低沸点面分蒸気とに分離される。この際、好ましく
はりボイラー(13)内における加熱側の圧力損失を低
下させると共に伝熱効率を向上させるために、リボイラ
ー(13)から気液分離槽(16)へのラインを3つに
分けて設置プる。つまり、第1のラインは凝縮液を気液
分離槽(16)へ流入させるラインであり、第2のライ
ンは未凝縮低沸点溜升蒸気を気液分離槽(16)へ流入
させるラインであり、第3のラインは空気、窒素等のイ
ナートガスをリボイラー(13)上部から気液分離槽(
16)へ流入させるラインである。このリボイラー(1
3)で凝縮する低沸点溜升は低沸点面分蒸気の中で比較
的高沸点の成分であってエチルベンゼン類を主体どする
ものであり、また、リボイラー(13)を凝縮しないま
ま通過する未凝縮の低沸点面分蒸気は低沸点面分蒸気の
中で比較的低沸点の成分であってベンゼンやトルエンあ
るいは水分、空気、窒素等を主体とするものである。
is introduced into the compressor 1 (7) through the above line (8),
This compression 1! The low-boiling point steam heated by adiabatic compression in (7) and then charged to the reboiler (13) from the line (12) is used as a heating source for the dehydrogenated oil introduced into the heat reservoir (2). After that, the gas-liquid separation tank (16) is charged through the line (15), and in this gas-liquid separation tank (16), the low-boiling distillate condensed in the reboiler (13) and the uncondensed low-boiling fraction are collected. It is separated into steam. At this time, in order to reduce pressure loss on the heating side in the boiler (13) and improve heat transfer efficiency, it is preferable to install three lines from the reboiler (13) to the gas-liquid separation tank (16). Pull. In other words, the first line is a line that allows condensed liquid to flow into the gas-liquid separation tank (16), and the second line is a line that allows uncondensed low-boiling distillate vapor to flow into the gas-liquid separation tank (16). , the third line transports inert gas such as air and nitrogen from the top of the reboiler (13) to the gas-liquid separation tank (
16). This reboiler (1
The low boiling point distillate condensed in step 3) contains components with relatively high boiling points in the low boiling point steam, mainly consisting of ethylbenzenes, and also contains uncondensed water that passes through the reboiler (13) without being condensed. The condensed low-boiling point vapor is a component with a relatively low boiling point among the low-boiling point vapors, and is mainly composed of benzene, toluene, water, air, nitrogen, etc.

このフローシートにおいては、上記気液分離槽(16〉
の底部から抜出された凝縮し/j低沸点溜分はライン(
11)から予熱器(14)に導入され、この予熱器(1
4)で上記圧縮機(7)に導入される低沸点面分蒸気と
熱交入換し、この低沸点面分蒸気を予熱するための熱源
として利用された後、ライン(18)より上記ライン(
6)に合流する。また、上記気液分離槽(16)の上部
から抜出された未凝縮の低沸点面分蒸気はライン(19
)を通ってライン(6)に合流するようになっている。
In this flow sheet, the gas-liquid separation tank (16)
The condensed /j low-boiling fraction extracted from the bottom of the
11) to the preheater (14), and this preheater (14)
After exchanging heat with the low boiling point steam introduced into the compressor (7) in step 4) and using it as a heat source for preheating the low boiling point steam, the low boiling point steam is passed through the line (18) to the above line. (
6). In addition, the uncondensed low boiling point vapor extracted from the upper part of the gas-liquid separation tank (16) is transferred to the line (19).
) to join line (6).

従って、上記リボイラー(13)では低沸点面分蒸気を
完全に凝縮させないようにコントロールする。このよう
にリボイラー(13)で低沸点面分蒸気を完全に凝縮さ
せないようにコントロールすることによって、低沸点溜
分蒸気中の比較的沸点の高い成分を選択的に凝縮させる
ことになり、リボイラー(13)での凝縮温度を高くす
ることができ、伝熱量も大きくとることができるほか、
圧縮l!!II(7)の圧縮比を小さくしランニングコ
ストを抑えて設備費を安価にすることができ、しかも、
このリボイラー(13)で凝縮した低沸点溜升の温度を
予熱器(14)で低沸点面分蒸気を加熱するのに必要か
つ充分な温度まで上昇させることができ、この予熱器(
14)に他の外部からの熱源を導入する必要がないとい
う利点がある。
Therefore, the reboiler (13) is controlled so as not to completely condense the low boiling point steam. By controlling the reboiler (13) so as not to completely condense the low-boiling point steam, components with relatively high boiling points in the low-boiling point steam are selectively condensed, and the reboiler (13) In addition to being able to increase the condensation temperature in 13) and increase the amount of heat transfer,
Compression! ! It is possible to reduce the compression ratio of II (7), reduce running costs, and reduce equipment costs.
The temperature of the low boiling point distillate condensed in this reboiler (13) can be raised to a temperature necessary and sufficient to heat the low boiling point steam in the preheater (14).
14) has the advantage that there is no need to introduce any other external heat source.

ところで、上記圧縮機(7)入口側の低沸点面分蒸気は
、外部からの自然冷却により一部凝縮することがあるが
、この凝縮液については、圧損の低い予熱器(14)で
は上記低沸点面分蒸気の流速が早いために通常は再蒸発
されないので、好ましくは図示外のドレンポットに連続
的に抜出し、圧縮1!(7)への侵入を防止するのがよ
い。
By the way, the low boiling point steam on the inlet side of the compressor (7) may be partially condensed due to natural cooling from the outside, but this condensate is not heated by the preheater (14) with low pressure drop. Since the boiling point steam is normally not re-evaporated due to its high flow rate, it is preferably continuously discharged to a drain pot (not shown) and compressed 1! It is better to prevent intrusion into (7).

さらに、圧縮機(7)へ導入される低沸点面分蒸気の条
件変動は、直ちに圧縮機(7)から出る低沸点面分蒸気
の条件変動につながり、ひいては熱溜場(2)の加熱源
としてのりボイラー(13)の条件変動につながるので
、この蒸溜系を安定に操業するために、熱溜場(2)の
塔頂圧力と圧縮機(2)への低沸点面分蒸気の流量及び
その温度とを制御して一定に保ち、上記圧縮機(7)へ
導入される低沸点面分蒸気の条件を制御するのが好まし
い。
Furthermore, a change in the conditions of the low boiling point steam introduced into the compressor (7) immediately leads to a change in the conditions of the low boiling point steam coming out of the compressor (7), which in turn leads to a change in the conditions of the low boiling point steam introduced into the compressor (7), which in turn leads to a change in the conditions of the low boiling point steam introduced into the compressor (7). This will lead to fluctuations in the conditions of the boiler (13), so in order to operate this distillation system stably, the top pressure of the heat reservoir (2), the flow rate of low boiling point steam to the compressor (2), and the It is preferable to control the temperature and keep it constant, and to control the conditions of the low boiling point steam introduced into the compressor (7).

そして、圧縮機(7)の駆動としては、モーター単独、
モーターとスチームタービンの組合せ、あるいはスチー
ムタービン単独等種々の方法があるが、蒸溜系の安定化
を図るために圧縮機(7)の駆動機に精密な回転数制御
機構を設けるのがよい。この回転数制御機構としては、
VVVFl!横、vvi構等の方式を採用することが可
能であり、電源の電圧や周波数変動に対してフィードバ
ック機構を組込み、回転数、すなわち容量変動を制御す
る。また、スチームを駆動源として使用する場合には、
スチーム圧力の変動をフィードバック制御機構等により
制御し、回転数の変動を最小限にするのがよい。
The compressor (7) is driven by a motor alone,
There are various methods such as a combination of a motor and a steam turbine, or a steam turbine alone, but in order to stabilize the distillation system, it is preferable to provide a precise rotation speed control mechanism to the drive machine of the compressor (7). This rotation speed control mechanism is
VVVFl! It is possible to adopt a system such as a lateral or VVI structure, and a feedback mechanism is incorporated in response to voltage and frequency fluctuations of the power supply to control the rotation speed, that is, the capacity fluctuation. In addition, when using steam as a driving source,
It is preferable to control fluctuations in steam pressure using a feedback control mechanism or the like to minimize fluctuations in rotational speed.

さらに、リボイラー(13)への供給熱量を安定化させ
るために、圧縮機(7)からコンデンサー(5)へのバ
イパスラインに精度の良いコントロール弁を設け、圧縮
機(7)で制御しきれない熱容量の変動を吸収させるこ
ともできる。
Furthermore, in order to stabilize the amount of heat supplied to the reboiler (13), a highly accurate control valve is installed in the bypass line from the compressor (7) to the condenser (5), which cannot be controlled by the compressor (7). It is also possible to absorb fluctuations in heat capacity.

ところで、蒸溜系を安定に操業するトで、リボイラー(
13)への供給熱量を安定化させることは特に重要なこ
とである。このために、上述したように、圧縮機(7)
の駆動機の回転数制御を精度良く行なう必要があること
は勿論であるが、これに加えて、リボイラー(13)で
の低沸点面分蒸気の凝縮圧力を制御するのが好ましく、
この目的を達成するために、リボイラー(13)を通過
し、気液分離槽(16)に装入され、この気液分離槽(
16)で分離された未凝縮の低沸点面分蒸気の圧力を制
御するのがよい。このフローシートにおいては、リボイ
ラー(13)で凝縮した低沸点面分は、上記気液分1i
ft槽(16)に設けられた液面計(20)どライン(
17)に設けられたコントロール弁(21)とで制御さ
れて予熱器(14)へ圧送されるJ:うになっており、
また、凝縮しないままリボイラー (13)を通過し気
液分離槽(16)で分離された未凝縮の低沸点面分蒸気
については、上記リボイラー(13)での凝縮圧力を制
御してこのりボイラー(13)への供給熱量を制御する
ために、気液分離槽(16)に設けられた圧力計(22
)とライン(19)に設りられたコントロール弁(23
)とで制御されてライン(6)に合流するようになって
いる。このように、リボイラー(13)内での低沸点面
分蒸気の凝縮圧力を気液分離槽(16)内の未凝縮低沸
点溜升蒸気の圧力制御によってコントロールすることに
より、リボイラー(13)での凝縮圧力を任意にコント
ロールすることができ、リボイラー(13)での伝熱量
も制御することができる。
By the way, in order to operate the distillation system stably, the reboiler (
It is particularly important to stabilize the amount of heat supplied to 13). For this purpose, as mentioned above, the compressor (7)
Of course, it is necessary to accurately control the rotation speed of the driving machine, but in addition to this, it is also preferable to control the condensation pressure of the low boiling point steam in the reboiler (13).
To achieve this purpose, it passes through a reboiler (13) and is charged into a gas-liquid separation tank (16);
It is preferable to control the pressure of the uncondensed low boiling point vapor separated in step 16). In this flow sheet, the low boiling point fraction condensed in the reboiler (13) is the gas-liquid fraction 1i
ft tank (16) and the liquid level gauge (20) line (
17) and is controlled by a control valve (21) provided in the preheater (14).
In addition, for the uncondensed low boiling point steam that passed through the reboiler (13) without being condensed and was separated in the gas-liquid separation tank (16), the condensation pressure in the reboiler (13) is controlled and the boiler In order to control the amount of heat supplied to the gas-liquid separation tank (16), a pressure gauge (22
) and the control valve (23) installed in the line (19).
) to merge into line (6). In this way, by controlling the condensation pressure of the low boiling point steam in the reboiler (13) by controlling the pressure of the uncondensed low boiling point steam in the gas-liquid separation tank (16), the reboiler (13) can The condensation pressure of the reboiler (13) can be controlled as desired, and the amount of heat transferred in the reboiler (13) can also be controlled.

なお、蒸溜系の運転開始時や気液分離槽(16)内の未
凝縮の低沸点面分蒸気が少ないような場合には、この気
液分離槽(16)で行なう低沸点面分蒸気の凝縮圧力制
御を円滑に行なうことができるように、気液分離槽(1
6)内あるいはこの気液分離槽(16)とコントロール
弁(23)との間に窒素ガス等のイナートガスを導入す
ることもできる。
In addition, when the distillation system starts operating or when there is little uncondensed low-boiling point vapor in the gas-liquid separation tank (16), the low-boiling point vapor is removed in the gas-liquid separation tank (16). In order to smoothly control the condensation pressure, a gas-liquid separation tank (1
6) or between the gas-liquid separation tank (16) and the control valve (23), it is also possible to introduce an inert gas such as nitrogen gas.

また、熱溜場(2)の加熱源が上記リボイラー(13)
のみでは不足するような場合やスタートアップ時の必要
な熱量を供給するために、熱溜場(2)に補助リボイラ
ー(24)を設置し、高圧スチームその他の加熱源によ
り熱量の補給を行なうことができるようにするのが好ま
しい。
In addition, the heating source of the heat reservoir (2) is the reboiler (13).
In order to supply the necessary amount of heat at the time of start-up or when the amount of heat is insufficient with only the heat source, an auxiliary reboiler (24) can be installed in the heat reservoir (2) and the amount of heat can be supplemented with high pressure steam or other heating source. It is preferable to make it possible.

〔実施例〕〔Example〕

第1図に示ずフローシートの蒸溜系に従って、エチルベ
ンゼンを脱水素して得られた脱水素油を蒸溜した。この
蒸溜系では熱溜場(2)として規則充填物(住友重機械
工業■製商品名:メラバック)を充填した充填塔が使用
され、塔頂−塔底間の差圧が70sHQ以下となるよう
に制御された。
A dehydrogenated oil obtained by dehydrogenating ethylbenzene was distilled according to the distillation system in the flow sheet not shown in FIG. In this distillation system, a packed column filled with a regular packing (product name: Merabac, manufactured by Sumitomo Heavy Industries, Ltd.) is used as the heat reservoir (2), and the pressure difference between the top and bottom of the column is 70 sHQ or less. was controlled by.

この蒸溜系の運転は、脱水素油を定常供給し、ライン(
11)から低沸点成分液を40部、ライン(4)から高
沸点成分液を60部の割合で抜出した。上記フローシー
トに示した各ポイント△、BlC,D及びEの流量、温
度及び圧力が第2表に示す値となるように制御された。
This distillation system operates by constantly supplying dehydrogenated oil and
40 parts of low-boiling component liquid was extracted from line (11), and 60 parts of high-boiling component liquid was extracted from line (4). The flow rates, temperatures, and pressures at each point Δ, BIC, D, and E shown in the above flow sheet were controlled to the values shown in Table 2.

蒸溜系に導入した脱水素油、熱溜場(2)の塔頂溜出物
及び熱溜場(2)の塔底抜出液の組成は第1表に示す通
りであった。 この実施例において、極めて安定したス
ヂレンの蒸溜を行なうことができ、また、圧縮1fil
I(7)で消費したエネルギーについても高圧スチーム
のみを使用した場合に比べて平均その約30%となり、
著しいエネルギー消費の節約になることが判明した。
The compositions of the dehydrogenated oil introduced into the distillation system, the top distillate from the heat reservoir (2), and the bottom effluent from the heat reservoir (2) were as shown in Table 1. In this example, very stable distillation of sagerene can be carried out, and 1 filtration of compression is possible.
The energy consumed in I(7) is also about 30% on average compared to when only high pressure steam is used.
It has been found that this results in significant energy savings.

第1表 〔発明の効果〕 本発明によれば、従来熱源としてヒートポンプ方式を採
用できなかったスチレン類の蒸溜にこのヒートポンプ方
式を採用し、エネルギー消費が少なく、しかも、安定し
たスチレン類の蒸溜を行イ1うことができる。
Table 1 [Effects of the Invention] According to the present invention, the heat pump method is adopted for the distillation of styrenes, for which conventional heat pump methods could not be used as a heat source, and the stable distillation of styrenes is achieved with low energy consumption. I can do 1 row.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の一例に係るスチレン類の熱温方
法を示すフローシートである。 特許出願人 新日鐵化学株式会社 同 上 株式会社日立製作所 代理人 弁理士 成 瀬 勝 大 同 上 弁理士 中 祠 智 廣
FIG. 1 is a flow sheet showing a heating method for styrene according to an example of the embodiment of the present invention. Patent Applicant: Nippon Steel Chemical Co., Ltd., Hitachi Ltd., Patent Attorney: Masaru Naruse Daido, Patent Attorney: Tomohiro Nakatani

Claims (1)

【特許請求の範囲】[Claims] エチルベンゼン類を脱水素して得られた脱水素油を蒸溜
し、スチレン類とエチルベンゼン類とを分離するに当た
り、減圧系で運転される充填塔型式の蒸溜塔の中間部に
上記脱水素油を導入し、上記蒸溜塔の塔頂からエチルベ
ンゼンを主体とする低沸点溜升蒸気を抜出すと共に塔底
からはスチレン類を主体とする高沸点成分液を抜出し、
上記低沸点溜升蒸気の一部又は全部を圧縮機に導いて断
熱圧縮することにより昇温させた後蒸溜塔のりボイラー
に導き、一部又は全部を凝縮させることにより上記リボ
イラーの加熱源として使用し、次いで凝縮した低沸点溜
升又はこれと未凝縮蒸気の一部を蒸溜塔循環ラインに戻
し、残余は蒸溜塔から排出させることを特徴とするスチ
レン類の蒸溜方法。
In distilling the dehydrogenated oil obtained by dehydrogenating ethylbenzenes and separating styrene and ethylbenzenes, the dehydrogenated oil is introduced into the middle part of a packed column type distillation column operated in a reduced pressure system, From the top of the distillation column, a low-boiling distillate vapor mainly containing ethylbenzene is extracted, and from the bottom of the column, a high-boiling liquid vapor mainly containing styrene is extracted.
Part or all of the low boiling point distilled steam is led to the compressor and adiabatically compressed to raise its temperature, then led to the distillation tower boiler where it is partially or completely condensed and used as a heating source for the reboiler. Then, the condensed low-boiling distillate or a part of the uncondensed vapor is returned to the distillation column circulation line, and the remainder is discharged from the distillation column.
JP59082863A 1984-04-26 1984-04-26 Method for distilling styrene Granted JPS60226836A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59082863A JPS60226836A (en) 1984-04-26 1984-04-26 Method for distilling styrene
CN 85102732 CN1006786B (en) 1984-04-26 1985-04-15 Process for distillation of styrenes
KR1019850002763A KR900008691B1 (en) 1984-04-26 1985-04-24 Distillation method of stirenes
US06/727,059 US4615769A (en) 1984-04-26 1985-04-25 Process for distillation of styrenes
DE8585302996T DE3569518D1 (en) 1984-04-26 1985-04-26 PROCESS FOR DISTILLATION OF STYRENES
EP85302996A EP0160553B1 (en) 1984-04-26 1985-04-26 Process for distillation of styrenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082863A JPS60226836A (en) 1984-04-26 1984-04-26 Method for distilling styrene

Publications (2)

Publication Number Publication Date
JPS60226836A true JPS60226836A (en) 1985-11-12
JPH035373B2 JPH035373B2 (en) 1991-01-25

Family

ID=13786168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082863A Granted JPS60226836A (en) 1984-04-26 1984-04-26 Method for distilling styrene

Country Status (1)

Country Link
JP (1) JPS60226836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2430040R1 (en) * 2011-08-03 2013-12-16 Flagsol Gmbh Procedure for the treatment of a heat transfer medium of a solar thermal power plant
WO2015033935A1 (en) * 2013-09-06 2015-03-12 株式会社ダイセル Method and plant for using recompressed vapor
JP2015078197A (en) * 2008-12-31 2015-04-23 フイナ・テクノロジー・インコーポレーテツドFina Technology, Incorporated Separation method of hydrocarbon
JP2016525448A (en) * 2013-08-01 2016-08-25 エルジー・ケム・リミテッド Purification apparatus and purification method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111466A (en) * 1976-03-15 1977-09-19 Sekisui Koji Kk Rectifying method by heat pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111466A (en) * 1976-03-15 1977-09-19 Sekisui Koji Kk Rectifying method by heat pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078197A (en) * 2008-12-31 2015-04-23 フイナ・テクノロジー・インコーポレーテツドFina Technology, Incorporated Separation method of hydrocarbon
ES2430040R1 (en) * 2011-08-03 2013-12-16 Flagsol Gmbh Procedure for the treatment of a heat transfer medium of a solar thermal power plant
JP2016525448A (en) * 2013-08-01 2016-08-25 エルジー・ケム・リミテッド Purification apparatus and purification method using the same
WO2015033935A1 (en) * 2013-09-06 2015-03-12 株式会社ダイセル Method and plant for using recompressed vapor
CN105517682A (en) * 2013-09-06 2016-04-20 株式会社大赛璐 Method and plant for using recompressed vapor
JPWO2015033935A1 (en) * 2013-09-06 2017-03-02 株式会社ダイセル Recompressed steam utilization method and plant

Also Published As

Publication number Publication date
JPH035373B2 (en) 1991-01-25

Similar Documents

Publication Publication Date Title
KR900008691B1 (en) Distillation method of stirenes
US4277268A (en) Heat pump fractionation process
EP1109607B1 (en) Cascade reboiling of ethylbenzene/styrene columns
US4559108A (en) Distillation apparatus
US20150336859A1 (en) Method for reducing energy consumption in a process to purify styrene monomer
CN101429088B (en) Distillation method for separating ethylbenzene and vinyl benzene-containing flow
US4395310A (en) Fractionation system
US4824527A (en) Nested enrichment cascade distillation of unequal mixtures
JPS60226836A (en) Method for distilling styrene
CN1006786B (en) Process for distillation of styrenes
US4230535A (en) Heat-pumped fractionation process
US3238735A (en) Distillation of low-boiling components
CN111905397A (en) Dividing wall tower rectification system and technology
CZ20004763A3 (en) Cascade heating of columns for separation of ethylbenzene and styrene
CN109675332B (en) Toluene column fractionation device and method driven by heat pump
EP0881925A1 (en) Distillation of vinylaromatic monomer
US5107055A (en) Method for simultaneous recovery of pure benzene and pure toluene
US3324010A (en) Employing overhead as reboil heat with flow control
CN113861038A (en) Dicyclohexylamine clapboard tower refining process
US3367846A (en) Utilization of recovered steam heat for heating the distillation zone
JPH0568282B2 (en)
JPH0568283B2 (en)
US3281337A (en) Fractionation of c8-aromatics
JP2854458B2 (en) Pressure control method for multiple effect distillation apparatus
US4545861A (en) Fractionation system