JPS60226502A - Preparation of dicarboxyl polysaccharide - Google Patents

Preparation of dicarboxyl polysaccharide

Info

Publication number
JPS60226502A
JPS60226502A JP8242584A JP8242584A JPS60226502A JP S60226502 A JPS60226502 A JP S60226502A JP 8242584 A JP8242584 A JP 8242584A JP 8242584 A JP8242584 A JP 8242584A JP S60226502 A JPS60226502 A JP S60226502A
Authority
JP
Japan
Prior art keywords
polysaccharide
starch
reaction
slurry
dicarboxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8242584A
Other languages
Japanese (ja)
Inventor
Minoru Yotsuya
四ツ谷 実
Shoichiro Kajiwara
庄一郎 梶原
Sunao Ikuta
生田 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP8242584A priority Critical patent/JPS60226502A/en
Publication of JPS60226502A publication Critical patent/JPS60226502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To prepare a polysaccharide having improved performance in preventing scale deposition in high-temperature systems, by reacting a slurry of a polysaccharide having 6-membered monosaccharide rings with a hydrochlorite under specific conditions. CONSTITUTION:A >=10wt% slurry is prepared from a polysaccharide having 6- membered monosaccharide rings, e.g. starch or cellulose, or a derivative thereof, and a hypochlorite, e.g. sodium hypochlorite, having >=6wt% available chlorine concentration corresponding to 2-4 equivalents available chlorine based on one equivalent glucose residue in the above-mentioned polysaccharide is added continuously to the above-mentioned slurry for 15min-3hr. The pH is controlled at 8-9 in the reaction, and the reaction temperature is controlled at 25-40 deg.C to give the aimed polysaccharide. The above-mentioned polysaccharide preferably has 30,000-100,000 average molecular weight and contains 40-80wt% dicarboxyl units expressed by the formula [R is H, (CH2)n-COOM (M is H, alkali metal ion or NH4<+>; n is 1-3) or COOM].

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はジカルボキシルポリサッカライドの製造法に関
し、さらに詳しくは特定範囲の分子量を有し、水系のス
ケールの沈着防止、特に高温系におけるスケールの沈着
防止にすぐれた性能を有するジカルボキシルポリサッカ
ライドを製造する方法に係る。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for producing dicarboxyl polysaccharide, and more specifically, it has a molecular weight within a specific range and is used to prevent scale deposition in aqueous systems, particularly in high-temperature systems. The present invention relates to a method for producing a dicarboxyl polysaccharide having excellent anti-deposition properties.

「従来技術及び問題点」 従来、澱粉などのグルコース基を次亜塩素酸塩、過ヨウ
素酸塩などの酸化剤で酸化してジカルボキシル化するこ
とはよく知られている。この様な周知方法においては、
一般に任意の澱粉、酸化剤濃度で、アルカリ性条件下、
室温、加熱もしくは冷却下に酸化されている。しかしこ
の様な一般的な広範囲の酸化条件下で得られるジカルボ
キシル化物は、収率や品質のバラツキが大きく、特に分
子量が極めて広範囲に亘り、バラツキも大きいものであ
り、これを水系のスケール防止剤として用いた場合、特
に高温水系に用いた場合1こは十分に満足できる結果が
得られない。
"Prior Art and Problems" Conventionally, it is well known that glucose groups in starch, etc., are oxidized with an oxidizing agent such as hypochlorite or periodate to dicarboxylate them. In this well-known method,
Generally, under alkaline conditions at any starch and oxidizing agent concentration,
Oxidized at room temperature, heating or cooling. However, the dicarboxylated products obtained under such general oxidation conditions over a wide range of conditions have large variations in yield and quality, especially in molecular weight, which is extremely wide and has large variations. When used as an agent, especially when used in a high-temperature water system, fully satisfactory results cannot be obtained.

また、たとえば特公昭49−1281号公報には、澱粉
等のグルコース基を酸化開裂したジカルボキシル化澱粉
が洗剤用ビルグーとして有用なものであることが示され
ている。そして該公報に澱粉をアルカリ柱下次亜塩素酸
塩で酸化開裂することが開示されている。しかしながら
該公報中に記載された方法で得られる酸化開裂されたジ
カルボキシル澱粉を高温系のスケール防止剤として用い
た場合には、従来の周知方法で得られたと同様に十分に
満足できる性能を発揮し得ないことが、本発明者らの検
討の結果判明した。
Furthermore, for example, Japanese Patent Publication No. 49-1281 discloses that dicarboxylated starch obtained by oxidatively cleaving the glucose group of starch is useful as a detergent bilge. This publication discloses oxidative cleavage of starch with an alkali hypochlorite. However, when the oxidatively cleaved dicarboxyl starch obtained by the method described in the publication is used as a scale inhibitor in a high temperature system, it exhibits sufficiently satisfactory performance similar to that obtained by the conventional well-known method. As a result of studies conducted by the present inventors, it has been found that this is not possible.

即ち、従来の一般的な酸化条件によって得られたジカル
ボキシル澱粉は比較的低温の水系、たとえば50℃以下
の水系であれば一様に良好な効果を示すが、高温の水系
、たとえば蒸発性海水淡水化装置の如き100℃前後の
条件下では充分な効果は得られない。
That is, dicarboxyl starch obtained by conventional general oxidation conditions exhibits uniformly good effects in relatively low-temperature aqueous systems, such as aqueous systems at temperatures below 50°C, but dicarboxyl starch obtained under conventional oxidation conditions exhibits uniformly good effects in aqueous systems at relatively low temperatures, such as aqueous systems at temperatures below 50°C; A sufficient effect cannot be obtained under conditions of around 100°C, such as in desalination equipment.

「問題を解決するための手段」 そこで、本発明者らは上記の如き事情に鑑んがみ、io
o’C前後の高温系でも有効なスケール防止性を示すジ
カルボキシルポリサッカライドの製造法について鋭意検
討した結果、特定の反応条件のもとで製造された特定の
分子量範囲を有するジカルボキシル澱粉が、極めてすぐ
れた性能を示すことが判明し、本発明はこれに基づいて
為されたものである。
"Means for Solving the Problem" Therefore, in view of the above circumstances, the inventors of the present invention
As a result of intensive studies on the production method of dicarboxyl polysaccharide that exhibits effective scale prevention properties even in high temperature systems around o'C, we found that dicarboxyl starch with a specific molecular weight range produced under specific reaction conditions, It has been found that it exhibits extremely excellent performance, and the present invention has been made based on this.

すなわち、本発明は(イ)六員モノサッカライド環を有
する多糖類もしくはその誘導体を、少なくとも10重量
%以上のスラリーとし、(O)該スラリーに、該多糖類
のグルコース残基1当量に対し、2〜4当量の有効塩素
に相当する有効塩素濃度が少なくとも6重量%以上の次
亜塩素酸塩を、15分〜6時間を要して連続的に添加し
、(ハ)反応中のpHを8〜9に、反応温度を25〜4
0℃に制御して反応させることを特徴とするジカルボキ
シルポリサッカライドの製造法に関する。
That is, the present invention provides (a) a slurry of a polysaccharide having a six-membered monosaccharide ring or a derivative thereof at a concentration of at least 10% by weight, and (O) a slurry containing, for each equivalent of glucose residue of the polysaccharide, Hypochlorite having an available chlorine concentration of at least 6% by weight, which corresponds to 2 to 4 equivalents of available chlorine, is added continuously over a period of 15 minutes to 6 hours, and (c) the pH during the reaction is adjusted. 8-9, reaction temperature 25-4
The present invention relates to a method for producing dicarboxyl polysaccharide, which is characterized in that the reaction is controlled at 0°C.

上記の如き本発明の方法によって得られるジカルボキシ
ルポリサッカライドは、平均分子量が30,000−1
00,000(ゲルp過法による測定)の範囲にあり、
下記一般式で示されるジカルボキシル単位を約4096
〜80%含有する。
The dicarboxyl polysaccharide obtained by the method of the present invention as described above has an average molecular weight of 30,000-1
00,000 (measured by gel p-filtration method),
Approximately 4096 dicarboxyl units represented by the following general formula
Contains ~80%.

〔式中、RはHまたは(CH2)n−C00M、C00
Mを示し、MはHまたはアルカリ金属イオンもしくはア
ンモニウムイオンを示し、nは1〜3である。〕 本発明の方法で得られる上記分子量の範囲にあることが
、特に高温系のスケール防止に有効であり、この様な特
定範囲の分子量を有するジカルボキシルポリサッカライ
ドは、本発明の方法、すなわち、前述の(イ)〜e埼の
条件を同時に満足して反応させることにより得られる。
[In the formula, R is H or (CH2)n-C00M, C00
M represents H, an alkali metal ion or an ammonium ion, and n is 1 to 3. ] The molecular weight within the above range obtained by the method of the present invention is particularly effective for preventing scale in high temperature systems, and the dicarboxyl polysaccharide having a molecular weight within such a specific range can be obtained by the method of the present invention, that is, It can be obtained by reacting while simultaneously satisfying the conditions (a) to e (e) above.

これらのいずれかが条件を満足しない場合には目的とす
るものは得られない。また上記特定範囲の分子量を有す
るもののみが極めてすぐれた性能を示すことは後述の実
施例、試験例に示す通りである。
If any of these conditions is not satisfied, the desired result cannot be obtained. Further, as shown in the Examples and Test Examples described later, only those having a molecular weight within the above-mentioned specific range exhibit extremely excellent performance.

本発明における六員モノサッカライド環を有する多糖類
は、隣接水酸基を有する多糖類であって、たとえば、と
うもろこし、じゃがいも、米、小麦、くず、タピオカな
どのような澱粉、デキストリン、セルロース、木粉、ア
ルギン酸などのようなポリウロン酸、などが挙げられ、
また分子量が大きく変化しない範囲で部分的加水分解、
エステル、エーテルあるいはカルボキシル化など化学的
に変性させたものも用いることができる。これらの中で
通常入手性、価格及び反応性などの面から澱粉またはセ
ルロースもしくはこれらの変性物を用うるのが好ましく
、特に澱粉が好ましい。
The polysaccharide having a six-membered monosaccharide ring in the present invention is a polysaccharide having adjacent hydroxyl groups, and includes, for example, starch such as corn, potato, rice, wheat, waste, tapioca, dextrin, cellulose, wood flour, Examples include polyuronic acids such as alginic acid, etc.
In addition, partial hydrolysis within the range where the molecular weight does not change significantly,
Chemically modified compounds such as esters, ethers, or carboxylated compounds can also be used. Among these, starch, cellulose, or modified products thereof are preferably used from the viewpoint of availability, cost, reactivity, etc., and starch is particularly preferred.

また本発明に使用する次亜塩素酸塩は、次亜塩素酸アル
カリ金属塩であり、通常、次亜塩素酸ソーダが使用され
る。
Further, the hypochlorite used in the present invention is an alkali metal salt of hypochlorite, and sodium hypochlorite is usually used.

以下に、澱粉を例として、本発明の詳細な説明する。The present invention will be described in detail below using starch as an example.

本発明の方法における反応条件として、反応液中の水分
量が生成するジカルボキシル澱粉の品質、特に分子量に
関与し、水分量が大量であると、分子量増加の傾向を示
す。したがって、反応仕込み時の澱粉のスラリー濃度を
少なくとも10重量%以上、好ましくは30重量%以上
とすることが必要である。該スラリー濃度の上限につい
ては特に制限はないが、澱粉は通常50重量%以上の水
分散スラリーとすることは困難であるので、一般的には
、スラリー濃度は10−50重量%である。また澱粉ス
ラリー液に添加される次亜塩素酸塩は有効塩素濃度6重
量%以上、好ましくは10重量%以上のものが使用され
る。有効塩素濃度が低い場合には、これまた目的生成物
の平均分子量を増大させる結果となり好ましくない。
As for the reaction conditions in the method of the present invention, the amount of water in the reaction solution is related to the quality, particularly the molecular weight, of the dicarboxyl starch produced, and when the amount of water is large, the molecular weight tends to increase. Therefore, it is necessary that the starch slurry concentration at the time of reaction preparation be at least 10% by weight or more, preferably 30% by weight or more. Although there is no particular restriction on the upper limit of the slurry concentration, it is usually difficult to form a water-dispersed slurry of starch with a concentration of 50% by weight or more, so the slurry concentration is generally 10-50% by weight. The hypochlorite added to the starch slurry has an effective chlorine concentration of 6% by weight or more, preferably 10% by weight or more. If the available chlorine concentration is low, this also results in an increase in the average molecular weight of the desired product, which is undesirable.

澱粉に対する次亜塩素酸塩の添加量もまた、本発明の目
的生成物を得るうえに重要なファクターの一つであり、
次亜塩素酸塩は、澱粉のグルコース残基1当量に対し、
有効塩素として2〜4当量に相当する量で添加され、通
常は2当量が添加される。
The amount of hypochlorite added to starch is also one of the important factors in obtaining the target product of the present invention.
Hypochlorite is equivalent to 1 equivalent of glucose residue in starch.
It is added in an amount corresponding to 2 to 4 equivalents of available chlorine, and usually 2 equivalents are added.

次に澱粉スラリーに対する次亜塩素酸塩の添加方法は1
5分〜3時間を要して連続的に添加することが必要であ
る。
Next, the method of adding hypochlorite to starch slurry is 1.
Continuous addition is required over a period of 5 minutes to 3 hours.

澱粉と次亜塩素酸塩を同時添加するかあるいは次亜塩素
酸塩を15分未満で添加した場合には反応温度の制御が
困難であるばかりでなく、必要な分子量のジカルボキシ
ル澱粉が得られない。
If starch and hypochlorite are added simultaneously or if hypochlorite is added in less than 15 minutes, it is not only difficult to control the reaction temperature, but also dicarboxyl starch with the required molecular weight cannot be obtained. do not have.

又、次亜塩素酸塩の添加時間を6時間より長くした場合
も、いたずらに反応時間が伸びるばかりでなく、必要な
分子量のジカルボキシル澱粉を得ることができない。
Furthermore, if the addition time of hypochlorite is made longer than 6 hours, not only will the reaction time be unnecessarily extended, but dicarboxylic starch with the required molecular weight cannot be obtained.

また、反応中の液のpHを特定の範囲、すなわち、pH
8〜9の範囲に維持することが本発明の目的生成物を得
るうえに重要なファクターであり、単にアルカリ性下で
反応させればよいというものでない。本発明においては
、特に、pH8,5〜9の間に維持することが好ましい
In addition, the pH of the solution during the reaction can be adjusted to a specific range, that is, pH
Maintaining the molecular weight within the range of 8 to 9 is an important factor in obtaining the target product of the present invention, and it is not sufficient to simply carry out the reaction under alkaline conditions. In the present invention, it is particularly preferable to maintain the pH between 8.5 and 9.

また、本発明において、反応は通常発熱を伴なうが、反
応温度は25℃〜40℃で実施されるが、特に40℃を
超える温度に上昇させない様にすることが必要である。
Further, in the present invention, the reaction is usually accompanied by heat generation, and the reaction temperature is carried out at 25°C to 40°C, but it is particularly necessary to prevent the temperature from rising above 40°C.

温度が40℃よりも高い場合には生成時カルボキシル澱
粉の分子量が低く、逆に温度が低い場合には、反応が進
行し難く、反応に長時間を必要とするのみならず、生成
ジカルボキシル澱粉の分子量が高くなり好ましくない。
If the temperature is higher than 40°C, the molecular weight of the carboxyl starch produced will be low; if the temperature is low, on the other hand, the reaction will be difficult to proceed, not only will the reaction take a long time, but the resulting dicarboxyl starch will have a low molecular weight. The molecular weight becomes high, which is not preferable.

本発明において、他の六員モノサッカライド環を有する
多糖類及びその誘導体を酸化する場合も、上記と同様で
ある。
In the present invention, when polysaccharides having other six-membered monosaccharide rings and their derivatives are oxidized, the same as above is applied.

「実施例」及び「作用効果」 以下に本発明と実施例及び試験例によって説明する。"Examples" and "effects" The present invention will be explained below with reference to Examples and Test Examples.

実施例1 澱粉としてとうもろこし澱粉を、酸化剤として次亜塩素
酸ソーダを用い、澱粉のスラリー濃度と次亜塩素酸ソー
ダの有効塩素濃度を変えてジカルボキシル澱粉を製造し
た。
Example 1 Dicarboxylic starch was produced using corn starch as the starch and sodium hypochlorite as the oxidizing agent, changing the starch slurry concentration and the available chlorine concentration of the sodium hypochlorite.

澱粉と次亜塩素酸ソーダ中の有効塩素の添加当量比をお
よそ1:2とし、攪拌下20%水酸化ナトリウムでpH
を8.5に維持して外部冷却しながら30℃で6時間反
応させた。
The equivalent ratio of starch to available chlorine in sodium hypochlorite was approximately 1:2, and the pH was adjusted with 20% sodium hydroxide while stirring.
The temperature was maintained at 8.5 and the reaction was carried out at 30° C. for 6 hours with external cooling.

なお、反応は予め全量の澱粉スラリーを仕込み次亜塩素
酸ソーダを初期の1時間を要して連続的に添加すること
で行った。
The reaction was carried out by preparing the entire amount of starch slurry in advance and adding sodium hypochlorite continuously over an initial period of 1 hour.

反応後の液量に対して3倍量のメタノールを添加して目
的物を沈殿せしめた。メタノールによる再沈澱を繰り返
して、塩素イオンが検出されなくなったことを確認した
後、r別して50℃で真空乾燥した。
Methanol was added in an amount three times the amount of the liquid after the reaction to precipitate the target product. After repeating reprecipitation with methanol and confirming that chlorine ions were no longer detected, it was separated and vacuum-dried at 50°C.

収量をめ、更に生成物中のジカルボキシル単位含有割合
を電導度滴定法によって、又分子量をゲルf過法によっ
てめた。
The yield was determined, the dicarboxyl unit content in the product was determined by conductometric titration, and the molecular weight was determined by gel filtration.

結果を表−1に示す。表−1かられかるように澱粉スラ
リー濃度が5重量%、あるいは次亜塩素酸ソーダの有効
塩素が4重量%の場合、分子量が必要以上に高くなるこ
とが認められる。
The results are shown in Table-1. As can be seen from Table 1, when the starch slurry concentration is 5% by weight or the available chlorine of sodium hypochlorite is 4% by weight, it is recognized that the molecular weight becomes higher than necessary.

実施例2 澱粉としてとうもろこし澱粉を、酸化剤として次亜塩素
酸ソーダを用い、次亜塩素酸ソーダの添加時間を変えて
ジカルボキシル澱粉を製造した。
Example 2 Corn starch was used as the starch, sodium hypochlorite was used as the oxidizing agent, and dicarboxylic starch was produced by changing the addition time of the sodium hypochlorite.

澱粉と次亜塩素酸ソーダ中の有効塩素の添加当量比をお
よそ1:2とし、攪拌下20%水酸化ナトリウムでpH
を8.5に維持して、外部冷却しながら30℃で6時間
反応させた。
The equivalent ratio of starch to available chlorine in sodium hypochlorite was approximately 1:2, and the pH was adjusted with 20% sodium hydroxide while stirring.
was maintained at 8.5, and the reaction was carried out at 30° C. for 6 hours with external cooling.

反応は予め全量の30重量%澱粉スラリーを仕込み、有
効塩素12.1重量%の次亜塩素酸ソーダを5分〜24
0分を要して連続的に添加した。得られた反応液の分析
・測定等は実施例1と同様に行った。
For the reaction, the total amount of 30% by weight starch slurry was prepared in advance, and sodium hypochlorite containing 12.1% by weight of available chlorine was added for 5 minutes to 24 hours.
It was added continuously over a period of 0 minutes. Analysis, measurement, etc. of the obtained reaction solution were performed in the same manner as in Example 1.

結果を表−2に示す。表−2かられかるように次亜塩素
酸ソーダの添加時間が5分あるいは240分とした場合
、分子量が必要以上に低く、あるいは高くなることが認
められる。
The results are shown in Table-2. As can be seen from Table 2, when the addition time of sodium hypochlorite is set to 5 minutes or 240 minutes, it is recognized that the molecular weight becomes lower or higher than necessary.

実施例3 澱粉としてとうもろこし澱粉を、酸化剤として次亜塩素
酸ソーダを用い、反応pH1反応温度及びとうもろこし
澱粉と次亜塩素酸ソーダの添加当量比を変えてジカルボ
キシル澱粉を製造した。予め全量の60重量%澱粉スラ
リーを仕込み有効塩素12.1重量%の次亜塩素酸ソー
ダを60分を要して連続的に添加し、有効塩素が反応液
中0.1重量%以下となるまで反応させた。
Example 3 Dicarboxylic starch was produced using corn starch as the starch and sodium hypochlorite as the oxidizing agent, changing the reaction pH 1 and the addition equivalent ratio of corn starch and sodium hypochlorite. The total amount of 60% by weight starch slurry was prepared in advance, and sodium hypochlorite containing 12.1% by weight of available chlorine was added continuously over 60 minutes, so that the available chlorine was 0.1% by weight or less in the reaction solution. I reacted until.

反応pHを7.5〜9.5とし、反応温度を20℃〜5
0℃とし、澱粉と次亜塩素酸ソーダ中の有効塩素の添加
当量比を1=1〜1:5として、各条件下で得られた反
応液を実施例1と同様に分析・測定した。
The reaction pH was set at 7.5-9.5, and the reaction temperature was set at 20°C-5.
The reaction solution obtained under each condition was analyzed and measured in the same manner as in Example 1, with the temperature at 0° C. and the addition equivalent ratio of available chlorine in starch and sodium hypochlorite being 1=1 to 1:5.

結果を表−3に示す。表−3かられかるように、反応p
H1反応温度、澱粉と次亜塩素酸ソーダの添加当量比が
本発明の範囲を外れると分子量や収率、カルボキシル単
位含有割合が低下することが認められる。
The results are shown in Table-3. As seen from Table 3, reaction p
It is recognized that when the H1 reaction temperature and the addition equivalent ratio of starch and sodium hypochlorite are out of the range of the present invention, the molecular weight, yield, and carboxyl unit content decrease.

試験例 実施例1〜6で得た製造物111〜(26)を蒸発法海
水淡水化プラントを対象とした高温系でのスケール付着
防止効果を試験した。
Test Example Products 111 to (26) obtained in Examples 1 to 6 were tested for scale adhesion prevention effect in a high-temperature system intended for an evaporative seawater desalination plant.

試験液としてCaイオン0,809/ゆ、MFイオン2
.5419/ゆ、HCOsイオン0.2817klを含
むように試薬によって調整されたpH8,2の2倍濃縮
相当合成海水を用いた。
Ca ion 0,809/yu, MF ion 2 as test solution
.. Synthetic seawater equivalent to a 2-fold concentration with a pH of 8.2 and adjusted with a reagent to contain 0.2817 kl of HCOs ions was used.

試験液中に実施例1〜3の製造物(1)〜(26)を液
中での濃度が5ppmとなるようVこ添加した。
V of the products (1) to (26) of Examples 1 to 3 were added to the test solution so that the concentration in the solution was 5 ppm.

内容積2lの円筒型ガラスセル中に試験液を加え、セル
内にSUS304製のU字管(接液部の表面積147c
m2)を取り付け、U字管の内側に160〜170℃の
蒸気を通じた。圧力調整弁によって海水温度を110℃
に保った。
The test liquid was added to a cylindrical glass cell with an internal volume of 2 liters, and a U-shaped tube made of SUS304 (surface area of the wetted part: 147 cm) was placed inside the cell.
m2) was attached, and steam at 160 to 170°C was passed inside the U-shaped tube. The seawater temperature is adjusted to 110℃ using a pressure regulating valve.
I kept it.

また、試験液は毎時600dの割合で連続的にセル内に
供給すると共に、圧力調整弁を介して排出した。
Further, the test liquid was continuously supplied into the cell at a rate of 600 d/hour, and was discharged through a pressure regulating valve.

セル上部にはコンデンサーを取り付け、試験中海水が蒸
発を濃縮されないようVこした。24時間後にガラスセ
ルからU字管を取り外し、U字管表面に付着するスケー
ルをけずり落として110℃で3時間乾燥後秤量した。
A condenser was attached to the top of the cell to prevent seawater from evaporating and condensing during the test. After 24 hours, the U-shaped tube was removed from the glass cell, scale adhering to the surface of the U-shaped tube was scraped off, and the sample was dried at 110° C. for 3 hours and then weighed.

なお、薬剤無添加の場合及び市販のスケール防止剤を活
性成分濃度でsppm添加した場合についても試験した
In addition, tests were also conducted in the case where no chemicals were added and in the case where a commercially available scale inhibitor was added at an active ingredient concentration of sppm.

結果を表−4に示す。表−4かられかるように本発明か
らなる製造物は、高温水系においてきわめて優れたスケ
ール防止効果を有することが認められる。
The results are shown in Table 4. As can be seen from Table 4, it is recognized that the products of the present invention have extremely excellent scale prevention effects in high-temperature water systems.

以上のように、本発明の方法によって得られる特定範囲
の分子象を有するジカルボキシルポリサッカライドは、
特に高温系におけるスケールの沈着防止にすぐれた性能
を有するものであり、高温系用のスケール防止剤として
、たとえば蒸発法海水淡水化系、高熱負荷の熱交換器を
有する工業用冷却水系、高温のボイラー水系などに適用
するのに好都合であり、従来一般に使用されているスケ
ール防止剤に比べてはるかに優れた性能を示す。
As described above, the dicarboxyl polysaccharide having a specific range of molecular shapes obtained by the method of the present invention is
It has particularly excellent performance in preventing scale deposition in high-temperature systems, and can be used as a scale inhibitor for high-temperature systems, such as evaporative seawater desalination systems, industrial cooling water systems with heat exchangers with high heat loads, and high-temperature systems. It is convenient for application to boiler water systems, etc., and exhibits far superior performance compared to conventionally commonly used scale inhibitors.

特許出願人三菱瓦斯化学株式会社 代表者長野和吉Patent applicant Mitsubishi Gas Chemical Co., Ltd. Representative Kazuyoshi Nagano

Claims (1)

【特許請求の範囲】[Claims] (イ)六員モノサッカライド環を有する多糖類もしくは
その誘導体を、少なくとも10重量%以上のスラリーと
し、(cO該ススラリ−、該多糖類のグルコース残基1
当量に対し2〜4当量の有効塩素に相当する有効塩素濃
度が少なくとも6重量%以上の次亜塩素酸塩を15分〜
3時間を要して連続的に添加し、ぐう反応中のpHな8
〜9に、反応温度を25〜40℃に制御して反応させる
ことを特徴とするジカルボキシルポリサッカライドの製
造法。
(a) A polysaccharide having a six-membered monosaccharide ring or a derivative thereof is made into a slurry of at least 10% by weight, (cO), the glucose residue of the polysaccharide is
Hypochlorite with an effective chlorine concentration of at least 6% by weight, which corresponds to 2 to 4 equivalents of available chlorine, for 15 minutes to
It took 3 hours to add continuously, and the pH during the reaction was 8.
9. A method for producing dicarboxyl polysaccharide, which comprises controlling the reaction temperature to 25 to 40°C.
JP8242584A 1984-04-24 1984-04-24 Preparation of dicarboxyl polysaccharide Pending JPS60226502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8242584A JPS60226502A (en) 1984-04-24 1984-04-24 Preparation of dicarboxyl polysaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8242584A JPS60226502A (en) 1984-04-24 1984-04-24 Preparation of dicarboxyl polysaccharide

Publications (1)

Publication Number Publication Date
JPS60226502A true JPS60226502A (en) 1985-11-11

Family

ID=13774229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8242584A Pending JPS60226502A (en) 1984-04-24 1984-04-24 Preparation of dicarboxyl polysaccharide

Country Status (1)

Country Link
JP (1) JPS60226502A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002293A1 (en) * 1995-06-30 1997-01-23 Lion Corporation Polycarboxylic acid derived from polysaccharide composed of anhydrous glucose units, salts thereof, and process for the preparation thereof
JP2007046006A (en) * 2005-08-12 2007-02-22 Japan Organo Co Ltd Partially decomposed dextran and corrosion inhibitor using the same
CN106277373A (en) * 2016-08-29 2017-01-04 山东胜伟园林科技有限公司 A kind of biotype antisludging agent and preparation method thereof
WO2020027307A1 (en) * 2018-08-03 2020-02-06 東亞合成株式会社 Oxidized cellulose, method for producing oxidized cellulose and nano-cellulose, and nano-cellulose dispersion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491281A (en) * 1972-04-17 1974-01-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491281A (en) * 1972-04-17 1974-01-08

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002293A1 (en) * 1995-06-30 1997-01-23 Lion Corporation Polycarboxylic acid derived from polysaccharide composed of anhydrous glucose units, salts thereof, and process for the preparation thereof
US6008345A (en) * 1995-06-30 1999-12-28 Lion Corporation Process for making polycarboxylic acid derived from polysaccharide composed of anhydrous glucose units and salts thereof
JP2007046006A (en) * 2005-08-12 2007-02-22 Japan Organo Co Ltd Partially decomposed dextran and corrosion inhibitor using the same
CN106277373A (en) * 2016-08-29 2017-01-04 山东胜伟园林科技有限公司 A kind of biotype antisludging agent and preparation method thereof
WO2020027307A1 (en) * 2018-08-03 2020-02-06 東亞合成株式会社 Oxidized cellulose, method for producing oxidized cellulose and nano-cellulose, and nano-cellulose dispersion
CN112513101A (en) * 2018-08-03 2021-03-16 东亚合成株式会社 Oxidized cellulose, method for producing oxidized cellulose and nanocellulose, and nanocellulose dispersion

Similar Documents

Publication Publication Date Title
US4838944A (en) Degradation of granular starch
US4017460A (en) Novel starch ethers
EP0107962B1 (en) Scale inhibitor
Whistler et al. Oxidation of Amylopectin with Hypochlorite at Different Hydrogen Ion Concentrations1, 2
Lawal et al. Carboxymethyl cocoyam starch: synthesis, characterisation and influence of reaction parameters
US4663448A (en) Aldehyde-containing heterpolysaccharides, a process for their preparation, and the use thereof
EP1969014B1 (en) Process for starch modification
JPS59108001A (en) Granular starch ether with lowered paste temperature
JPH0737481B2 (en) Method for preparing intermediate DS starch ester in aqueous solution
US3975206A (en) Method of peroxide thinning granular starch
JPS60226502A (en) Preparation of dicarboxyl polysaccharide
AU2016420064B2 (en) Method for preparing oligomeric mannuronic diacid
US4020272A (en) Preparation of starch esters
US2773057A (en) Method of preparing starch ether derivatives and new starch ether derivatives produced thereby
CA2357880C (en) Starch phosphates, method for the production thereof and their use
Srivastava et al. Viscosity stabilization of tapioca starch
GB2117782A (en) Process for hydroxypropylating starch
US3553195A (en) Process for the inhibition of granular starch bases
Potter et al. α-L-Glucose-1-phosphate
Wolfrom et al. Amino Derivatives of Starches. Amination of Amylose1
US4167621A (en) Method for preparing starch ether derivatives
US3318868A (en) Process for the continuous acylation of amylose
US4093798A (en) Method for preparing starch sulfate esters
Whistler et al. Crystalline Xyloheptaose1
SE1950123A1 (en) Method for preparing inhibited starch