JPS602260B2 - Batch for alkali-free glass suitable for electric melting - Google Patents
Batch for alkali-free glass suitable for electric meltingInfo
- Publication number
- JPS602260B2 JPS602260B2 JP51120913A JP12091376A JPS602260B2 JP S602260 B2 JPS602260 B2 JP S602260B2 JP 51120913 A JP51120913 A JP 51120913A JP 12091376 A JP12091376 A JP 12091376A JP S602260 B2 JPS602260 B2 JP S602260B2
- Authority
- JP
- Japan
- Prior art keywords
- batch
- glass
- melting
- quartz
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】
本発明は、電気熔融に有用な無アルカリガラス用バッチ
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a batch for alkali-free glass useful in electromelting.
重油燃焼タンク窯でガラスを熔融する場合、原料によっ
て熔融の難易が著しく異ることはよく知られており、場
合によってはガラスの熔融が極めて困難或は不可能にな
ることがある。When melting glass in a heavy oil-fired tank kiln, it is well known that the difficulty of melting varies greatly depending on the raw material, and in some cases it may be extremely difficult or impossible to melt glass.
例えば、持公昭44−5559には、熔融の初期に粘度
の高いガラス表面層が生じ、バッチ原料の分解によって
生成した泡は、この粘鋼なガラス層に遮られて大気中へ
の逸散が妨げられ、厚い泡の層となる。この泡の層が断
熱材として働き、熔融ガラス格に熱が伝わり難くなり、
ガラスの熔融が困難になることが記載されている。そし
て、この熔融に有害な泡の層の生成を防ぎ、ガラスの熔
融効率を高めるために、アルカリ士類金属ボレート(例
えばコレマナィト)、アルカリ士類シリケート又はアル
ミネートを原料として用いることが効果的であると述べ
ている。無アルカリガラス繊維も、重油熱暁タンク窯で
連続的に熔融されているが、そのバッチは、一般に、カ
オリンタレィ、コレマナィト、炭酸カルシウム、水酸化
アルミニウム、ドロマィト等の原料からなるものが使用
されており(例えば、第3表の番号1に示すもの)、高
品位の製品を得ている。For example, in Jikosho 44-5559, a highly viscous glass surface layer is formed in the early stages of melting, and bubbles generated by decomposition of batch raw materials are blocked by this viscous glass layer and are prevented from escaping into the atmosphere. This results in a thick layer of foam. This foam layer acts as a heat insulator, making it difficult for heat to transfer to the molten glass.
It is stated that glass becomes difficult to melt. In order to prevent the formation of a layer of bubbles that are harmful to the melting process and to increase the glass melting efficiency, it is effective to use an alkali metal borate (for example, colemanite), an alkali metal silicate, or an aluminate as a raw material. It states that there is. Alkali-free glass fibers are also continuously melted in heavy oil heated tank kilns, but the batches are generally made from raw materials such as kaolin talley, colemanite, calcium carbonate, aluminum hydroxide, and dolomite. (For example, the one shown in number 1 in Table 3), a high-quality product is obtained.
近年、重油燃焼の排気ガスの問題から、ガラスの電気熔
融が盛んに行なわれるようになり、無アルカリガラスも
電気熔融が試みられているが、重油燃焼タンク葉で一般
に用いられている上記バッチ(第3表番号1)を用いる
と、ガラス化反応時に発生したガスが気泡となり、この
気泡の上部に粘性の高い非通気性の層が生じ、時間の経
過とともにこの気泡が溜って大きな層に発達し、遂には
、その上部の粘性の高い層を突き破って大気中に逸散す
るとき、バッチや熔融ガラスもともに窯の上部より吹き
こぼれ、安定した熔融状態は得られない。In recent years, electrical melting of glass has become popular due to the problem of exhaust gas from heavy oil combustion, and attempts have been made to electrically melt alkali-free glass. When No. 1) in Table 3 is used, the gas generated during the vitrification reaction becomes bubbles, and a highly viscous non-breathable layer is formed above the bubbles. Over time, these bubbles accumulate and develop into a large layer. However, when it finally breaks through the upper viscous layer and escapes into the atmosphere, both the batch and the molten glass spill over from the top of the kiln, making it impossible to obtain a stable molten state.
このような「吹き現象」はソーダガラス、棚珪酸ガラス
、鉛ガラスなどでは見られない現象である。「吹き現象
」の機構を第1図に図式的に示す。Such a "blowing phenomenon" is not observed in soda glass, shelf silicate glass, lead glass, etc. The mechanism of the "blowing phenomenon" is schematically shown in Figure 1.
第2図には「吹き現象」のない安定した熔解状態を示す
。第1図及び第2図において、投入されたバッチ1は、
ひび割れた凝結層2、粘性の高いガラス化反応層3及び
泡層4を経て熔融ガラス5となる。第2図に示すような
「吹き現象」のない安定した熔解状態では、ガラス化反
応層3が薄く、その下面に発生した気泡4′はガラス化
反応層3を容易に破り、競結層2のひび割れから大気中
へ逃げることができる。FIG. 2 shows a stable melting state without any "blowing phenomenon." In Fig. 1 and Fig. 2, the input batch 1 is
It becomes molten glass 5 after passing through a cracked condensation layer 2, a highly viscous vitrification reaction layer 3, and a foam layer 4. In a stable molten state without the "blowing phenomenon" as shown in FIG. can escape into the atmosphere through the cracks in the
このためガラス化反応層3の下に気泡の層4が生じるこ
となく、安定した熔融状態を保つ。第1図に示す場合は
、粘性の高いガラス化反応層3が次第に厚くなり、発生
した気泡4′の圧力では簡単には破れないようになる。Therefore, a stable molten state is maintained without the formation of a bubble layer 4 under the vitrification reaction layer 3. In the case shown in FIG. 1, the highly viscous vitrification reaction layer 3 gradually becomes thicker and becomes unable to be easily broken by the pressure of the generated bubbles 4'.
時間の経過とともに泡層4も厚くなり、この泡層4は断
熱層となるのでガラス化反応層3の粘性は更に高くなり
ますます破れ難くなる。そして泡層4の圧力は次第に大
きくなり、遂にはガラス化反応層3、暁結層2及びバッ
チ層1を一気に押し上げて大気中に逃げる。このとき窯
の上部からかなりの量の熔融ガラスやバッチが吹きこぼ
れる。この場合のガラス化反応層3は鉄棒で穴をあげる
ことができない程に強固な白色の層で、未熔融の石英を
多量に含むものである。発明者等は種々検討の結果、安
定した熔融状態を得るには、ガラス化反応層3をなるべ
く薄くする必要があり、そのためには、バッチに含まれ
る石英の量をできるだけ少なくすることと、原料の粒径
をできるだけ小さくすることが極めて効果的であること
を見出した。The foam layer 4 also becomes thicker with the passage of time, and since this foam layer 4 becomes a heat insulating layer, the viscosity of the vitrification reaction layer 3 becomes higher and becomes more difficult to break. Then, the pressure of the foam layer 4 gradually increases, and finally the vitrification reaction layer 3, the dawn condensation layer 2, and the batch layer 1 are pushed up all at once, and the bubbles escape into the atmosphere. At this time, a considerable amount of molten glass and batches spill out from the top of the kiln. The vitrification reaction layer 3 in this case is a white layer so strong that it cannot be pierced with an iron rod, and contains a large amount of unmelted quartz. As a result of various studies, the inventors found that it is necessary to make the vitrification reaction layer 3 as thin as possible in order to obtain a stable molten state. It has been found that it is extremely effective to make the particle size as small as possible.
バッチ中に含まれる石英の量をできるだけ少なくするた
めには、Si02と他の成分との化合物を原料として用
いるとよい。In order to minimize the amount of quartz contained in the batch, a compound of Si02 and other components may be used as the raw material.
Si02−AI203−H20系の鉱物や、この鉱物と
石英との複合鉱物などはその一例であるが、本発明の目
的である無アルカリガラスの組成(第4表参照)から、
Si02/山203がモル比で2以上である必要がある
。このような鉱物としては、前者には、カオリン、パィ
ロフィラィト、後者には、カオリンクレィ、パイロフィ
ライトクレイなどがある。Si02−N203−日20
系鉱物のほかに、珪灰石(Ca○・Si02)もこの目
的に通った原料である。Si02-AI203-H20 minerals and composite minerals of these minerals and quartz are examples, but from the composition of the alkali-free glass that is the object of the present invention (see Table 4),
The molar ratio of Si02/mountain 203 needs to be 2 or more. Examples of such minerals include kaolin and pyrophyllite for the former, and kaolin clay and pyrophyllite clay for the latter. Si02-N203-day 20
In addition to other minerals, wollastonite (Ca○/Si02) is also a suitable raw material for this purpose.
極めて微細な原料を使用すれば、バッチ中に石英がかな
り含まれていても安定した熔融状態を得ることができる
。しかし、原料を或る程度以上に微粒に粉砕することは
極めて困難であり、経済的に甚だ不利である。例えば、
石英、カオリン及びパィロフィラィトについていえば、
これらの鉱物の粉砕に関係のある特性(硬度、男開)は
第1表のとおりである。第1表
第1表によって明らかなように、石英は非常に硬く、努
開もないので、石英を経済的に微粒に粉砕することは難
しい。Using extremely fine raw materials, a stable melt can be obtained even with significant quartz content in the batch. However, it is extremely difficult to pulverize the raw material into fine particles beyond a certain level, and it is economically disadvantageous. for example,
As for quartz, kaolin and pyrophyllite,
Properties (hardness, hardness) related to the crushing of these minerals are shown in Table 1. Table 1 As is clear from Table 1, quartz is very hard and difficult to grind, so it is difficult to economically grind quartz into fine particles.
カオリンやパイロフイライト(Si02−山203−日
20系の鉱物)と石英との複合鉱物であるカオリンクレ
ィやパイロフィラィトクレィは、単体の石英に比べれば
粉砕し易いが、10ム以下の微粒にすることは経済的に
不利である。したがって、熔解性を良くするためには、
バッチ中に含まれる石英の量をできるだけ少なくする方
が有利である。例えば、前述のカオリンクレィやパイロ
フイラィトクレィは平均粒径を15仏程度とし、カオリ
ン、パィロフィラィトなどの比較的粉砕し易い原料は平
均粒径を5仏程度にしても、珪砂などの原料はできるだ
け使わずに、バッチ中に含まれる石英の量をガラス10
碇轍こ対して35部以下にすれば、安定した熔融状態が
得られることを確めた。粉砕及び熔解性の点から、Si
02−N203−日20系鉱物と石英との複合鉱物は、
Si02一AI203−QO系鉱物が25重量パーセン
ト以上含まれていることが望ましい。カオリン(山20
3・筏i02・2日20)又はパィロフイラィト(山2
03・時i021日20)と石英との複合鉱物であるカ
オリンクレィ及びパィ。Kaolin clay and pyrophyllite clay, which are composite minerals of kaolin and pyrophyllite (Si02-yama203-day20 series minerals) and quartz, are easier to crush than quartz alone, but they can be crushed into fine particles of 10 μm or less. It is economically disadvantageous to do so. Therefore, in order to improve solubility,
It is advantageous to contain as little quartz as possible in the batch. For example, the above-mentioned kaolin clay and pyrophyllite clay have an average particle size of about 15 French, and materials that are relatively easy to crush such as kaolin and pyrophyllite have an average particle size of about 5 French, but raw materials such as silica sand have an average particle size of about 5 French. The amount of quartz contained in the batch can be reduced by 10
It was confirmed that a stable molten state could be obtained by reducing the anchorage to 35 parts or less. From the viewpoint of pulverization and solubility, Si
02-N203-A composite mineral of day 20 series mineral and quartz is
It is desirable that the Si02-AI203-QO mineral is contained in an amount of 25% by weight or more. Kaolin (Mountain 20)
3. Raft i02, 2nd 20) or Pyrophyllite (Mountain 2
Kaolin clay and py are composite minerals of 03/time i021 day 20) and quartz.
フィラィトクレィの化学組成及びクレイ中に含まれる石
英の量を第2表に示す。第2表
(重量※)
原料の種々の組合せについて熔融した結果を第3表に示
す。The chemical composition of phyllitoclay and the amount of quartz contained in the clay are shown in Table 2. Table 2 (Weight*) Table 3 shows the melting results for various combinations of raw materials.
数値はガラス10の部‘こ対する部数を示し、( )内
の数値はその原料の平均粒蚤(r)を表わす。それぞれ
のバッチ中に含まれる石英の量をガラス100部に対す
る部数で付記した。各組合せに共通のドロマィト8部及
びソーダ*灰0.$織ま記載を省略した。17眺Wの電
気熔融窯を用い、十分熔融したガラスの、安定した熔融
状態における最大引上量をk9′KWでそれぞれ示した
。The numerical value indicates the number of parts per glass 10, and the value in parentheses indicates the average particle size (r) of the raw material. The amount of quartz contained in each batch is noted in parts per 100 parts of glass. Common to each combination: 8 parts dolomite and 0 parts soda*ash. $Orima description has been omitted. Using an electric melting kiln of 17 W, the maximum pulling amount of sufficiently melted glass in a stable molten state is expressed as k9'KW.
「不能」とあるのは、「吹き現象」が激しく、熔融状態
が不安定で、ガラスの引上げが不可能であったことを示
す。3
熔融して得たガラスは、ほぼ第4表に示す組成のもので
あった。"Unable" indicates that the "blowing phenomenon" was severe, the molten state was unstable, and it was impossible to pull up the glass. 3. The glass obtained by melting had a composition approximately shown in Table 4.
第4表
第3表に明らかであるが、コレマナィトは電気熔融にお
いては熔解性を低下させた。As is clear from Table 4 and Table 3, colemanite reduced the meltability in electric melting.
重油燃焼窯においては、前述の特公昭44−5559に
記載されているように、コレマナィトは熔融に有害な泡
層の生成を防ぎ、ガラスの熔融効率を著しく高める原料
として用いられているが、電気熔融祭においては、コレ
マナィトを含むバッチの場合、非常に硬い焼結層2(第
1図参照)が生じ、発生した気泡4′は、硬い暁縞層2
で裏打ちされたガラス化反応層3を破ることができず、
厚い泡層4をつくり、遂には前述の「吹き現象」を起す
にいたる。この「吹き現象」はコレマナィトの代りに非
晶質棚酸カルシウム(例えば、重量パーセントで、B2
0346.0、Ca036.3、H2017.4を含む
もの)を用いることにより解決できることが分った。以
上のような検討を重ね、発明者等は次の結論を得た。In heavy oil combustion kilns, colemanite is used as a raw material to prevent the formation of a bubble layer harmful to melting and to significantly improve glass melting efficiency, as described in the aforementioned Japanese Patent Publication No. 44-5559. In the melting process, in the case of batches containing colemanite, a very hard sintered layer 2 (see Fig. 1) is formed, and the generated air bubbles 4' form the hard sintered layer 2.
could not break the vitrification reaction layer 3 lined with
A thick foam layer 4 is created, and the above-mentioned "blowing phenomenon" finally occurs. This "blowing phenomenon" is due to the fact that instead of colemanite, amorphous calcium shelfate (e.g., B2
0346.0, Ca036.3, and H2017.4). After repeated studies as described above, the inventors came to the following conclusion.
Si02/AI2Qがモル比で2以上のSi02一山2
03一日20系鉱物と石英との複合鉱物で、該Si02
−AI203一QO系鉱物を重量パーセントで25%以
上含む原料(例えばカオリンクレィ、パイロフィライト
クレイなど)と、Si02/AI203がモル比で2以
上のSi02一AI203一日20の系鉱物(例えばカ
オリン、パイロフィライトなど)と非晶質側酸カルシウ
ム(例えば重量パーセントで、&0346.0、Ca0
36.3日2017.4を含むもの)とを主原料とする
バッチが、無アルカリガラスの電気熔融に最適である。
上記バッチの各原料の粒経をできるだけ細かくし、バッ
チ中に含まれる石英の量をできるだけ少なくすれば、良
好な熔融状態がより容易に得られる。しかし、先に述べ
たように原料を細かくすることは容易ではなく、経済的
に極めて不利である。そこで、経済的見地より、比較的
粉砕し易い上記Si02−山203−日20系鉱物は平
均粒径を5r程度以下にし、やや粉砕し難い原料である
Si02一N203−H20系鉱物と石英との複合鉱物
は平均粒径を15ム程度以下にし、蓬砂などの原料はで
きるだけ少なくして、バッチ中に含まれる石英の量をガ
ラス10暁部‘こ対し35部程度に押えれば実用上十分
である。粒度分布は狭い方がより良好な結果が得られる
ことはいうまでもない。One pile of Si02 with a molar ratio of Si02/AI2Q of 2 or more
03 is a composite mineral of 20-series mineral and quartz, and the Si02
- Raw materials containing 25% or more by weight of AI203-QO minerals (e.g. kaolin clay, pyrophyllite clay, etc.) and Si02-AI203-based minerals with a molar ratio of 2 or more of Si02/AI203 (e.g. kaolin, pyrophyllite, etc.) and amorphous calcium oxides (e.g., in weight percent, &0346.0, Ca0
A batch containing 36.3 and 2017.4) as the main raw material is most suitable for electric melting of alkali-free glass.
By making the grain size of each raw material in the batch as fine as possible and minimizing the amount of quartz contained in the batch, a good molten state can be obtained more easily. However, as mentioned above, it is not easy to make the raw material finer and it is economically disadvantageous. Therefore, from an economic point of view, the average particle size of the Si02-Yama203-Hi20 series mineral, which is relatively easy to crush, is set to about 5r or less, and the Si02-N203-H20 series mineral, which is a raw material that is somewhat difficult to crush, and quartz are combined. For practical purposes, it is sufficient to keep the average particle size of the composite minerals below about 15 mm, to minimize the amount of raw materials such as mint sand, and to limit the amount of quartz contained in the batch to about 35 parts per 10 parts of glass. It is. It goes without saying that the narrower the particle size distribution, the better the results.
しかし、工業的な規模における粉砕で狭い粒度分布のも
のを得ることは、技術的にも経済的にも困難であり、或
る程度粒度分布が広くなるのは止むを得ない。しかし、
平均粒径が上記のようにそれぞれ5山以下又は15ム以
下であっても、例えば50ムというような大きい粒径の
ものの混入は、熔融状態に悪影響を及ぼし好ましくない
。上記バッチには、必要に応じて、ドロマィト、ソーダ
灰、珪灰石、炭酸カルシウムなどを加えることができる
。However, it is technically and economically difficult to obtain a product with a narrow particle size distribution through pulverization on an industrial scale, and it is unavoidable that the particle size distribution becomes wide to some extent. but,
Even if the average particle size is 5 m or less or 15 m or less as described above, the incorporation of particles with a large particle size of, for example, 50 m is undesirable because it adversely affects the molten state. Dolomite, soda ash, wollastonite, calcium carbonate, etc. can be added to the above batch as necessary.
一般に、電気熔融業の電極は、ガラス液面から約30伽
以上深い位置に設ける。このような従来の電気熔融窯で
は、本発明にかかる上記バッチの熔融効率は著しく低く
、熔融が困難な場合もあった。本発明者等は種々研究の
結果、電極をガラス液面から約20弧(電極の中心まで
の距離)より浅い位置に設けることにより、熔融効率を
著しく改善3することに成功した。Generally, electrodes in the electric melting industry are provided at a position approximately 30 degrees or more deep from the glass liquid level. In such a conventional electric melting furnace, the melting efficiency of the batch according to the present invention was extremely low, and melting was sometimes difficult. As a result of various studies, the present inventors succeeded in significantly improving the melting efficiency3 by providing the electrode at a position shallower than about 20 arcs (distance to the center of the electrode) from the glass liquid level.
第3表に示すものは、電極をガス液面から約11肌の位
置に設けた電気熔融窯で熔融したもので、極めて安定し
た熔融状態が得られた。しかし、この場合でも、従釆か
ら重油燃焼窯で用いられているバッチ(第3表、番号1
)は、「吹き現象」が起り、熔融不能であった。一般の
電気熔融窯で行なわれているように、熔融槽の底部の電
極に僅かの電力を加え、作業槽へ流れるガラスの粘性を
調整したが、熔融槽底部の温度が高くなり過ぎるとIJ
ボイルが起り、作業槽の熔融ガラス面に多数の気泡が生
じ、作業槽の熔融ガラス面が一定に保たれず、ガラスの
温度が不安定で成形作業に支障があった。前記の、ガラ
ス液面から約20弧より浅い位置に設けた電極と、熔融
槽底部との間に極〈僅かな電力を付加する補助的な電極
を設けても差支えない。The materials shown in Table 3 were melted in an electric melting furnace in which the electrode was installed at a position approximately 11 skins above the gas liquid level, and an extremely stable melted state was obtained. However, even in this case, the batch used in the heavy oil combustion kiln (Table 3, number 1
), a "blowing phenomenon" occurred and it was impossible to melt. As is done in general electric melting kilns, a small amount of electric power is applied to the electrode at the bottom of the melting tank to adjust the viscosity of the glass flowing into the working tank, but if the temperature at the bottom of the melting tank becomes too high, the IJ
Boiling occurred and many bubbles were generated on the molten glass surface of the working tank, the molten glass surface of the working tank was not kept constant, and the temperature of the glass was unstable, which hindered the molding operation. An auxiliary electrode for applying a very small amount of electric power may be provided between the above-mentioned electrode provided at a position shallower than about 20 arcs from the glass liquid level and the bottom of the melting tank.
以上述べたように、本発明は、Si02/AI203が
モル比で2以上のSi02−AI203−比○系鉱物と
石英との複合鉱物で、該Si02−N203一日20系
鉱物を重量パーセントで25%以上含む原料と、Si0
2/山203がモル比で2以上のSiQ/AI203一
日20系鉱物と、非晶質棚酸カルシウムとを含む電気熔
融に通した無アルカリガラス用バッチを提供するもので
ある。As described above, the present invention is a composite mineral of a Si02-AI203-ratio ○ series mineral with a Si02/AI203 molar ratio of 2 or more and quartz, and the Si02-AI203-20 series mineral per day is 25% by weight. % or more, and Si0
The present invention provides a batch for alkali-free glass subjected to electric melting, which contains a SiQ/AI203 day 20 mineral having a molar ratio of 2/mount 203 of 2 or more and amorphous calcium shelf oxide.
本発明により高品位の無アルカリガラス繊細を経済的に
有利に得ることができる。なお、ガラス繊維の成形は一
般の方法によった。According to the present invention, high-grade alkali-free glass fines can be economically advantageously obtained. Note that the glass fiber was molded by a general method.
第1図は「吹き現象」を図式的に示した断面図、第2図
は安定した熔融状態を図式的にした断面図である。
第1図
第2図FIG. 1 is a sectional view schematically showing the "blowing phenomenon", and FIG. 2 is a sectional view schematically showing a stable melting state. Figure 1 Figure 2
Claims (1)
_2−Al_2O_3−H_2O系鉱物と石英との複合
鉱物で、該SiO_2−Al_2O_3−H_2O系鉱
物を25重量パーセント以上含む原料と、モル比でSi
O_2/Al_2O_3≧2のSiO_2−Al_2O
_3−H_2O系鉱物と、非晶質硼酸カルシウムとを主
原料とする電気熔融に適した無アルカリガラス用バツチ
。1 SiO with a molar ratio of SiO_2/Al_2O_3≧2
A composite mineral of _2-Al_2O_3-H_2O mineral and quartz, which contains a raw material containing 25% by weight or more of the SiO_2-Al_2O_3-H_2O mineral and a molar ratio of Si
SiO_2-Al_2O with O_2/Al_2O_3≧2
A batch for alkali-free glass that is suitable for electric melting and whose main ingredients are _3-H_2O minerals and amorphous calcium borate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51120913A JPS602260B2 (en) | 1976-10-07 | 1976-10-07 | Batch for alkali-free glass suitable for electric melting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51120913A JPS602260B2 (en) | 1976-10-07 | 1976-10-07 | Batch for alkali-free glass suitable for electric melting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5346312A JPS5346312A (en) | 1978-04-25 |
JPS602260B2 true JPS602260B2 (en) | 1985-01-21 |
Family
ID=14798085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51120913A Expired JPS602260B2 (en) | 1976-10-07 | 1976-10-07 | Batch for alkali-free glass suitable for electric melting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602260B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51158473U (en) * | 1975-06-11 | 1976-12-16 | ||
JPS5663828A (en) * | 1979-10-24 | 1981-05-30 | Nippon Sheet Glass Co Ltd | Manufacture of glass |
JPH0675828B2 (en) * | 1987-01-14 | 1994-09-28 | 日立工機株式会社 | Automatic nailer |
JP2009040675A (en) * | 2007-07-18 | 2009-02-26 | Nippon Electric Glass Co Ltd | Method for manufacturing silicate glass, mixed raw material for silicate glass melting and glass article for electronic material |
JP2020100538A (en) * | 2018-12-25 | 2020-07-02 | 日本電気硝子株式会社 | Mixed raw material for glass production and glass production method using the same |
-
1976
- 1976-10-07 JP JP51120913A patent/JPS602260B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5346312A (en) | 1978-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040168474A1 (en) | Process for producing a glass by mixing molten glasses | |
EP0297404B1 (en) | Transparent infrared absorbing glass and method of making | |
US10196296B2 (en) | Fluid permeable and vacuumed insulating microspheres and methods of producing the same | |
US3960532A (en) | Preparing alkali metal silicate glass with bubbles | |
CN101066837B (en) | Environment friendly heat resistant opal crystalline glass and its preparation process | |
TWI303240B (en) | Producing glass using outgassed frit | |
AU689278B2 (en) | High-zirconia fused refractories | |
US1880541A (en) | Process and apparatus for making glass | |
US3728095A (en) | Chemically-strengthened glass-encapsulated glass articles and process therefor | |
CN108129022A (en) | A kind of production technology of high grade of transparency vial | |
US4313747A (en) | Process for making glass with agglomerated refining agents | |
US3350213A (en) | Method of and apparatus for glass making | |
US3274006A (en) | Borosilicate glass melting method | |
EP2935138A1 (en) | Glass manufacturing method using electric melting | |
JPS602260B2 (en) | Batch for alkali-free glass suitable for electric melting | |
Meechoowas et al. | Improve melting glass efficiency by batch-to melt conversion | |
KR100723620B1 (en) | Float bath and method for floating a glass in a float bath | |
US3416936A (en) | Abrasion resistant glass bead with sharp softening range and process for making the same | |
WO1990013522A1 (en) | Method of firing glass-melting furnace | |
CN114075045B (en) | Chemically strengthened glass with high safety stress and testing method | |
CN107438583B (en) | Refractory block and glass melting furnace | |
WO2004103921A1 (en) | Glass and glass-ceramic articles and process to prepare same | |
KR100578858B1 (en) | Large format fireclay refractory block and method of producing the same | |
JPH06345467A (en) | Production machine for float plate glass | |
US2165554A (en) | White opaque vitreous enamel frit |