JPS60226031A - Objective lens driving device - Google Patents

Objective lens driving device

Info

Publication number
JPS60226031A
JPS60226031A JP8156684A JP8156684A JPS60226031A JP S60226031 A JPS60226031 A JP S60226031A JP 8156684 A JP8156684 A JP 8156684A JP 8156684 A JP8156684 A JP 8156684A JP S60226031 A JPS60226031 A JP S60226031A
Authority
JP
Japan
Prior art keywords
coil
objective lens
force
magnets
leaf springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8156684A
Other languages
Japanese (ja)
Inventor
Ikuo Kasuga
春日 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP8156684A priority Critical patent/JPS60226031A/en
Publication of JPS60226031A publication Critical patent/JPS60226031A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/0927Electromechanical actuators for lens positioning for focusing only

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To increase an allowance for focusing control while using straightly leaf springs having high rigidity by adding magnetic cores in such a way that the force generated by the leaf springs and the force in the direction countering said force are generated. CONSTITUTION:Respective one ends of two sheets of the leaf springs 6, 7 facing each other are fixed to the base plate 5 of an optical pickup and a yoke 12 consisting of a rectangular plate is fixed to the end face on the outside of a movable frame 8. Two magnets 13, 14 made into a square columnar shape are juxtaposed to the surface thereof in the direction intersecting orthogonally with an arrow A direction. While a coil 15 to which the circular cylindrical magnetic cores 16, 17 are fixed is in the nonconducting state, the coil 15 is in the relative position where the coil faces the magnets 13, 14. The centers of the cores 16, 17 are stable in the position where said centers face the center between the magnets 13 and 14. The distance between the cores 16, 17 and the magnet 13 or the magnet 14 decreases and the attraction force between both increases with an increase in a displacement position (x) if electricity is conducted to the coil 15 so as to displace upward or downward an objective lens 11. The smaller force to be acted on the leaf springs 6, 7 by the coil 15 is thus required.

Description

【発明の詳細な説明】 本発明は、光学式記録再生装置の元ピックアップに適用
することができる対物レンズ駆動装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an objective lens driving device that can be applied to a main pickup of an optical recording/reproducing device.

例えば、ディスクにピントの列として記録されたPCM
信号を光学的に読み取って再生する場合、対物レンズを
光軸方向に移動可能に支持すると共に、対物し/ズの焦
点が常にディスクの記録面上に位置するx5に高精度の
フォーカシングサーボを行なう必要がある。このフォー
カシングサーボを安定して行なうためには、対物レンズ
駆動装置に、ディスクの振れ規格に適した振動特性等が
要求される。又、これと同時に対物レンズが上下駆動さ
れる際に光軸に対して傾きな生じた場合、ディスクスボ
・ノドに収差を生ずるため、光軸に対してレンズが傾か
ないような支持機能も合わせて要求される。
For example, PCM recorded as a line of focus on a disk
When optically reading and reproducing signals, the objective lens is supported movably in the optical axis direction, and high-precision focusing servo is performed so that the focal point of the objective lens is always located on the recording surface of the disk. There is a need. In order to stably perform this focusing servo, the objective lens drive device is required to have vibration characteristics suitable for the disk runout standard. At the same time, if the objective lens is tilted with respect to the optical axis when it is driven up and down, aberrations will occur in the disk sub-node, so a support function is also added to prevent the lens from tilting with respect to the optical axis. required.

このようなフォーカシングサーボを行なう手段として電
磁駆動手段が知られている。この電磁駆動手段というの
は、例えば、光ピツクアップを構成する不動の基台に板
ばねの一端を固着し、その自由端側に対物レンズを支持
体な介して取付る。
Electromagnetic driving means is known as a means for performing such focusing servo. This electromagnetic drive means, for example, has one end of a leaf spring fixed to an immovable base constituting the optical pickup, and an objective lens attached to the free end of the leaf spring via a support.

そして、この支持体に2つの磁石を固着し、これら2つ
の磁石と対向した基台の面にコイルを取付けろ。そして
、このコイルに通電することにより生ずる電磁力と上記
2つの磁石との間に作用する磁気的な力の作用により板
ばねな変形させて対物レンズをフォーカシング制御を行
なうのである。
Then, fix two magnets to this support, and attach a coil to the surface of the base facing these two magnets. Then, due to the electromagnetic force generated by energizing this coil and the magnetic force acting between the two magnets, the objective lens is deformed like a leaf spring to perform focusing control.

矛7図において、符号1.2は板ばね、符号6は対物レ
ンズ3a の支持体を示す。又、矢印A方向をフォーカ
ンフグ制御方向とする。この例では、対物レンズは板ば
ね1.2により支持されているが、この板ばね1.2な
、コイルによる小さな電磁力で駆動されるようにするべ
く弾性力の小さなものに設定すると捩りやその他好まし
くない変形に対する剛性が弱くなり、矢印Bで示す方向
に安定性を欠くことになる。
In Figure 7, reference numeral 1.2 indicates a leaf spring, and reference numeral 6 indicates a support for the objective lens 3a. Further, the direction of arrow A is taken as the forkampfugu control direction. In this example, the objective lens is supported by a leaf spring 1.2, but if the leaf spring 1.2 is set to have a small elastic force so that it is driven by a small electromagnetic force from a coil, it may cause torsion or Rigidity against other undesirable deformations is weakened, resulting in a lack of stability in the direction shown by arrow B.

従って、本発明の目的は、コイルで発生する電磁力が小
さくてもフォーカシング制御を行なうに十分な板ばねの
変形量を得るとともに、捩りその他の好ましくない変形
に対しての十分な剛性を確保することのできる、対物レ
ンズ駆動装置を提供することにある。
Therefore, an object of the present invention is to obtain a sufficient amount of deformation of the leaf spring to perform focusing control even if the electromagnetic force generated by the coil is small, and to ensure sufficient rigidity against torsion and other undesirable deformations. The object of the present invention is to provide an objective lens driving device that can drive an objective lens.

本発明の上記目的に従って、板ばねの見かけ上の弾性力
を小さくした対物レンズの駆動装置が提供される。
According to the above object of the present invention, there is provided an objective lens driving device in which the apparent elastic force of the leaf spring is reduced.

以下、本発明の一実癩例な説明する。An example of the present invention will be explained below.

矛1図乃至矛6図を参照するに、符号5は光ピツクアッ
プの基台を示す。この基台5には対向する2枚の板ばね
6,7の各一端が固着されている。
Referring to Figures 1 to 6, reference numeral 5 indicates the base of the optical pickup. One end of each of two opposing leaf springs 6 and 7 is fixed to this base 5.

そして、これら板ばね6.7の各他端側の自由端には、
プリズムや充電素子等?内蔵した可動枠8が接着板9.
10を介して一体的に取付けられている。これらの接着
板9,10の中、上の方の接着板9には対物レンズ11
が固着されていて、可動枠8内のプリズムや光電素子等
との光学的な関係位置が定められている。
And, at each other free end of these leaf springs 6.7,
Prism, charging element, etc.? The built-in movable frame 8 is attached to the adhesive plate 9.
They are integrally attached via 10. An objective lens 11 is mounted on the upper adhesive plate 9 among these adhesive plates 9 and 10.
is fixed, and the optical relationship position with the prism, photoelectric element, etc. within the movable frame 8 is determined.

可動枠8の外側端面部には矩形板のヨーク12が固着さ
れており、さらに、このヨーク120表面には角柱状の
2つの磁石13.14が各々矢印A方向と直交する向き
に長手方向な合わせて並設されている。
A rectangular plate yoke 12 is fixed to the outer end surface of the movable frame 8, and two prismatic magnets 13 and 14 are mounted on the surface of the yoke 120 in a longitudinal direction perpendicular to the direction of arrow A. They are arranged side by side.

板ばね6,7の自由端側に固着されている可動枠8、接
着板9.10、ヨーク12等は直接、間接に対物レンズ
11を支持しているので、これらの部材を総称して対物
レンズの支持体と称する。
The movable frame 8, adhesive plates 9, 10, yoke 12, etc. fixed to the free end sides of the leaf springs 6, 7 directly or indirectly support the objective lens 11, so these members are collectively referred to as the objective lens. It is called the lens support.

次に、磁石13.14等と間隔をおいて対向した基台5
0面上には一本の巻線体からなるコイル15が絶縁板1
9す介して固着されている。
Next, the base 5 facing the magnets 13, 14, etc. at intervals
On the 0 side, a coil 15 consisting of a single winding body is connected to the insulating plate 1.
It is fixed through 9.

従来の対物レンズ駆動装置としては、これまでに述べた
構造と同様のものがある。本例では、上記従来構造に磁
性コア?付加した。すなわち、コイル15の内側であっ
て該コイル15の固着面に円柱状の磁性コア16,17
;を固着している。
As a conventional objective lens driving device, there is one having a structure similar to that described above. In this example, we added a magnetic core to the above conventional structure. Added. That is, cylindrical magnetic cores 16 and 17 are placed inside the coil 15 and on the fixed surface of the coil 15.
; is fixed.

コイル15が非通電状態にあるとき、該コイル15と磁
石13. 14は対向した関係位置にあり、磁性コア1
/)、17の中心は磁石16と磁石14との間の中心に
合う位置にて安定している。
When the coil 15 is in the de-energized state, the coil 15 and the magnet 13. 14 are located in opposing relational positions, and magnetic core 1
/), the center of 17 is stable at a position aligned with the center between magnet 16 and magnet 14.

かかる構造においては、コイル15に通電することによ
り生ずる磁束と磁石13.14による磁束との相互作用
により、コイル15に印加する電流に応じて板ばね6,
7が変形し、対物レンズなフォー力ソング制御方向に制
御することができる。
In such a structure, the leaf springs 6, 6,
7 is deformed and the objective lens can be controlled in the four force song control direction.

ここで、磁性コア16. 17が存在しない状況下で、
コイル15と磁石13.14との間の電磁力のみにより
板ばね6,7が変形するものと想定すれば、この変形に
応じてあられれる弾性的な力と変位量の関係は矛5図に
線20を以て示す如き特性を描く。
Here, magnetic core 16. In a situation where 17 does not exist,
Assuming that the leaf springs 6 and 7 are deformed only by the electromagnetic force between the coil 15 and the magnets 13 and 14, the relationship between the elastic force generated in response to this deformation and the amount of displacement is shown in Figure 5. Draw the characteristic as shown by line 20.

すなわち、矛4図に示すようにコイル15に電流を流し
て、対物レンズ11の中心?上方にXだけ変位させると
板ばねVCXる弾性的な復元力は変位量が増すにつれて
比例的に増す。よって、大きい変位量を得るには大きい
電磁カシ必要とすることがわかる、 一方、本例の如く、磁石13.14と磁性コア16、 
17との間に作用する磁気的なカを考えると、これは矛
5図に線21で示す如く、変位清か増すにつれて板ばね
の復元方向に逆らう向きの力が増す傾向な呈する。そし
て、この力は磁性コア16゜17 が磁石16又は磁石
14の何れかに対向する関係位置で最大となる。
That is, as shown in Figure 4, a current is passed through the coil 15, and the center of the objective lens 11? When the leaf spring VCX is displaced upward by X, the elastic restoring force of the leaf spring VCX increases proportionally as the amount of displacement increases. Therefore, it can be seen that a large electromagnetic bar is required to obtain a large amount of displacement.On the other hand, as in this example, the magnets 13, 14 and the magnetic core 16,
Considering the magnetic force acting between the leaf spring and the leaf spring 17, as shown by the line 21 in Figure 5, as the displacement increases, the force in the direction opposite to the restoring direction of the leaf spring tends to increase. This force is greatest at the position where the magnetic core 16.17 faces either the magnet 16 or the magnet 14.

本例では、磁性コア16.17が設けられているので板
ばね6,7ケ変形させるのに必要なカの大きさと変位量
の関係は、矛5図において@2oと線21 を合成して
得られる線22で示す特性に従うことになる。
In this example, since magnetic cores 16 and 17 are provided, the relationship between the magnitude of the force required to deform the leaf springs 6 and 7 and the amount of displacement can be determined by combining @2o and line 21 in Figure 5. The resulting characteristic shown by line 22 is followed.

従って、従来、対物し/ズ11を上又は下に変位させよ
うとすればするだけ、板ばね6,7の変位量も増すので
その変位量な得るには大きな力な必要とし、コイル15
に大きな電磁力を作用させなければならないのであるが
、本例では、変位量が増すにつれて磁性コア16.17
と磁石15若しくは磁石14との距離が接近して両者間
の吸引力が増すので、コイル15により板ばねに作用さ
せるべき力は小さくて済むことになる。
Therefore, conventionally, the more you try to displace the objective lens 11 upward or downward, the more the amount of displacement of the leaf springs 6 and 7 increases, so a large force is required to obtain that amount of displacement, and the coil 15
However, in this example, as the amount of displacement increases, the magnetic core 16, 17
Since the distance between the magnet 15 or the magnet 14 becomes closer and the attractive force between them increases, the force that should be applied to the leaf spring by the coil 15 can be small.

このように、本例では板ばね6.7の見かけ上の弾性特
性を矛5図に符号22で示す如くなし得、対物し/ズ1
1の大きい変位量に対しても比較的小さい電磁力で対応
することができる。これにより、板ばね自体は対物レン
ズの支持機能上好ましくない捩り等の変形に十分耐える
ものを使用でき、かつ、小さい電磁力でフォーカシング
制御が可能になる。
In this way, in this example, the apparent elasticity of the leaf spring 6.7 can be achieved as shown by the reference numeral 22 in Fig.
Even a large displacement amount of 1 can be dealt with with a relatively small electromagnetic force. As a result, the leaf spring itself can be sufficiently resistant to deformation such as torsion that is undesirable in terms of the supporting function of the objective lens, and focusing control can be performed with a small electromagnetic force.

例えば、あるディスクについて、振動周波数に対応する
ディスク面の振幅で示されるディスクの規格値が、坩・
6図に符号26で示す領域として設定されているものと
すると、低同波数域における振幅は高周波数域に比べて
かなり大きい。
For example, for a certain disk, the standard value of the disk, which is indicated by the amplitude of the disk surface corresponding to the vibration frequency, is
Assuming that the area is set as the area indicated by reference numeral 26 in FIG. 6, the amplitude in the low frequency band is considerably larger than that in the high frequency band.

本例の如き磁性コアを用いない場合、板ばねの追従特性
は牙6図に符号20′で示す線の如く規格値の上限に接
近しており、フォーカシング制御の余裕度が小さい。
When a magnetic core as in this example is not used, the follow-up characteristic of the leaf spring approaches the upper limit of the standard value as indicated by the line 20' in Fig. 6, and the margin for focusing control is small.

これに対し、本例の如く磁性コア16.17を用いた場
合には、コイル15により生ずる電磁力が該磁性コアな
用いない場合と同じであったとしても、線20′で示す
特性よりも大きい振幅に適応できる。
On the other hand, when the magnetic cores 16 and 17 are used as in this example, even if the electromagnetic force generated by the coil 15 is the same as when the magnetic cores are not used, the characteristics shown by the line 20' are lower. Can adapt to large amplitudes.

この特性を線22′で示す。よって、フォーカシング制
御の余裕を増すことができる。
This characteristic is shown by line 22'. Therefore, margin for focusing control can be increased.

なお、本例で、磁性コアを2個用いたのは、磁石13.
14の横方向の幅がやや広めのため左右のバランスをと
るためであり、原理的には中央部に1個設けても機能上
差支えない。
In this example, two magnetic cores are used for magnet 13.
This is to maintain balance between the left and right sides since the width of 14 in the lateral direction is somewhat wide, and in principle, there is no problem functionally even if one is provided in the center.

又、磁石13. 14とコイル15及び磁性コア16゜
17 の配設位置を矛1図において相互に置き換えるこ
とも差支えない。但し、コイル15には通電用の導線が
導出されるので、この導線を処理する上では組立の都合
上等からコイル15を固定側に配置した方が容易である
。しかし、基本的な機能を達成する土ではコイル15ケ
可動側に配置しても何ら問題はない。
Also, magnet 13. 14, the coil 15, and the magnetic core 16 and 17 may be interchanged in the positions shown in FIG. However, since a conducting wire for conducting current is led out to the coil 15, it is easier to dispose the coil 15 on the fixed side for convenience of assembly and the like when processing this conducting wire. However, in a soil that achieves basic functions, there is no problem even if 15 coils are placed on the movable side.

このように、本発明は板ばねの剛性な維持したまま対物
レンズの駆動効率な上げるべく、電磁駆動用の磁気回路
中に、板ばねにより発生する力と相反する向きの力を生
じさせるように磁性コアを付加し、これらの合成力によ
り見かけのばね定数を下けたので、剛性の高い板ばねな
そのまま用いてフォーカシング制御の余裕を増すことが
できる。
In this way, the present invention creates a force in the opposite direction to the force generated by the leaf spring in the magnetic circuit for electromagnetic drive in order to increase the driving efficiency of the objective lens while maintaining the rigidity of the leaf spring. Since a magnetic core is added and the apparent spring constant is lowered by the combined force of these, it is possible to increase the margin for focusing control by using a highly rigid leaf spring as is.

見かけのはね定数は磁性コアの寸法や配置、磁性コアと
磁石間の寸法等な変えることで任意の値に設定できる。
The apparent repulsion constant can be set to any value by changing the dimensions and arrangement of the magnetic core, the dimensions between the magnetic core and the magnet, etc.

本発明では、剛性の高い板ばねの、使用が可能になるの
で、フォーカシング制御時での捩り変形を回避できるば
かりでなく、組立時における板ばねの歪みや狂いも少な
くすることができ好都合である。
In the present invention, it is possible to use a leaf spring with high rigidity, which is advantageous because it is possible not only to avoid torsional deformation during focusing control, but also to reduce distortion and misalignment of the leaf spring during assembly. .

【図面の簡単な説明】[Brief explanation of the drawing]

矛1図は本発明の一実癩例たる対物レンズ駆動装置?コ
イル断面とともに説明した正面図、矛2図は同上図にお
ける対物レンズ支持部の斜視図、矛6図はコイル及び磁
性コアの斜視図、矛4図は板ばね変位状態における対物
レンズ駆動装置の正面図、215図は見かけのばね特性
を説明したグラフ、矛6図はディスクの規格値に対する
板ばねの追従特性な説明した図、矛7図は従来技術にお
ける板ばねの捩り変形の態様を説明した斜視図である。 13.14・・・磁石、15・・・コイル、16. 1
7・・・磁性コア。
Is Figure 1 an objective lens drive device that is an example of the present invention? The front view explained together with the cross section of the coil, Figure 2 is a perspective view of the objective lens support in the same figure as above, Figure 6 is a perspective view of the coil and magnetic core, and Figure 4 is a front view of the objective lens drive device in the leaf spring displacement state. Figure 215 is a graph explaining the apparent spring characteristics, Figure 6 is a graph explaining the follow-up characteristics of the leaf spring with respect to the standard value of the disk, and Figure 7 is a graph explaining the torsional deformation of the leaf spring in the conventional technology. FIG. 13.14... Magnet, 15... Coil, 16. 1
7...Magnetic core.

Claims (1)

【特許請求の範囲】[Claims] 基台Jり板ばねを介して光学系を取付けている光学式記
録再生装置の元ピックアップであって、コイルと少くと
も2つの磁石とを互いに対向させて配置することにより
形成した電磁駆動手段な用い、該電磁駆動手段を構成す
る一方の部−材な板ばねの自由端側に支持されている対
物し/ズの支持体に、他方の部材を基台にそれぞれ対向
配置して固着した構成の対物レンズ駆動装置において、
上記コイル固着面であって上記2つの磁石間の中心に対
向する位置に磁性コアを配置したことな特徴とする対物
レンズ駆動装置。
A pickup for an optical recording/reproducing device in which an optical system is attached to a base via a leaf spring, and is an electromagnetic drive means formed by arranging a coil and at least two magnets facing each other. One member of the electromagnetic driving means is a support for an objective lens supported on the free end side of a leaf spring, and the other member is arranged and fixed to a base so as to face each other. In the objective lens driving device of
An objective lens driving device characterized in that a magnetic core is disposed on the coil fixing surface at a position facing the center between the two magnets.
JP8156684A 1984-04-23 1984-04-23 Objective lens driving device Pending JPS60226031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8156684A JPS60226031A (en) 1984-04-23 1984-04-23 Objective lens driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8156684A JPS60226031A (en) 1984-04-23 1984-04-23 Objective lens driving device

Publications (1)

Publication Number Publication Date
JPS60226031A true JPS60226031A (en) 1985-11-11

Family

ID=13749840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8156684A Pending JPS60226031A (en) 1984-04-23 1984-04-23 Objective lens driving device

Country Status (1)

Country Link
JP (1) JPS60226031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275046A (en) * 1987-05-06 1988-11-11 Mitsubishi Electric Corp Objective lens driver
JPH076389A (en) * 1993-04-02 1995-01-10 Hyundai Electron America Inc Electromagnetic lens actuator for driving optical disk
US5463501A (en) * 1992-01-13 1995-10-31 Sharp Kabushiki Kaisha Objective-lens driving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275046A (en) * 1987-05-06 1988-11-11 Mitsubishi Electric Corp Objective lens driver
US5463501A (en) * 1992-01-13 1995-10-31 Sharp Kabushiki Kaisha Objective-lens driving apparatus
JPH076389A (en) * 1993-04-02 1995-01-10 Hyundai Electron America Inc Electromagnetic lens actuator for driving optical disk

Similar Documents

Publication Publication Date Title
US4679904A (en) Lens driving device for an optical pickup unit with simplified construction
EP0137283A1 (en) Optical head device
JPH04102232A (en) Objective lens driving device and optical disk device
JPH08212573A (en) Driving gear of objective lens of optical pickup
US4720185A (en) Drive and support structure of an objective lens
JPS60226031A (en) Objective lens driving device
US6462893B1 (en) Lens driving apparatus for disk player
JP2967829B2 (en) Optical system drive
JP2000182258A (en) Optical head actuator
JPH026137B2 (en)
JP3371384B2 (en) Two-axis actuator
US5107485A (en) Double solenoid focus actuator for optical recording/playback apparatus
JPS60253030A (en) Objective lens driving device
JP2624663B2 (en) Objective lens drive
JP2503403Y2 (en) Pickup device in optical information recording / reproducing device
JPS59195340A (en) Optical pickup supporter
JP2910226B2 (en) Focus actuator
JP2515977Y2 (en) Optical pickup device used for optical disc player
JPS6323793Y2 (en)
US20050141364A1 (en) Objective lens drive device and optical head device provided therewith
JPH05134155A (en) Optical parts supporting structure
JPS6159636A (en) Object lens driving device
JPH03125335A (en) Optical system supporter
JPH05314512A (en) Device for driving objective lens
JPS5860435A (en) Objective supporting and driving mechanism of optical disk player