JPS6022561B2 - Linear motor power supply device - Google Patents

Linear motor power supply device

Info

Publication number
JPS6022561B2
JPS6022561B2 JP58171141A JP17114183A JPS6022561B2 JP S6022561 B2 JPS6022561 B2 JP S6022561B2 JP 58171141 A JP58171141 A JP 58171141A JP 17114183 A JP17114183 A JP 17114183A JP S6022561 B2 JPS6022561 B2 JP S6022561B2
Authority
JP
Japan
Prior art keywords
power
reactive power
circuit
power converter
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58171141A
Other languages
Japanese (ja)
Other versions
JPS5972905A (en
Inventor
弘 大窪
正義 井坂
清 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58171141A priority Critical patent/JPS6022561B2/en
Publication of JPS5972905A publication Critical patent/JPS5972905A/en
Publication of JPS6022561B2 publication Critical patent/JPS6022561B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は交流電源側に接続された負荷の無効電力を補償
するための無効電力補償装鷹を備えたりニアモータ給電
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a near-motor power supply device equipped with a reactive power compensation device for compensating for reactive power of a load connected to an AC power source.

〔従来技術〕[Prior art]

アーク炉などの大電力消費に伴う電力系統における無効
電力の変動は送電系統リアクタンスによる電圧降下の動
揺を生じ、同一系統に連なる他の需要家の電圧をも変動
させ、はなはだしいときは照明フリッカ問題が生じる。
Fluctuations in reactive power in the power system due to large power consumption such as arc furnaces cause fluctuations in voltage drop due to the reactance of the power transmission system, which also fluctuates the voltage of other consumers connected to the same system, and in severe cases can cause lighting flicker problems. arise.

そこで、この電圧変動を抑制すべ〈、変動負荷と並列に
無効電力補償装置を接続し、負荷の変動にしたがって制
御して電力系統における無効電力の変動を低減させるこ
とが行なわれている。この無効電力補償装置として同期
調相器、飽和リアクトル、サイリスタスイツチによるコ
ンデンサ開閉及びサィリスタによるリアクトル制御など
が使用されているが、最近一般に使用されているのはサ
イリスタによるリアクトル制御である。第1図は複数バ
ンクに分割されたコンデンサとサィリスタ制御リアクト
ルの併用方式の構成図でコンデンC,〜C4は負荷Fの
無効電力QFの大きさに応じてサィリスタスィッチm,
〜TLで開閉されるが、これらのコンデンサで負荷Fの
無効電力QFに対して粗補償し、コンデンサC.〜C4
の単位容量と等しい大きさのIJアクトルLをサィリス
タHhで位相制御することにより微補償してコンデンサ
C,〜C4とIJアクトルLの合計の無効電力QPが負
荷Fの無効電力QFと等しくなるように制御される。こ
のように、第1図の回路方式ではリアクトル容量が複数
バンクに分割されたコンデンサの単位容量Qcuと等し
い大きさでよいため、リアクトルをサイリスタで位相制
御する際に発生する高周波電流が非常に小さくなるとと
もにリアクトル容量が小さく、かつ負荷の無効電力が零
の場合にコンデンサ及びリアクトルの両方を開放するろ
で損失が小さくなる特徴を有している。
Therefore, in order to suppress this voltage fluctuation, a reactive power compensator is connected in parallel with the fluctuating load and controlled according to the fluctuation of the load to reduce the fluctuation of reactive power in the power system. As this reactive power compensator, a synchronous phase modifier, a saturated reactor, a capacitor opening/closing using a thyristor switch, a reactor control using a thyristor, etc. are used, but reactor control using a thyristor has recently been commonly used. Fig. 1 is a configuration diagram of a combination system of capacitors and thyristor-controlled reactors divided into multiple banks, where capacitors C, to C4 are thyristor switches m, depending on the magnitude of reactive power QF of load F,
These capacitors roughly compensate for the reactive power QF of the load F, and the capacitor C. ~C4
By controlling the phase of the IJ actor L, which has a size equal to the unit capacitance of controlled by. In this way, in the circuit system shown in Figure 1, the reactor capacitance only needs to be equal to the unit capacitance Qcu of the capacitors divided into multiple banks, so the high-frequency current generated when the phase of the reactor is controlled by a thyristor is extremely small. In addition, when the reactor capacity is small and the reactive power of the load is zero, the loss is reduced by opening both the capacitor and the reactor.

第1図の回路の動作を第2図の動作説明図を用いて説明
する。
The operation of the circuit shown in FIG. 1 will be explained using the operation diagram shown in FIG. 2.

負荷Fのリニアモータを使用した場合のその速度変化に
対応する時間T変化に対して負荷Fの有効電力PがAに
−点鎖線で示した直線で変化するものとすると負荷Fの
無効電力QPがAに実線で示したように変動し、かつ負
荷Fの無効電力QFがコンデンサ1分割当りの容量(単
位容量Qc。)の4倍程度である場合の第1図の動作を
説明する。説明の都合上第1図Aの1〜4のレベルを設
け、レベル1でQcU、レベル2で滋cUの大きさを設
けることによる。第2図Bの0から正側にリアクトルL
による遅相無効電力舷を示し、また0から負側にコンデ
ンサC,〜C4による進相無効電力Qcを示した。
When using a linear motor with load F, and assuming that the active power P of load F changes from A to A along the straight line shown by the dotted chain line with respect to the change in time T corresponding to the speed change, the reactive power QP of load F The operation shown in FIG. 1 will be described when the load F varies as shown by the solid line A and the reactive power QF of the load F is about four times the capacitance per division of the capacitor (unit capacitance Qc.). For convenience of explanation, levels 1 to 4 in FIG. 1A are provided, and level 1 is provided with the size of QcU, and level 2 is provided with the size of Shigeru cU. Reactor L is placed on the positive side from 0 in Figure 2B.
In addition, from 0 to the negative side, the leading phase reactive power Qc due to capacitors C and C4 is shown.

時間Tが0の時点で負荷Fの無効電力QFが最大である
コンデンサC,〜C4のすべてがサイリスタスィッチH
h,〜m4により投入される指令を発生する。時間Tが
T,に達すると負荷Fの無効電力QFがレベル3に等し
くなるが、時間Tが0からT,の期間ではリアクトルL
の無効電力QLがQL=4QU−QFになるようにサィ
リスタThで制御される。T,に達するとしベルが3に
なるからサィリスタスイツチTh4が釈放されると同時
にサイリスタThも釈放されコンデンサC4及びリアク
トルLがともに開勝ごれ、その後はリアクトルLをサィ
リスタmで制御してリアクトルLの無効電力QLがQL
=$もU一QFになるようT,からT2の期間微補償さ
れる。時間T力汀2以後T4までの期間は前述したと同
様な動作が行なわれ、T4に達した時点で負荷Fの無効
電力QFが零になるからコンデンサC,〜C4及びリア
クトルLのそれぞれが開放される。
When time T is 0, all capacitors C and ~C4 whose reactive power QF of load F is maximum are switched to thyristor switch H.
A command is generated by h, to m4. When time T reaches T, the reactive power QF of load F becomes equal to level 3, but in the period from time T from 0 to T, reactor L
The reactive power QL is controlled by the thyristor Th so that QL=4QU-QF. When T, is reached, the bell becomes 3, so thyristor switch Th4 is released, and at the same time thyristor Th is also released, capacitor C4 and reactor L are both opened, and after that, reactor L is controlled by thyristor m, and reactor The reactive power QL of L is QL
=$ is also slightly compensated for the period from T to T2 so that it becomes U-QF. The same operation as described above is performed from time T2 to T4, and when T4 is reached, the reactive power QF of load F becomes zero, so capacitors C, ~C4 and reactor L are opened. be done.

上述したようなコンデンサC,〜C4の開閉制御及びリ
アクトルL制御が行なわれると、コンデンサC,〜C4
とりアクトルLによる無効電力の合計であるQFが第2
図Bの下に−点鎖線で示した負荷Fの無効電力QFを打
消すように制御されるから鰭源Eからの無効電力Qsが
零になる。しかし、第1図のごとく電力系統に無効電力
補償装置を並列に接続して負荷の無効電力を補償する回
路方式でサィリスタTh及びサィリスタスィツチTh,
〜Th4のいずれかが点弧不能になったりあるいは破壊
されるような異常状態が発生した場合には負荷Fで消費
する無効電力QFよりも遅相無効電力が増加したりある
いは進相無効電力が増加したりして電力系統すなわち、
交流電源Eの電圧が大幅に変動して同一電力系統に連な
る一般需要家に多大な損害を与えるなどの欠点があった
When the opening/closing control of the capacitors C, ~C4 and the reactor L control are performed as described above, the capacitors C, ~C4
QF, which is the total reactive power due to the actuator L, is the second
The reactive power Qs from the fin source E becomes zero because it is controlled to cancel the reactive power QF of the load F shown by the dashed line at the bottom of FIG. However, as shown in Fig. 1, in a circuit system that connects a reactive power compensator in parallel to the power system to compensate for the reactive power of the load, the thyristor Th and thyristor switch Th,
~ If an abnormal condition occurs in which one of Th4 becomes unable to ignite or is destroyed, the lagging reactive power increases or the leading reactive power increases more than the reactive power QF consumed by the load F. Increasing power system i.e.
There was a drawback that the voltage of the AC power supply E fluctuated significantly, causing great damage to general consumers connected to the same power system.

〔発明の目的〕本発明は従釆の無効電力補償装置におけ
る上述した欠点をなくし、負荷にリニアモータを使用し
た場合に簡単な回路構成で無効電力補償装置が異常状態
になったときに電力系統の電圧変動を抑制するとともに
リニアモータを安全に停止させることができるリニアモ
ータ給電装置を提供することを目的とする〔発明の概要
〕 本発明の特徴とするところは、無効電力補償装置および
電力変換装置の異常を夫々検出する手段と、これらの検
出手段のいずれかが動作したとき上記電力変換装置およ
び無効電力補償装置を電源から切離すとともに電力変換
装置の出力側に発電制動抵抗を接続する手段とを設ける
ことである。
[Object of the Invention] The present invention eliminates the above-mentioned drawbacks of conventional reactive power compensators, and when a linear motor is used as a load, a simple circuit configuration enables the reactive power compensator to compensate for the power system when an abnormal state occurs. [Summary of the Invention] The present invention is characterized by a reactive power compensator and a power converter. Means for detecting abnormalities in the devices, and means for disconnecting the power converter and the reactive power compensator from the power source when any of these detecting means is activated, and connecting a dynamic braking resistor to the output side of the power converter. It is to establish the following.

〔実施例の説明〕第3図はリニアモータ給電装置に適用
した単線結線の本案の一実施例で、Tは走行体、LM,
〜LM4はリニアモータ推進コイル、SW,〜SW4は
き函区分開閉器、F,,F2はフィーダ線、Trは電源
変圧器、S,〜S3は開閉器、CC,,CC2は電力変
換装置、R,,R2は制動抵抗、P,Trは計器用変圧
器、Tr,,Tr2は無効電力補償装置、TQ,,TQ
2用変圧器、CT,は電源電流を検出する変流器、CL
,CT3は電力変換装置CC,及びCC2のそれぞれの
出力電流を検出する変流器、10は位相差検出回路、3
1,41は変圧器P,Trの2次電圧V及び電源電流検
出用変流器にTの2次電流1の波形を正負に振り分ける
演算増幅器などから構成される正負振分け回路、32,
34は電圧Vの正負波形に対する1次遅れ回路、33,
35は波形整形回路、51,54は論理積回路、d,〜
d8は逆流阻止用ダイオードで構成されている。
[Explanation of Embodiment] Fig. 3 shows an embodiment of the present invention of a single wire connection applied to a linear motor power supply device, where T is a running body, LM,
~LM4 is a linear motor propulsion coil, SW, ~SW4 is a box division switch, F,, F2 is a feeder line, Tr is a power transformer, S, ~S3 is a switch, CC,, CC2 is a power converter, R,, R2 are braking resistors, P, Tr are potential transformers, Tr,, Tr2 are reactive power compensators, TQ,, TQ
2 transformer, CT, is a current transformer that detects the power supply current, CL
, CT3 is a current transformer that detects the output current of each of the power converters CC and CC2, 10 is a phase difference detection circuit, 3
1, 41 is a positive/negative distribution circuit composed of a transformer P, an operational amplifier, etc. that distributes the waveform of the secondary current 1 of T to a current transformer for detecting the secondary voltage V of Tr and a power supply current as positive or negative; 32;
34 is a first-order delay circuit for the positive and negative waveforms of voltage V; 33;
35 is a waveform shaping circuit, 51 and 54 are AND circuits, d, ~
d8 is composed of a backflow blocking diode.

60,60′は電力変換装置CC,,CC2の故障検出
回路、lpは電流指令信号、61‘ま電流指令信号lp
の絶対値回路、62は電力変換装置CC,.CC2の出
力電流検出用変流器にLの2次電流luの絶対値回路、
63は減算器、64は遅れ回路、65は比較器、d7は
逆流阻止用ダイオード、他の記号は第1図と同一記号で
示したので説明は省略する。
60, 60' are failure detection circuits for power converters CC, CC2, lp is a current command signal, and 61' is a current command signal lp.
, 62 is a power conversion device CC, . An absolute value circuit for the secondary current lu of L is installed in the current transformer for detecting the output current of CC2.
63 is a subtracter, 64 is a delay circuit, 65 is a comparator, d7 is a backflow blocking diode, and other symbols are shown by the same symbols as in FIG. 1, so their explanation will be omitted.

次に、第3図の回路におけるリニアモータの給電装置の
大略の動作を説明すると、走行体Tが第3図のごとく推
進コイルL地と推進コイルLM3にまたがっているとき
にはき露区分開閉器SW2とSW3を閉じて電力変換装
置CC,及びCC2で給電し、走行体Tが推進コイルL
M2を退出すると電力変換装置CC2の給電を休止し、
推進コイルLM4に進入する直前までCC,のみで給電
する。そして、CC,とCC2が同時に給電している期
間は走行体Tが2つの区間にまたがっている場合であり
、このような給電制御を行なうことにより走行体Tの推
進が変動せずに区間走行を行なうことができる。
Next, to explain the general operation of the power supply device for the linear motor in the circuit shown in FIG. 3, when the traveling body T straddles the propulsion coil L ground and the propulsion coil LM3 as shown in FIG. and SW3 are closed, power is supplied by power converters CC and CC2, and the traveling body T connects to the propulsion coil L.
When exiting M2, the power supply to the power converter CC2 is stopped,
Power is supplied only by CC until just before entering the propulsion coil LM4. The period in which power is supplied to CC and CC2 at the same time is when the traveling body T straddles two sections, and by performing such power supply control, the propulsion of the traveling body T does not fluctuate and the traveling body T can travel in the section. can be done.

このような動作において、電力変換装置CC,,CC2
が正常な場合の第3図の動作を説明すると、コンデンサ
C,〜C4は電源変圧器Tr、電力変換器CC,,CC
2及び推進コイルLM,〜LM4から構成される負荷F
の無効電力QFの大きさに応じてサィリスタスイツチT
h,〜Th2で開閉されるが、これらのコンデンサで負
荷Fの無効電力QFに粗補償し、コンデンサC,〜C4
の単位容量と等しい大きさのIJアクトルLをサイリス
タThで位相制御することにより微補償してコンデンサ
C,〜C4とIJアクトルLの合計の無効電力Qpが負
荷Fの無効電力QFと等しくなるように制御される。
In such an operation, power converters CC, CC2
To explain the operation of FIG. 3 when is normal, capacitors C and C4 are connected to power transformer Tr, power converters CC, CC
2 and propulsion coils LM, ~LM4.
The thyristor switch T depends on the magnitude of the reactive power QF of
These capacitors roughly compensate for the reactive power QF of the load F, and the capacitors C, ~C4
By controlling the phase of the IJ actor L, which has a size equal to the unit capacitance of controlled by.

次に、第4図の動作波形図を用いて負荷Fが正常時の第
3図の故障検出装置60の動作を説明すると、電流指令
信号lpの絶対値(絶対値回路61の出力波形610)
に対して電力変換装置CC,の出力電流luの絶対値(
絶対値回路62の出力波形620)は第4図に実線で示
したように減算器63の出力波形は実線630のように
なる。
Next, to explain the operation of the failure detection device 60 in FIG. 3 when the load F is normal using the operating waveform diagram in FIG. 4, the absolute value of the current command signal lp (output waveform 610 of the absolute value circuit 61)
, the absolute value of the output current lu of the power converter CC,
The output waveform 620) of the absolute value circuit 62 is shown by a solid line in FIG. 4, and the output waveform of the subtracter 63 is shown by a solid line 630.

この場合、比較器65の比較レベルを一△lpと負側に
設けたのは負荷Fが正常時における減算器63の出力波
形630から知られるように電力変換装置CC,の出力
電流lvの順逆切換時(電力変換装置CC,として逆並
列接続されたサィリスタ変換器から構成されているもの
とする)などで平常時でも偏差信号が△lp以上(電流
指令信号lpが大なる第4図の■,■の期間のような状
態)になる場合があるのでこれをカットするためである
。また、遅れ回路64は平常時に、ノイズ等の混入によ
って騒く短時間の間、減算器63の出力が比較器65の
検知レベルを越えるような場合に、これを遅れ回路の持
つ時定数で吸収して、比較器65の誤動作を防止するも
のである。次に、第2図の動作波形図において、時間T
がT,〜Lの任意の期間に第3図に示した電力変換装置
CC,の負荷側が短絡するような異常状態が生じた場合
の第3図の動作を説明すると、電力変換装置CC,の出
力電流luの波形は第4図に破線で示す波形621のよ
うに振動的であるから減算器63の偏差信号631が設
定値△Tp以上になる(第4図の■の時点)ため比較器
65が動作し(出力波形650)、記憶回路2川まこの
異常状態を記憶(出力波形200)して、開閉器S,を
しや断するとともに電力変換装置tC,の動作を停止し
て電力変換装置CC,の負荷側の異常時に生ずる遅相無
効電力Qsの増加を防止し、かつ開閉器S2を介して制
動抵抗R,を投入して、安定に走行体Tを停止させるこ
とができる。
In this case, the comparison level of the comparator 65 is set to 1△lp on the negative side, as is known from the output waveform 630 of the subtracter 63 when the load F is normal. During switching (assuming that the power converter CC is composed of thyristor converters connected in antiparallel), the deviation signal is △lp or more even under normal conditions (■ in Fig. 4 when the current command signal lp is large). , ■ period)), this is to cut this situation. In addition, the delay circuit 64 absorbs the noise with the time constant of the delay circuit when the output of the subtracter 63 exceeds the detection level of the comparator 65 for a short period of time caused by noise or the like. This prevents the comparator 65 from malfunctioning. Next, in the operating waveform diagram of FIG. 2, time T
To explain the operation shown in FIG. 3 when an abnormal condition such as a short circuit occurs on the load side of the power converter CC shown in FIG. Since the waveform of the output current lu is oscillatory as shown by the broken line 621 in FIG. 4, the deviation signal 631 of the subtracter 63 exceeds the set value ΔTp (at the time of ■ in FIG. 4), so the comparator 65 operates (output waveform 650), the abnormal state of the memory circuit 2 is memorized (output waveform 200), and the switch S, is shut off, and the operation of the power converter tC, is stopped and the power is restored. It is possible to prevent the slow phase reactive power Qs from increasing when an abnormality occurs on the load side of the converter CC, and to turn on the braking resistor R via the switch S2 to stably stop the traveling body T.

ここで、OR回路30は負荷Fを構成する電力変換装置
CC,,CC2のいずれかが異常状態になった場合、あ
るいはCC,.CC2が同時に異常状態になった場合で
も出力を出す回路である。一方、第2図のT,一Lの任
意の時点で走行体Tが短絡される異常状態が発生した場
合、負荷Fの無効電力QFが第2図のQFよりも増加す
るので第3図の位相差検出回路10が出力を出すため、
位相差検出回路10からも開閉器S.をしや断する指令
及び電力変換装置CC,の動作停止指令並びに開閉器S
2を投入する指令が発生する。
Here, the OR circuit 30 operates when any of the power converters CC, . This circuit outputs an output even if CC2 becomes abnormal at the same time. On the other hand, if an abnormal condition occurs in which the traveling body T is short-circuited at any time between T and -L in Fig. 2, the reactive power QF of the load F increases more than QF in Fig. 2, so the Since the phase difference detection circuit 10 outputs an output,
The phase difference detection circuit 10 also connects the switch S. and a command to stop the operation of power converter CC, and switch S.
A command to input 2 is generated.

また、第2図のT,〜Lの任意の時点で電力変換装置C
C,が急に動作しなくなるような異常状態が発生した場
合、電流指令信号lpよりも電力変換装置CC,の出力
電流luが小さいから故障検出装置60ではこの異常状
態を検出することはできないが、負荷Fの遅相無効電力
QFが急に減少するから無効電力補償装置からの無効電
力QFが進相になるため位相差検出回路10が出力をだ
すのでこの出力で開閉器S,がしや断され、かつ、鰭力
変換装置を動作停止し、開閉器S2を介して制動抵抗R
,が投入されるから電力系統の電圧変動などを制御する
ことができるともに他の装置への悪影響などを防止する
ことができる。
Also, at any time between T and -L in FIG. 2, the power converter C
If an abnormal state occurs in which CC suddenly stops operating, the failure detection device 60 cannot detect this abnormal state because the output current lu of the power converter CC is smaller than the current command signal lp. Since the lagging reactive power QF of the load F suddenly decreases, the reactive power QF from the reactive power compensator becomes phase advanced, so the phase difference detection circuit 10 outputs an output. The fin force converter is stopped and the braking resistance R is turned on via the switch S2.
, is turned on, it is possible to control voltage fluctuations in the power system, and to prevent adverse effects on other devices.

以上、詳細に説明したように、本発明の一実施例によれ
ば電流指令信号の大小にかかわらず電力変換装置の出力
電流が電流指令信号よりも大きくなる電力変換装置など
の故障時には故障検出装置または位相差検出回路で検出
し、この出力で開閉器をしや断し、かつ「電力変換装置
の動作停止指令並びに開閉器S2を投入する指令を発生
させる。
As described above in detail, according to an embodiment of the present invention, a failure detection device is used when a power converter, etc. has a failure in which the output current of the power converter becomes larger than the current command signal regardless of the magnitude of the current command signal. Alternatively, it is detected by the phase difference detection circuit, and this output is used to close the switch and generate a command to stop the operation of the power converter and a command to close the switch S2.

また、電流指令信号の大小にかかわらず電力変換装置の
出力電流が電流指令信号よりも小さくなる電力変換装置
の故障あるいは無効電力補償装置が異常状態になった場
合、これらの異常を位相差検出回路で検出し、この出力
で開閉図S,をしや断し、かつ、電力変換装置を動作停
止し、開閉器S2を介して制御抵抗R,が投入される、
これらの異常時における電力系統の電圧変動「同一電力
系統の他の需要家への悪影響の抑制及び無効電力補償装
置、電力変換装置などを構成する他の健全な機器への悪
影響などを防止して、かつ走行体が安全に停止すること
ができるなどの効果がある。‐本発明は上述の実施例に
限定されるものではなく、電力変換装置の個数が増加し
た場合、無効電力補償装置も増加するが、このような回
路構成にも適用でき、また〜無効電力補償装置だけが増
加するような回路構成にも適用できることは云うまでも
ない。
In addition, if the power converter fails or the reactive power compensator becomes abnormal, the output current of the power converter becomes smaller than the current command signal regardless of the magnitude of the current command signal, these abnormalities can be detected by the phase difference detection circuit. is detected, and this output disconnects the switching diagram S, and stops the operation of the power converter, and the control resistor R is turned on via the switch S2.
Voltage fluctuations in the electric power system during these abnormalities are ``suppressed from adverse effects on other consumers in the same electric power system, and are prevented from adverse effects on other healthy equipment that constitutes var compensators, power converters, etc.'' The present invention is not limited to the above-described embodiment, and when the number of power converters increases, the number of reactive power compensators also increases. However, it goes without saying that the present invention can be applied to such a circuit configuration, and also to a circuit configuration in which only the number of reactive power compensators is increased.

【図面の簡単な説明】 第1図は従来の無効電力補償装置を示す単結線図、第2
図は第1図の動作説明図、第3図はリニアモータ給電装
置に適用した単線結線における本発明の一実施例回路図
、第4図は第3図の故障検出回路の動作波形図である。 8・・・交流電源、Qs…交流電源Bから流出する無効
電力、QF…負荷Fが消電する無効電力、Qc…コンデ
ンサCによる進相無効電力、Qp・・・Qc十QL,C
,〜C4…コンデンサ、L…リアリトル、Th,〜Th
4…サイリスタスイツチ、Th・・・サイリスタ、F・
・・負荷、×s…電源インピーダンス、T…走行体、L
M,〜LM4…推進コイル、SW,…SW4…き亀区分
開閉器、F,〜F2…フイーダ、S,〜S3…開閉器、
lp・・・電流指令信号、Tr,〜Tr2・・・無効電
力補償装置用変圧器「PTr・・・計器用変圧器、Tr
・・・電源変圧器、CC,〜CC2…電力変換装置、R
,〜R2・・・制動抵抗、30・・・OR回路〜CT,
…電源電流検出用変流器t 20,20′・・・記憶回
路、51,54…論理積回路、33,35…波形整形回
路、3軍,41…正負振分け回路、32,34・・・1
次遅れ回路、42943・・・付号反転回路、61,6
2・・・絶対値回路、64・・・遅れ回路、66・・・
比較器L○,〜D7・・・逆流阻止用ダイオード、10
…位相差検出回路、60,60′…故障検出装置、TQ
,〜TQ2・・・無効電力補償装置、CT2〜CT3…
電力変換器出力電流検出用変流器。第1図 第2図 第3図 第4図
[Brief explanation of the drawings] Figure 1 is a single connection diagram showing a conventional reactive power compensator;
The figure is an explanatory diagram of the operation of Figure 1, Figure 3 is a circuit diagram of an embodiment of the present invention in a single wire connection applied to a linear motor power supply device, and Figure 4 is an operation waveform diagram of the failure detection circuit of Figure 3. . 8... AC power supply, Qs... Reactive power flowing out from AC power supply B, QF... Reactive power consumed by load F, Qc... Phase advancing reactive power due to capacitor C, Qp... Qc + QL, C
, ~C4...Capacitor, L...Rear little, Th, ~Th
4... Thyristor switch, Th... Thyristor, F.
...Load, ×s...Power source impedance, T...Travelling object, L
M, ~LM4...Propulsion coil, SW,...SW4...Turtle division switch, F, ~F2...Feeder, S, ~S3...Switch,
lp... Current command signal, Tr, ~Tr2... Transformer for reactive power compensator "PTr... Potential transformer, Tr
...Power transformer, CC, ~CC2...Power converter, R
, ~R2...braking resistance, 30...OR circuit ~CT,
... Current transformer t for power supply current detection 20, 20'... Memory circuit, 51, 54... AND circuit, 33, 35... Waveform shaping circuit, third group, 41... Positive/negative distribution circuit, 32, 34... 1
Next delay circuit, 42943... Number inversion circuit, 61,6
2... Absolute value circuit, 64... Delay circuit, 66...
Comparator L○, ~D7... Backflow blocking diode, 10
...Phase difference detection circuit, 60, 60'...Failure detection device, TQ
,~TQ2... reactive power compensator, CT2~CT3...
Current transformer for power converter output current detection. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 軌道側に設置され多数に区分された推進コイルと、
該推進コイルに給電するための電力変換装置と、前記多
数区分の推進コイルと前記電力変換装置を接続する多数
のき電区分開閉器と、前記電力変換装置の交流入力電源
側の無効電力を補償する装置とを備え、前記推進コイル
を走行する走行体の進行につれて前記き電区分開閉器を
順次切換えながら前記推進コイルに給電するリニアモー
タ給電装置において、前記無効電力補償装置の異常状態
を検出する手段と、前記電力変換装置の異常状態を検出
する手段と、前記いずれかの異常状態検出手段が出力を
出したことに応動して前記電力変換装置および前記無効
電力補償装置を電源から切離すとともに前記電力変換装
置の出力側に発電制動抵抗を接続する手段とを備えたこ
とを特徴とするリニアモータ給電装置。
1 A propulsion coil installed on the track side and divided into many parts,
a power converter for feeding power to the propulsion coil; a large number of feeder section switches that connect the propulsion coils of the multiple sections and the power converter; and compensation for reactive power on the AC input power source side of the power converter. and detecting an abnormal state of the reactive power compensator in a linear motor power supply device that supplies power to the propulsion coil while sequentially switching the feeder section switch as the traveling body traveling on the propulsion coil advances. means for detecting an abnormal state of the power converter, and disconnecting the power converter and the reactive power compensator from the power source in response to output from any of the abnormal state detecting means; A linear motor power supply device comprising: means for connecting a dynamic braking resistor to the output side of the power conversion device.
JP58171141A 1983-09-19 1983-09-19 Linear motor power supply device Expired JPS6022561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171141A JPS6022561B2 (en) 1983-09-19 1983-09-19 Linear motor power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171141A JPS6022561B2 (en) 1983-09-19 1983-09-19 Linear motor power supply device

Publications (2)

Publication Number Publication Date
JPS5972905A JPS5972905A (en) 1984-04-25
JPS6022561B2 true JPS6022561B2 (en) 1985-06-03

Family

ID=15917743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171141A Expired JPS6022561B2 (en) 1983-09-19 1983-09-19 Linear motor power supply device

Country Status (1)

Country Link
JP (1) JPS6022561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8296970B2 (en) 2009-09-29 2012-10-30 W. L. Gore & Associates, Inc. Waterproof breathable footwear having hybrid upper construction

Also Published As

Publication number Publication date
JPS5972905A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
US4672298A (en) Power factor correction system
US5241217A (en) UPS with input commutation between AC and DC sources of power
US5347164A (en) Uninterruptible power supply having a 115V or 230V selectable AC output and power saving
US6770984B2 (en) Electronic voltage regulator with switching control device and control method for stabilizing output voltage
US5834858A (en) Emergency power supply
JP2012533267A (en) New architecture of power factor and harmonic compensator for power distribution system
US4692632A (en) Procedure and apparatus for uninterruptible power supply
CA2405192C (en) Power conversion apparatus
US20230275521A1 (en) Power supply with active power buffer
EP0015641B1 (en) Power factor improving apparatus for power converter
JPH0740761B2 (en) AC electric vehicle control device
JP2004048938A (en) Voltage compensation apparatus
JPH1167253A (en) Fuel cell output variation compensation method and system
JPS6022561B2 (en) Linear motor power supply device
KR200390534Y1 (en) High efficiency charge and discharge system of DVR using EDLC
US4339705A (en) Thyristor switched inductor circuit for regulating voltage
JPS6233802B2 (en)
JP2995962B2 (en) Power supply circuit for constant voltage power supply
JPH0715875A (en) Controller for reactive power compensator
JP2759591B2 (en) Rolling control system
JPH0284029A (en) Inverter control method
JPS6117234B2 (en)
JPH06205547A (en) Service interruption control circuit of emergency power supply device of power storage type
JPH04317523A (en) Voltage fluctuation compensator
JP4042092B2 (en) Power conversion system