JPS60225092A - Emergency core cooling device - Google Patents

Emergency core cooling device

Info

Publication number
JPS60225092A
JPS60225092A JP59081447A JP8144784A JPS60225092A JP S60225092 A JPS60225092 A JP S60225092A JP 59081447 A JP59081447 A JP 59081447A JP 8144784 A JP8144784 A JP 8144784A JP S60225092 A JPS60225092 A JP S60225092A
Authority
JP
Japan
Prior art keywords
temperature
pressure
saturation temperature
coolant
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081447A
Other languages
Japanese (ja)
Inventor
松本 知行
佳彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59081447A priority Critical patent/JPS60225092A/en
Publication of JPS60225092A publication Critical patent/JPS60225092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰水型原子炉に係シ、冷却材喪失事故時に作
動し、炉心を効率よく冷却するのに適した緊急炉心冷却
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a boiling water nuclear reactor, and relates to an emergency core cooling system suitable for operating in the event of a loss of coolant accident and efficiently cooling the core.

〔発明の背景〕[Background of the invention]

従来の沸l絃原子炉の緊急炉心冷却系(ECC8)は高
圧スプレィ系、低圧スプレィ系、低圧注水系などから構
成されている。第1図は配管破断などによる冷却材喪失
事故時の低圧注水系による炉心冷却状態を示している。
The emergency core cooling system (ECC8) of a conventional boiler-powered nuclear reactor is composed of a high-pressure spray system, a low-pressure spray system, a low-pressure water injection system, and the like. Figure 1 shows the state of core cooling by the low-pressure water injection system in the event of a loss of coolant accident due to a pipe rupture.

低圧注水系は配管51とポンプ52とからなシ、冷却材
喪失事故時には未飽和状態の冷却水を配管51から圧力
容器1内のシュラウド壁11と燃料集合体30間のバイ
パス領域4に注入し、その領域を水浸けにするとともに
、下部プレナム2や燃料集合体3の内部も再び水浸けに
する。
The low-pressure water injection system consists of a pipe 51 and a pump 52, and in the event of a loss of coolant accident, unsaturated cooling water is injected from the pipe 51 into the bypass region 4 between the shroud wall 11 and the fuel assembly 30 in the pressure vessel 1. The area is flooded, and the inside of the lower plenum 2 and fuel assembly 3 is also flooded.

ECC8により、バイパス領域4に注入された冷却水が
燃料集合体3や下部ブレナム2に流入する流路について
第2図により説明する。燃料集合体3の下端にある下部
タイプレート31にはリーク孔32があり、炉心バイパ
ス領域4の冷却水はこのリーク孔32から燃料集合体3
内に流入する。
The flow path through which the cooling water injected into the bypass region 4 by the ECC 8 flows into the fuel assembly 3 and the lower blennium 2 will be explained with reference to FIG. 2. The lower tie plate 31 at the lower end of the fuel assembly 3 has a leak hole 32, and the cooling water in the core bypass region 4 flows through the leak hole 32 to the fuel assembly 3.
flow inside.

一方、燃料集合体3を支持する燃料サポート33は炉心
支持板41上に置かれ、その下端には入口オリフィス2
1がある。果合体3内に流入した冷却水はこのオリフィ
ス21を経て下部プレナム2に流入落下する。
On the other hand, a fuel support 33 that supports the fuel assembly 3 is placed on a core support plate 41, and has an inlet orifice 2 at its lower end.
There is 1. The cooling water that has flowed into the integrated body 3 flows into the lower plenum 2 through this orifice 21 and falls.

入口オリフィス21を経て下部プレナム2に流入落下す
る冷却水71は、第1図に示すように、減圧沸騰で下部
プレナム2から吹上げる蒸気72により落下が抑制され
(この現象は、CCFL現象と呼ばれる凧集合体3内部
に一部が蓄積される。従って下部プレナム2が冠水する
以前に集合体3内部が冠水し、早期冷却が達成可能な特
性となっている。
As shown in FIG. 1, the cooling water 71 flowing into and falling into the lower plenum 2 through the inlet orifice 21 is suppressed from falling by the steam 72 blown up from the lower plenum 2 by boiling under reduced pressure (this phenomenon is called the CCFL phenomenon). A part of the kite assembly 3 is accumulated inside the kite assembly 3. Therefore, the interior of the assembly 3 is flooded before the lower plenum 2 is flooded, making it possible to achieve early cooling.

こうした効果はリーク孔32から飽和水が流入する場合
には特に顕著である。しかし、リーク孔32からサブク
ール水が流入する場合には、蒸気の凝縮が起こるために
、同じ吹上げ蒸気流量でも落下水流量が増加する、いわ
ゆるCCFLブレークによって集合体3内の冷却水が下
部プレナム2に落下してしまい、炉心の再冠水が遅れる
ことになる。こうし九〇 C1” L%性について第3
図に示す。横軸が吹上げ蒸気流量、縦軸が落下水流量で
あり、飽和水の場合を実線で、未飽和水の場合を破線で
表わしている。図から明らかなように、一定の吹上げ蒸
気流量に対して、サブクール水の場合は飽和水の場合に
比べて落下水流量が多い。これが集合体3内の冷却水を
下部プレナム2に落下させてしまい炉心の再冠水を遅ら
せる原因となっている。
Such an effect is particularly noticeable when saturated water flows in from the leak hole 32. However, when sub-cooled water flows in from the leak hole 32, steam condensation occurs, so even with the same upward steam flow rate, the falling water flow rate increases, a so-called CCFL break, which causes the cooling water in the assembly 3 to flow into the lower plenum. 2, resulting in a delay in re-flooding of the reactor core. Koushi 90 C1” About L% property 3rd
As shown in the figure. The horizontal axis is the blow-up steam flow rate, and the vertical axis is the falling water flow rate, with the solid line representing saturated water and the broken line representing unsaturated water. As is clear from the figure, for a constant blow-up steam flow rate, the falling water flow rate is larger in the case of subcooled water than in the case of saturated water. This causes the cooling water in the assembly 3 to fall into the lower plenum 2, delaying the re-flooding of the core.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低圧炉心注水系の作動時において、バ
イパスからリーク孔を経て集合体下部に流入する冷却水
の温度を系の圧力に対応した飽和温度に保ち、集合体内
に蓄積された冷却水の下部プレナムへの落下を吹上げ蒸
気によシ防ぎ、炉心の早期再冠水を達成する緊急炉心冷
却装置を提供することである。
The purpose of the present invention is to maintain the temperature of the cooling water flowing from the bypass through the leak hole to the lower part of the assembly at a saturation temperature corresponding to the pressure of the system during operation of the low-pressure core water injection system, thereby reducing the amount of cooling water accumulated in the assembly. An object of the present invention is to provide an emergency core cooling system that prevents water from falling into a lower plenum by blowing up steam and achieves early re-flooding of a reactor core.

〔発明の概要〕[Summary of the invention]

本発明においては、バイパス領域の冷却水の温度を測定
するとともに、圧力容器内の圧力に対応した飽和温度を
めて比較し、バイパス下部の温度が未飽和温度とならな
いように低圧炉心注水系の流量を制御し、バイパスから
リーク孔を経て集合体下部に流入する冷却水の温度を飽
和温度に保っている。それによシ、呆合体入ロオリフイ
スでのCCFLを維持し、集合体内冷却水の下部ブレナ
ムへの落下を防ぐようになっている。
In the present invention, the temperature of the cooling water in the bypass area is measured, and the saturation temperature corresponding to the pressure in the pressure vessel is compared, and the low-pressure core water injection system is adjusted so that the temperature in the lower part of the bypass does not become unsaturated. The flow rate is controlled to maintain the temperature of the cooling water flowing from the bypass through the leak hole to the lower part of the assembly at the saturation temperature. In order to do so, the CCFL is maintained at the lower orifice with the lower assembly, and cooling water within the assembly is prevented from falling into the lower blennium.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって更に詳しく説明する。第
4図社本発明の一実施例を示す概略図である。第1図と
同一番号を付した部分は同等の機能を果すものであるか
ら、その説明は省略する。
Hereinafter, the present invention will be explained in more detail with reference to Examples. FIG. 4 is a schematic diagram showing an embodiment of the present invention. Since the parts given the same numbers as in FIG. 1 have the same functions, their explanations will be omitted.

本発明における緊急炉心冷却装置は、炉心バイパス領域
に冷却水を供給する配管51、ポンプ52、駆動モータ
54および流量制御装置60とから構成されている。流
量制御装置60は、バイパス領域4の温度測定器61.
圧力容器内の圧力測定器62を測定装置として持ち、バ
イパス領域の冷却材温度と圧力に対応した冷却材飽和温
度とを比較装置63で比較し、温度差ΔTが一定になる
ように駆動モータ54の回転数を変えて冷却水の供給流
量を制御するフィードバック制御系となっている。緊急
時には、未飽和の水が配管51全通しバイパス領域上部
の周辺壁に開けられた開口部53から供給される。
The emergency core cooling system according to the present invention includes a pipe 51 that supplies cooling water to the core bypass region, a pump 52, a drive motor 54, and a flow rate control device 60. The flow rate control device 60 includes a temperature measuring device 61 .
A pressure measuring device 62 in the pressure vessel is used as a measuring device, and a comparator 63 compares the coolant temperature in the bypass region with a coolant saturation temperature corresponding to the pressure. It is a feedback control system that controls the supply flow rate of cooling water by changing the rotation speed. In an emergency, unsaturated water is supplied through the entire pipe 51 through an opening 53 in the peripheral wall above the bypass area.

この冷却水はバイパス領域を落下し、かつ中心方向に流
入するにつれて、構造材や燃料集合体からの熱伝達によ
って熱が与えられて温度が上昇する。BWR5プラント
の場合バイパス中心領域の中央高さ位置およびバイパス
周辺領域の下部位置からバイパス中心領域の下部位置ま
で冷却水が移動する間に、約10C温度が上昇する。従
って、これら位置の温度を、圧力容器の圧力に対応した
飽和温度よりも約10C低く保つように流量を制御する
と、バイパス中心領域下部位置での冷却材温度を飽和温
度に保持可能である。この結果、リーク孔32から未飽
和水が流入して集合体入口オリフィス21で生じるCC
FLブレークを防ぐことができる。
As this cooling water falls through the bypass area and flows toward the center, it is given heat by heat transfer from the structural materials and fuel assembly, and its temperature increases. In the case of a BWR5 plant, the temperature increases by about 10 C during the movement of cooling water from the mid-height position of the bypass center area and the lower position of the bypass peripheral area to the lower position of the bypass center area. Therefore, by controlling the flow rate so as to keep the temperature at these locations approximately 10 C lower than the saturation temperature corresponding to the pressure of the pressure vessel, the coolant temperature at the lower portion of the bypass central region can be maintained at the saturation temperature. As a result, unsaturated water flows in from the leak hole 32 and CC occurs at the aggregate inlet orifice 21.
FL break can be prevented.

一方圧力測定については、圧力容器内の圧力が略一様で
あるため、任意の位置で測定可能である。
On the other hand, pressure measurement can be performed at any arbitrary position because the pressure inside the pressure vessel is approximately uniform.

また、その圧力に対する飽和温度も簡単な表あるいは数
式によ請求めることができる。
In addition, the saturation temperature for that pressure can be calculated using a simple table or mathematical formula.

バイパス領域の温度測定器は熱電対で構成されておシ、
圧力容器下端からバイパス領域に貫通した計装配管70
内に挿入して温度を計測する。この熱電対は定期的に取
シ出し検査して、高い信頼度を維持することが望ましい
The temperature measuring device in the bypass area consists of a thermocouple.
Instrumentation piping 70 penetrating from the lower end of the pressure vessel to the bypass area
Insert it inside and measure the temperature. It is desirable to periodically take out and inspect this thermocouple to maintain high reliability.

比較装置63における入力信号と出力信号との関係を第
5図に示す。入力信号は温度差であり、飽和温度T m
 a Sとバイパス温度Tの差を表わす。
The relationship between the input signal and the output signal in the comparator 63 is shown in FIG. The input signal is a temperature difference, and the saturation temperature T m
a Represents the difference between S and bypass temperature T.

出力信号は流量ポンプ駆動モータ54の回転数の変化量
ΔNであシ、制御後の新しい時点の回転数と現時点の回
転数の差で表わされる。
The output signal is the amount of change ΔN in the rotational speed of the flow pump drive motor 54, and is expressed as the difference between the rotational speed at a new point in time after control and the current rotational speed.

7N=9新しい時点−ゞ現時点 制御方法は図に示すように、ΔTが増大するにつれΔN
を減少させる方法を用いる。すなわち、バイパス温度が
低下しΔTが大きくなると、ΔNが負の値となり、モー
タ回転数は現時点より小さくなシ注入流量が低下する。
7N=9 New point - Current point The control method is as shown in the figure, as ∆T increases, ∆N
Use methods to reduce That is, when the bypass temperature decreases and ΔT increases, ΔN becomes a negative value, and the injection flow rate decreases while the motor rotational speed is lower than the current value.

この結果バイパス領域での熱交換により温度が上昇し、
ΔTの増大が抑えられ一定値(約10c)に保たれるよ
うに制御できる。
As a result, the temperature increases due to heat exchange in the bypass area,
Control can be performed so that the increase in ΔT is suppressed and maintained at a constant value (approximately 10c).

第6図は本発明の他の実施例を示したものである。本実
施例においては圧力容器内の圧力に対応した飽和温度と
して、下部ブレナムの冷却水の温度を用いている。下部
プレナムでは系の圧力低下にともない減圧沸騰が続いて
おり、冷却水の温度は略飽和温度に保たれている。従っ
てその温度を直接測定し流量制御に使用している。他の
構成については前の実施例と同一である。
FIG. 6 shows another embodiment of the invention. In this embodiment, the temperature of the cooling water in the lower brenum is used as the saturation temperature corresponding to the pressure inside the pressure vessel. In the lower plenum, boiling under reduced pressure continues as the system pressure decreases, and the temperature of the cooling water is maintained at approximately the saturation temperature. Therefore, the temperature is directly measured and used for flow control. The other configurations are the same as in the previous embodiment.

第7図は本発明のもう一つの実施例を示したものである
。本実施例においては、緊急炉心冷却系の流量を変える
方法として流量調整弁55を用いている。制御系からの
制御信号は、本実施例においては弁開度Aの変化量ΔA
であり、 0=”新しい時点−”現時点 の関係にある。
FIG. 7 shows another embodiment of the invention. In this embodiment, a flow rate adjustment valve 55 is used as a method of changing the flow rate of the emergency core cooling system. In this embodiment, the control signal from the control system is the amount of change ΔA in the valve opening A.
, and there is a relationship of 0 = "new time point -" current time.

ΔAと温度差ΔTの関係を第8図に示す。ΔTが増大す
るにつれてΔAを減少させる方法を用いる。すなわち、
バイパス温度が低下しΔTが大きくなると、ΔTが負の
値となり、弁の開度は現時点よシ小さくなり注入流量が
低下する。この結果バイパス領域での熱交換により温度
が上昇し、ΔTの増大が抑えられ、一定値(約10C)
に保たれるように制御できる。
The relationship between ΔA and temperature difference ΔT is shown in FIG. A method is used in which ΔA decreases as ΔT increases. That is,
When the bypass temperature decreases and ΔT increases, ΔT becomes a negative value, the opening degree of the valve becomes smaller than at present, and the injection flow rate decreases. As a result, the temperature increases due to heat exchange in the bypass area, suppressing the increase in ΔT, and keeping it at a constant value (approximately 10C).
can be controlled so that it is maintained at

本発明の実施にともなう効果の一例を第9図に示す。再
循環系配管のギロチン破断による冷却材喪失事故時の被
覆管表面温度は、第9図の様に変化する。破線で示した
従来技術の温厩変化の例では、約120秒以後のCCF
Lブレークによシ温度上昇が続き、下部プレナム冠水後
に集合体が再冠水し温度が低下している。一方、実線で
示した本発明の場合、バイパス領域からリーク孔を経て
集合体に流入する冷却水が飽和水であるため、CCFL
ブレークは起こらず、下部ブレナムが再冠水する以前に
集合体が再冠水し、被覆管最高温度を従来技術より約2
00C低く抑えることが可能である。
FIG. 9 shows an example of the effects resulting from the implementation of the present invention. At the time of a loss of coolant accident due to a guillotine rupture in a recirculation system piping, the surface temperature of the cladding changes as shown in Figure 9. In the example of the temperature change in the conventional technology shown by the broken line, the CCF after about 120 seconds
The temperature continued to rise due to the L break, and after the lower plenum was flooded, the assembly was submerged again and the temperature decreased. On the other hand, in the case of the present invention shown by the solid line, the cooling water flowing from the bypass region through the leak hole into the aggregate is saturated water, so the CCFL
No break occurred, and the aggregate re-flooded before the lower Blenheim re-flooded, reducing the maximum cladding temperature by approximately 2
It is possible to suppress the temperature to a low 00C.

なお、低圧注水系の定格流値はBWR5プラントの場合
1700t/hr/台であシ、回転数は3500F−で
あるが、定格流量到達後再冠水するまでバイパス領域下
部の温度を飽和温度に保つだめの流量は定格流量の約6
0%でちり、流儀制御系の制御可能範囲にある。
In addition, the rated flow value of the low-pressure water injection system is 1700 t/hr/unit in the case of a BWR5 plant, and the rotation speed is 3500 F-, but the temperature in the lower part of the bypass area is maintained at the saturation temperature until it is submerged again after reaching the rated flow rate. The flow rate of the reservoir is approximately 6% of the rated flow rate.
0% means dust, which is within the controllable range of the style control system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、沸騰水型原子炉の冷却材喪失事故時、
炉心バイパス領域から燃料集合体下部のリーク孔を経て
集合体に流入する冷却水の温度を飽和温度に保つことに
より、集合体入口オリフィスでのCCFLブレークを防
ぎ、集合体内に多くの冷却水を蓄積させ早期に再冠水を
達成することができる。この結果、冷却材喪失事故時の
被覆管最高温度を低く抑え、原子炉の安全性を高めるこ
とができる。
According to the present invention, in the event of a loss of coolant accident in a boiling water reactor,
By keeping the temperature of the cooling water flowing into the fuel assembly from the core bypass area through the leak hole at the bottom of the fuel assembly at the saturation temperature, CCFL breakage at the assembly inlet orifice is prevented and a large amount of cooling water is accumulated within the assembly. This allows for early re-flooding. As a result, the maximum temperature of the cladding tube in the event of a loss of coolant accident can be kept low, and the safety of the reactor can be improved.

また、現状のBWRプラントで蝶バイパス領域の温度測
定をしていないが、通常運転時においてその温度測定を
おこない、流動不安定などに対するプラント異常監視の
モニタとして用いることができる副次効果かわる。
In addition, although the current BWR plant does not measure the temperature in the butterfly bypass area, it has the secondary effect of being able to measure the temperature during normal operation and use it as a monitor for plant abnormalities such as flow instability.

さらに、ろ−の事故時においても、炉心部の温度変化と
いった輩要なデータを得ることが可能で、その利用効果
線大きい。
Furthermore, even in the event of a reactor accident, it is possible to obtain essential data such as temperature changes in the reactor core, which has a large effect on its use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の緊急炉心冷却装置を説明する概略図、第
2図は炉心下部の流路を示す部分断面図、第3図は入口
オリフィスにおけるCCFL特性図、第4図は本発明の
実施例を示す概略図、第5図は第4図実施例の制御特性
を示す図、第6図は本発明の他の実施例を示す概略図、
第7図は本発明のさらに別の冥施例を示す概略図、第8
図は第7図実施例の制御特性を示す図、第9図は本発明
の効果を示す被覆管表面温度の時間変化図である。 1・・・圧力容器、2・・・下部プレナム、3・・・燃
料集合体、4・・・バイパス領域、11・・・シュラウ
ド壁、21・・・炉心入口オリフィス、31・・・下部
タイプレート、32・・・リーク孔、33・・・燃料サ
ポート、41・・・炉心支持板、51・・・低圧注水系
配管、52・・・ポンプ、54・・・駆動用モータ、6
0・・・流量制御装置、55・・・流量調整弁、61・
・・温度測定器、62・・・圧力測定器、63・・・温
度比較装置、70・・・温度計装用配管。 代理人 弁理士 鵜沼辰之 1121 γλ 図 13I21 吹上す゛蕉気ζ糺番 (tc3/、f)14 口 第5 図 回転数の灸イ巳看 ΔN(−Nliい1吟本−N1りも邑)第2 図 イ 7 図 χ δ 口 弁開度の麦イ乙童
Fig. 1 is a schematic diagram illustrating a conventional emergency core cooling system, Fig. 2 is a partial sectional view showing the flow path in the lower part of the core, Fig. 3 is a CCFL characteristic diagram at the inlet orifice, and Fig. 4 is an implementation of the present invention. A schematic diagram showing an example, FIG. 5 is a diagram showing control characteristics of the embodiment in FIG. 4, and FIG. 6 is a schematic diagram showing another embodiment of the present invention.
FIG. 7 is a schematic diagram showing yet another embodiment of the present invention;
FIG. 7 is a diagram showing the control characteristics of the embodiment, and FIG. 9 is a diagram showing the time change of the cladding surface temperature showing the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Pressure vessel, 2... Lower plenum, 3... Fuel assembly, 4... Bypass area, 11... Shroud wall, 21... Core inlet orifice, 31... Lower type Rate, 32... Leak hole, 33... Fuel support, 41... Core support plate, 51... Low pressure water injection system piping, 52... Pump, 54... Drive motor, 6
0...Flow rate control device, 55...Flow rate adjustment valve, 61.
...Temperature measuring device, 62... Pressure measuring device, 63... Temperature comparator, 70... Piping for temperature instrumentation. Agent Patent Attorney Tatsuyuki Unuma 1121 γλ Figure 13I21 Fukiage Su゛Shoki ζTanban (tc3/, f) 14 Mouth Figure 5 Moxibustion of the number of revolutions ΔN (-Nli 1 Ginmoto-N1 Rimo-mura) No. 2 Figure A 7 Figure χ δ Mugii Otodo of mouth valve opening

Claims (1)

【特許請求の範囲】 1、事故時に冷却材を原子炉内の炉心バイパス領域に注
入しリーク孔を経て下部プレナムに落下させる緊急炉心
冷却装置において、炉心バイパス領域の冷却材温度を測
定する温度計と、圧力容器内の圧力値に対応する飽和温
度を測定する測定系と、この圧力値に対応する飽和温度
と前記バイパス領域の冷却材温度と比較する回路とを備
え、それらの温度の差によシ注入冷却材の流量を制御し
、リーク孔から流入する冷却材温度を前記飽和温度に保
つことを特徴とする緊急炉心冷却装置。 2、特許請求の範囲第1項において、圧力容器内の圧力
値に対応する飽和温度を測定する測定系が、圧力容器内
の圧力を測定する圧力計と、その圧力測定値に対する飽
和温度を換算によ請求める回路とからなることを特徴と
する緊急炉心冷却装置。 3、特許請求の範囲第1項において、圧力容器内の圧力
値に対応する飽和温度を測定する測定系が、下部プレナ
ムの冷却水温度を測定する温度計と、その温度値から上
記飽和温度をめる回路とから々ることを特徴とする緊急
炉心冷却装置。
[Claims] 1. A thermometer that measures the temperature of the coolant in the core bypass region in an emergency core cooling system that injects coolant into the core bypass region of a nuclear reactor and drops it into the lower plenum through a leak hole in the event of an accident. and a measurement system for measuring a saturation temperature corresponding to the pressure value in the pressure vessel, and a circuit for comparing the saturation temperature corresponding to this pressure value with the coolant temperature in the bypass area, and a circuit that compares the saturation temperature corresponding to the pressure value with the coolant temperature in the bypass area, and measures the temperature difference between them. An emergency core cooling system characterized in that the flow rate of the coolant injected into the reactor is controlled to maintain the temperature of the coolant flowing from the leak hole at the saturation temperature. 2. In claim 1, the measurement system for measuring the saturation temperature corresponding to the pressure value in the pressure vessel includes a pressure gauge for measuring the pressure in the pressure vessel and a conversion of the saturation temperature for the pressure measurement value. An emergency core cooling system characterized by comprising a circuit that can be recharged. 3. In claim 1, the measurement system for measuring the saturation temperature corresponding to the pressure value in the pressure vessel includes a thermometer for measuring the temperature of the cooling water in the lower plenum, and determining the saturation temperature from the temperature value. An emergency core cooling system characterized by an empty circuit.
JP59081447A 1984-04-23 1984-04-23 Emergency core cooling device Pending JPS60225092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081447A JPS60225092A (en) 1984-04-23 1984-04-23 Emergency core cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081447A JPS60225092A (en) 1984-04-23 1984-04-23 Emergency core cooling device

Publications (1)

Publication Number Publication Date
JPS60225092A true JPS60225092A (en) 1985-11-09

Family

ID=13746651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081447A Pending JPS60225092A (en) 1984-04-23 1984-04-23 Emergency core cooling device

Country Status (1)

Country Link
JP (1) JPS60225092A (en)

Similar Documents

Publication Publication Date Title
JPH0549076B2 (en)
US3261755A (en) Nuclear reactor control
US3722578A (en) Pressure maintaining device and method for pressurized water reactors
JPS60225092A (en) Emergency core cooling device
US5271044A (en) Boiling water nuclear reactor and start-up process thereof
US5193382A (en) Clogging indicator for controlling sodium quality
US3994777A (en) Nuclear reactor overflow line
CN114791180B (en) Adjustable low-temperature storage tank liquid circulation injection system
JP3354299B2 (en) Automatic high-pressure and high-pressure sample water supply system
JPS5960398A (en) Reactor power control device
JPS59203994A (en) Water level measuring device for bwr type reactor
JPS6028003B2 (en) Coolant liquid level control method for cooling system equipment in nuclear power plants
JPH04148895A (en) Speed controller for coolant recirculation pump
JPS6122276B2 (en)
JPS63187194A (en) Nuclear reactor pressure controller
JPH06109893A (en) Improving equipment for quality of water of nuclear power plant
JPS5842063Y2 (en) Device that supplies liquid into a container
JPS6086493A (en) Overflow pumping-up device
JPH0139078B2 (en)
JPS5975187A (en) Reactor operation control device
JPS60249093A (en) Device and method of monitoring nuclear reactor
JPH059760B2 (en)
JPH0514995U (en) Spray nozzle of pressurizer for reactor
JPS5921519B2 (en) Recirculation pump emergency drive mechanism
JPS61277094A (en) Nuclear reactor plant