JPS60224949A - Auxiliary air controller for internal-combustion engine - Google Patents

Auxiliary air controller for internal-combustion engine

Info

Publication number
JPS60224949A
JPS60224949A JP8249384A JP8249384A JPS60224949A JP S60224949 A JPS60224949 A JP S60224949A JP 8249384 A JP8249384 A JP 8249384A JP 8249384 A JP8249384 A JP 8249384A JP S60224949 A JPS60224949 A JP S60224949A
Authority
JP
Japan
Prior art keywords
auxiliary air
engine
valve
square
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8249384A
Other languages
Japanese (ja)
Other versions
JPH0553933B2 (en
Inventor
Michihiro Yamane
山根 通宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8249384A priority Critical patent/JPS60224949A/en
Publication of JPS60224949A publication Critical patent/JPS60224949A/en
Publication of JPH0553933B2 publication Critical patent/JPH0553933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Abstract

PURPOSE:To increase the engine brake effect by placing an auxiliary air control valve in a bypath detouring a throttle valve and controlling said valve to supply auxiliary air inversely proportional to the square of engine rotation while proportional to the falling speed under deceleration. CONSTITUTION:An auxiliary air control valve 13 is placed in a bypath 12 detouring a throttle valve 11 in an intake path and controlled through valve control means 18. While means 14 for detecting the decelerating state of engine and means 15 for detecting the engine rotation are provided to operate the falling speed of rotation and the square of rotation respectively through falling speed operating means 16 and square operating means 17 on the basis of detected engine rotation. Upon detection of engine falling speed condition through deceleration detecting means 14, the auxiliary air control valve 13 is controlled through valve control means 18 to supply such auxiliary air as inversely proportional to the square of engine rotation while proportional to the falling speed in order to reduce the auxiliary air at the initial stage of deceleration.

Description

【発明の詳細な説明】 (技術分野) 本発明は、内燃機関の補助空気制御装置、詳しくは絞り
弁をバイパスする補助空気量を制御する内燃機関の補助
空気制御装置の改良に関する。
TECHNICAL FIELD The present invention relates to an auxiliary air control device for an internal combustion engine, and more particularly to an improvement in an auxiliary air control device for an internal combustion engine that controls the amount of auxiliary air that bypasses a throttle valve.

(従来技術) 従来の内燃機関の補助空気制御装置としては、例えば第
1図に示すようなものがある(特開昭56−41430
号公?4り。同図において、■は吸気管を、2は吸気管
1の集合部IAの上流側に介装された絞り弁を示す。吸
気管1には絞り弁2をバイパスするバイパス通路3が設
けられ、このバイパス通路3には該通路3の開口面積を
可変とする補助空気制御弁4が介装されている。また、
絞り弁2にはその開度を検出する開度センサ(アイドル
スイッチ)5が装着されており、この開度センサ5の出
力信号はコントロールユニット6に入力されている。コ
ントロールユニット6にはその他機関回転数、機関の水
温、吸入空気量等の検出信号が入力されており、これら
の入力信号に基づいて上記補助空気制御弁4は作動制御
される。すなわち、第2図に示すように、絞り弁2が略
全閉状態になると(図中to)、機関回転数(曲ttl
A y )の低下(減速状態)に対応して、該制御弁4
は開口面積をじょじょに減少させ補助空気量(曲線X)
を低減してアイドル時制御値に制御するのである。
(Prior Art) As a conventional auxiliary air control device for an internal combustion engine, there is, for example, one shown in FIG.
Duke? 4ri. In the figure, ■ indicates an intake pipe, and 2 indicates a throttle valve installed upstream of the collecting portion IA of the intake pipe 1. The intake pipe 1 is provided with a bypass passage 3 that bypasses the throttle valve 2, and an auxiliary air control valve 4 is interposed in the bypass passage 3 to make the opening area of the passage 3 variable. Also,
The throttle valve 2 is equipped with an opening sensor (idle switch) 5 for detecting its opening, and an output signal from the opening sensor 5 is input to a control unit 6. Other detection signals such as engine speed, engine water temperature, intake air amount, etc. are input to the control unit 6, and the operation of the auxiliary air control valve 4 is controlled based on these input signals. That is, as shown in FIG. 2, when the throttle valve 2 becomes approximately fully closed (to in the figure), the engine speed (ttl
In response to a decrease in A y ) (deceleration state), the control valve 4
gradually decreases the opening area and increases the amount of auxiliary air (curve X)
The engine speed is reduced to the idle control value.

しかしながら、このような従来の補助空気制御装置にあ
っては、機関減速時(アイドルスイッチ5がOFFとな
った後は)、補助空気制御弁4の開度は、機関回転数の
降下に従って、所定値まで徐々に減少する、あるいは予
め設定された変化率に従い減少する制御方式となってい
たため、減速初期には未だ補助空気量が多く供給され回
転数が十分には低下せず、例えばエンジンブレーキの効
力が不十分であり、また、減速時燃料カット(機関への
燃料供給の遮断)を行う場合は、再供給時にてそのリカ
バーショックが大きくなっているという問題点があった
However, in such a conventional auxiliary air control device, when the engine decelerates (after the idle switch 5 is turned OFF), the opening degree of the auxiliary air control valve 4 is adjusted to a predetermined value as the engine speed decreases. Since the control method was such that the amount of auxiliary air is gradually decreased to the specified value or is decreased according to a preset rate of change, a large amount of auxiliary air is still supplied at the beginning of deceleration, and the rotation speed does not decrease sufficiently. There is a problem in that the effectiveness is insufficient, and when fuel is cut during deceleration (cutoff of fuel supply to the engine), the recovery shock is large when resupplying the fuel.

さらに、この従来装置では、アイドルスイッチ5のOF
FからONへの切換時のコントロールユニット6の出力
設定値(すなわち、制御弁4開度)を小さくすると、特
にニュートラル又はクラッチ切離時の減速状態にて吸気
系の応答遅れにより、減速末期の吸入空気量が不足して
(吸気系容積が大きいため吸気管内の圧力の応答遅れに
より、低回転時に該吸気管内の圧力が低下して吸入空気
量が減少して)エンストが発生し易くなるという問題点
もあった。
Furthermore, in this conventional device, the idle switch 5 is
If the output setting value of the control unit 6 (i.e., the opening degree of the control valve 4) is made smaller when switching from F to ON, the response delay of the intake system will be delayed, especially in the deceleration state at neutral or clutch disengagement. Engine stalling is likely to occur due to insufficient intake air volume (due to the large volume of the intake system, there is a delay in the response of the pressure in the intake pipe, which causes the pressure in the intake pipe to drop at low engine speeds, reducing the intake air volume). There were also problems.

(発明の目的) そこで、本発明は、減速時の不足空気量を補い吸気管内
圧力を高めるために、また、減速初期の補助空気量を低
減するために、機関回転数の自乗に反比例し、その低下
速度に比例した補助空気量を供給することにより、上記
問題点を解決することをその目的としている。
(Object of the Invention) Therefore, in order to compensate for the insufficient amount of air during deceleration and increase the pressure inside the intake pipe, and to reduce the amount of auxiliary air at the beginning of deceleration, the present invention provides a The purpose is to solve the above problem by supplying an amount of auxiliary air proportional to the rate of decline.

(発明の構成) 本発明に係る内燃機関の補助空気制御装置は、第3図に
その全体構成を示すように、絞り弁11をバイパスする
バイパス通路12に介装した補助空気制御弁13と、機
関の減速状態を検出する減速検出手段14と、機関の回
転数を検出する回転数検出手段15と、該回転数の低下
速度を演算する低下速度演算手段16と、該回転数の自
乗を演算する自乗演算手段17と、これらの低下速度演
算手段16と自乗演算手段17との演算結果に基づき前
記補助空気制御弁13の開度を制御する弁制御手段18
と、を備えた構成である。
(Structure of the Invention) The auxiliary air control device for an internal combustion engine according to the present invention, as shown in its overall structure in FIG. a deceleration detection means 14 for detecting the deceleration state of the engine; a rotation speed detection means 15 for detecting the rotation speed of the engine; a reduction speed calculation means 16 for calculating the speed at which the rotation speed is reduced; and a calculation means for calculating the square of the rotation speed. and a valve control means 18 that controls the opening degree of the auxiliary air control valve 13 based on the calculation results of the reduction speed calculation means 16 and the square calculation means 17.
The configuration includes the following.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第4図〜第7図は本発明の一実施例を示すものである。4 to 7 show an embodiment of the present invention.

まず、構成を説明する。なお、従来例(第1図)と同一
部分は同一符号で説明する。第4図において、1は吸気
管であり、上流側の集合部IAと、下流側の分岐部IB
と、を有している。集合部IAの上流に設けた絞り弁2
をバイパスしてこの吸気管lにはバイパス通VII3が
配設され、このバイパス通路3の途中にはその開口面積
を可変とする電磁弁である補助空気制御弁4(以下、A
ACバルブ)が介装されている。また、絞り弁2にはア
イドルスイッチ5が装着されており、この絞り弁2の開
度が所定値(例えば6°)以下のときON信号をコント
ロールユニット6に入力する。すなわち、アイドルスイ
ッチ5は減速検出手段を構成する。
First, the configuration will be explained. Note that the same parts as in the conventional example (FIG. 1) will be described using the same reference numerals. In FIG. 4, 1 is an intake pipe, which includes an upstream collecting section IA and a downstream branching section IB.
It has . Throttle valve 2 provided upstream of collecting part IA
A bypass passage VII 3 is provided in this intake pipe l, and in the middle of this bypass passage 3 there is an auxiliary air control valve 4 (hereinafter referred to as A) which is a solenoid valve whose opening area is variable.
AC valve) is installed. Further, an idle switch 5 is attached to the throttle valve 2, and an ON signal is input to the control unit 6 when the opening degree of the throttle valve 2 is less than a predetermined value (for example, 6 degrees). That is, the idle switch 5 constitutes deceleration detection means.

また、図中7は機関回転数を検出するクランク角センサ
(回転数検出手段)であり、その出力信号はコントロー
ルユニット6に入力されている。
Further, in the figure, 7 is a crank angle sensor (rotation speed detection means) for detecting the engine speed, and its output signal is input to the control unit 6.

第5図は、このコントロールユニット6の内容を示す。FIG. 5 shows the contents of this control unit 6.

このコントロールユニット6は、主にマイクロプロセッ
サとメモリとインターフェースとから構成されている。
This control unit 6 mainly consists of a microprocessor, memory, and interface.

クランク角センサ7からの回転数信号は回転数算出部2
1に入力されて機関回転数が算出され、この機関回転数
Nはメモリ22.1/N−1演算部23(自乗演算手段
)および回転降下率演算部24(低下速度演算手段)に
それぞれ入力される。メモリ22は機関回転数を記憶し
、1/N1演算部詔は機関回転数の自乗の逆数1/Nユ
を演算する。回転降下率演算手段冴は、メモリ22に保
存されているΔを秒前の回転数No1dと、現在の回転
数Nとの差(Nold−N)から機関回転数の降下率を
演算する。1/N 演算部詔及び回転降下率演算部冴の
演算結果は、減速時付加Duty演算部δに入力され、
この付加Duty演算部δはこれらの演算結果及び定数
を乗じて減速時の付加Duty値を演算し、加算部26
に入力する。加算部あは、アイドル制御Du ty演算
部釘から入力した基本Du ty値にこの付加Duty
値を加算し、補助空気制御弁駆動出力発生部aに出力す
る。この駆動出力発生部舘はこの加算Duty値に応じ
て上記AACバルブ4を駆動する出力信号を発生する。
The rotation speed signal from the crank angle sensor 7 is sent to the rotation speed calculation section 2.
1 to calculate the engine rotation speed, and this engine rotation speed N is input to the memory 22.1/N-1 calculation section 23 (square calculation means) and rotation drop rate calculation section 24 (decrease speed calculation means), respectively. be done. The memory 22 stores the engine speed, and the 1/N1 calculation unit calculates the reciprocal of the square of the engine speed, 1/N. The rotation rate calculation means calculates the rate of decrease in the engine rotation speed from the difference between Δ stored in the memory 22, the rotation speed No. 1d seconds ago, and the current rotation speed N (Nold-N). The calculation results of the 1/N calculation unit edict and rotational descent rate calculation unit sae are input to the deceleration additional duty calculation unit δ,
This additional duty calculation unit δ calculates an additional duty value during deceleration by multiplying these calculation results and a constant, and adds the value to the addition unit 26.
Enter. The addition section adds this additional duty to the basic duty value input from the idle control duty calculation section.
The values are added and output to the auxiliary air control valve drive output generator a. This drive output generating section generates an output signal for driving the AAC valve 4 according to this added duty value.

上記両Duty演算部5.27、加算部が及び出力発生
部nは全体として弁制御手段を構成する。
The above-mentioned duty calculating sections 5, 27, the adding section, and the output generating section n collectively constitute a valve control means.

次に作用について説明する。Next, the effect will be explained.

本発明における補助空気制御装置は、絞り弁2が略全閉
状態となるとアイドルスイッチ5によりON信号がコン
トロールユニット6に入力される。その結果、減速時と
判断して機関回転数信号Nに基づいて決定される基本D
uty値に回転数降下率及び回転数の自乗の逆数に基づ
いて決定される付加Du ty値を加算してその出力信
号に応じてAACバルブ4を作動制御し、適正な補助空
気量を機関に供給する。
In the auxiliary air control device according to the present invention, when the throttle valve 2 becomes substantially fully closed, an ON signal is inputted to the control unit 6 by the idle switch 5. As a result, the basic D determined based on the engine speed signal N when decelerating is determined.
The additional duty value determined based on the rotational speed reduction rate and the reciprocal of the square of the rotational speed is added to the duty value, and the AAC valve 4 is operated and controlled according to the output signal to supply an appropriate amount of auxiliary air to the engine. supply

第7図はその制御プログラムを示すフローチャートであ
る。なお、このプログラムは一定時間ΔT毎に実行する
。まず、Plにて機関回転数N+を読込み、P2にてこ
の回転数N+を所定値(900r、p、va )と比較
する。所定値より大きければ(Nl>900)、PBに
てアイドルスイッチ5がONか否かを確かめる(減速判
定)。ONならばP4にてNiをメモリし、PBにて回
転数逆比例骨を演算する(Nz −1/N+ −’ )
。次に、P6にて上記メモリより1回前の回転数(Ni
−1)を読み出す。そして、Plにて回転低下率NRを
演算しくNR−(Nl−Ni−+)/ΔT)、PBにて
減速時付加Duty値を演算する(Dad=に−N工 
・NR)。そして、P9にてアイドル時の基本Duty
値(DI(1)をメモリより続出し、PIOにてこれら
のDuty値を加算する(DT =DadXDz(1)
 、さらに、Pllにてこの駆動Du Ly値DTをA
ACバルブ4に出力する。なお、上記ステップP2、P
Bにて回転数が所定値を超えず(N l ≦90Or、
p、m )、またアイドルスイッチ5がOFFの場合は
、ステップPI2にて付加Du ty値を0として(D
ad=0)、P9に進む。すなわち、これらの場合は機
関が減速状態にないと判断して、予め設定した基本Du
 ty値により補助空気量の制御を行うものである。
FIG. 7 is a flowchart showing the control program. Note that this program is executed every fixed time ΔT. First, the engine speed N+ is read at Pl, and this engine speed N+ is compared with a predetermined value (900r, p, va) at P2. If it is larger than the predetermined value (Nl>900), it is checked at PB whether the idle switch 5 is ON (deceleration determination). If it is ON, store Ni in P4 and calculate the rotational speed inverse proportion bone in PB (Nz -1/N+ -')
. Next, at P6, the number of rotations (Ni
-1) is read. Then, Pl calculates the rotation reduction rate NR (NR-(Nl-Ni-+)/ΔT), and PB calculates the additional duty value during deceleration (Dad = -N
・NR). Then, in P9, the basic duty at idle
Value (DI (1) is read out from memory and these Duty values are added in PIO (DT = DadXDz (1)
, Furthermore, this drive DuLy value DT is set to A in Pll.
Output to AC valve 4. Note that the above steps P2 and P
At B, the rotation speed does not exceed the specified value (N l ≦90Or,
p, m), and if the idle switch 5 is OFF, the additional duty value is set to 0 in step PI2 (D
ad=0), proceed to P9. In other words, in these cases, it is determined that the engine is not in a deceleration state, and the preset basic Du
The amount of auxiliary air is controlled based on the ty value.

ここに、機関減速時、吸気マニホルド内の圧力の応答遅
れを解消するため、上述のように、追加の補助空気量を
、回転数の自乗の逆数l/N0と、回転数の低下率dN
/dtと、に比例させたのは以下の理由による。
Here, in order to eliminate the response delay of the pressure in the intake manifold when the engine decelerates, as mentioned above, the additional auxiliary air amount is determined by the reciprocal of the square of the rotation speed l/N0 and the rotation speed reduction rate dN.
The reason for making it proportional to /dt is as follows.

すなわち、今、機関を連続吸入ポンプと仮定すると、減
速時において、次式にょるgeとgiとの差がマニホル
ド負圧の変化となってあられれる。
That is, assuming that the engine is a continuous suction pump, during deceleration, the difference between ge and gi, expressed by the following equation, becomes a change in the manifold negative pressure.

ge−ηv/120 ・ (PB ・Ve)/RT・N
 −−−(ll gt=const −−(21 また、熱力学の状態式より PV−GRT −−−131 となる。
ge-ηv/120 ・(PB ・Ve)/RT・N
---(ll gt=const --(21) Also, from the thermodynamic equation of state, PV-GRT ---131.

そして、単位時間当りのマニホルド圧力の変化は上記(
11(21+31式より dDEs/dt=RT/Vc=dGe/dt=RT/V
 c−g I −7v/120 ・V e/V c−P
B −N −−(41 となる。
And the change in manifold pressure per unit time is the above (
11 (from formula 21+31, dDEs/dt=RT/Vc=dGe/dt=RT/V
c-g I -7v/120 ・V e/V c-P
B −N --(41).

ここで、Vc=Oのときge=giとなるから、 FB =L20 RT/ (ηV ・Ve) ・g i
 −1/N ・−一−+51 となる。
Here, when Vc=O, ge=gi, so FB =L20 RT/ (ηV ・Ve) ・gi
-1/N ・-1-+51.

また、Vc≠0の時、マニホルド内圧pBを(5)式と
同じ関係を成立させるためのgiを(4)(5)式より
めると、追加の空気量をΔg+として、 dPB /d t=RT/Vc H(g i +Δgi
)77V/120 ・Ve/Vc−N−PB−−(61 となる。
Also, when Vc≠0, if we calculate gi from equations (4) and (5) to establish the same relationship for the manifold internal pressure pB as equation (5), then, assuming the additional air amount as Δg+, dPB /d t =RT/Vc H(g i +Δgi
)77V/120 ・Ve/Vc-N-PB--(61)

(5)式及び(6)式より、 Δg+= 120/?v−Vc/Ve−gi・1/N1
・d N / d t (71となる。
From equations (5) and (6), Δg+= 120/? v-Vc/Ve-gi・1/N1
・d N / d t (It becomes 71.

よって追加空気量Δglは、回転数の自乗の逆数1/N
1と、回転数の低下率dN/dtと、に比例させた量と
すれば良いことになる。
Therefore, the additional air amount Δgl is the reciprocal of the square of the rotation speed 1/N
1 and the rate of decrease in rotational speed dN/dt.

なお、上記(1)へ(7)式において、■C:マニホル
ドの容積、 P8:マニホルド内の圧力、 T:マニホルド内の温度(一定とする)、Gc:マニホ
ルド内の空気の重量、 ge:単位時間当りのエンジンの吸入空気量、 gi:定数(臨界圧を超えているから)、R:ガス定数
、 ■e:エンジンの排気量、 N:エンジンの回転数、 ηV;体積効率、 をそれぞれ表示している。
In addition, in the equation (7) to (1) above, ■C: Volume of the manifold, P8: Pressure inside the manifold, T: Temperature inside the manifold (assumed constant), Gc: Weight of air inside the manifold, ge: The amount of intake air in the engine per unit time, gi: constant (because it exceeds the critical pressure), R: gas constant, e: engine displacement, N: engine rotational speed, ηV: volumetric efficiency, respectively. it's shown.

また、第6図は、補助空気量(コントロールユニットか
らAACバルブへの出力Duty値)X、機関回転数Y
、吸気管内の圧力Zが、絞り弁2が閉(アイドルスイッ
チ5がOFFからON)となってからtoの経時変化を
示している。
In addition, Figure 6 shows the amount of auxiliary air (output duty value from the control unit to the AAC valve)
, the pressure Z in the intake pipe shows a change over time to after the throttle valve 2 is closed (the idle switch 5 is turned on from OFF).

図中x、yは従来の補助空気量、機関回転数をそれぞれ
示している。このように、本実施例にあっては、減速時
AACバルブ4の開度を制御して、空気量の不足分を補
うことにより、機関(燃焼室内)に常に過不足なく適正
空気量を供給できるため、エンストの防止及び燃料カッ
ト時のりカバーシッンクをも低減できる。また、減速開
始時、空気量を低減できる為回転数の低下を速めること
ができる。
In the figure, x and y indicate the conventional auxiliary air amount and engine speed, respectively. In this way, in this embodiment, by controlling the opening degree of the AAC valve 4 during deceleration and compensating for the lack of air amount, an appropriate amount of air is always supplied to the engine (inside the combustion chamber). As a result, it is possible to prevent engine stalling and reduce fuel cover sink during fuel cut. Furthermore, since the amount of air can be reduced at the start of deceleration, the reduction in rotational speed can be accelerated.

第8図及び第9図は他の実施例を示している。本実施例
は、前述の実施例における機関回転数の自乗の逆数1/
N:″を、適当な値(定数)に置換してその演算を簡略
化したものである。
FIGS. 8 and 9 show other embodiments. In this embodiment, the reciprocal of the square of the engine speed in the previous embodiment is 1/
The calculation is simplified by replacing N:'' with an appropriate value (constant).

その他の構成は、前述の実施例と同様である。The other configurations are similar to those of the previous embodiment.

すなわち、第8図に示すように、減速時付加Duty演
算部怒では、回転降下率演算部24の演算結果((No
ld−N)≠I/Δt)に前述の実施例における定数と
は異なる定数(予め設定しておく)を乗じたものである
。また、第9図はこの実施例による減速時の補助空気量
xO1機関回転数YO1吸気管圧力Zoの変化を示すも
のである。また、その作用は大略前述の実施例と同様で
ある。
That is, as shown in FIG.
ld-N)≠I/Δt) is multiplied by a constant (preset) different from the constant in the above embodiment. Further, FIG. 9 shows changes in the amount of auxiliary air xO1, the engine speed YO1, and the intake pipe pressure Zo during deceleration according to this embodiment. Further, its operation is roughly the same as that of the above-mentioned embodiment.

(効果) 以上説明してきたように、本発明によれば、減速時常に
適正な補助空気量を機関に供給できる結果、減速時の回
転数の低下を早めることができ、エンジンブレーキの効
力の増大、及び、燃料カント時のりカバーショ、りを解
消できる。
(Effects) As explained above, according to the present invention, an appropriate amount of auxiliary air can be supplied to the engine at all times during deceleration, and as a result, the decrease in rotational speed during deceleration can be accelerated, and the effectiveness of engine braking is increased. Also, it is possible to eliminate the problem of glue cover shock during fuel canting.

また、吸気系の圧力の応答遅れに起因するエンストを防
止でき運転性を向上させることができ
It also prevents engine stalling caused by a delay in the intake system pressure response and improves drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の補助空気制御装置を示すその概略構成図
、第2図はその従来装置による減速時の補助空気量と機
関回転数との経時変化を示すグラフ、第3図は本発明に
係る補助空気制御装置の概略全体構成図、第4図は本発
明の−・実施例を示すその概略構成図、第5図はその制
御を示すブロック図、第6図は本実施例による減速時の
補助空気量、吸気管圧力、機関回転数の経時変化を示す
グラフ、第7図はその制御プログラムの一例を示すフロ
ーチャート、第8図は本発明の他の実施例を示すブロッ
ク図、第9図は同じく第6図と同様のグラフである。 If −絞り弁、 12 バイパス通路、 13 補助空気制御弁、 14 減速検出手段、 15 回転数検出手段、 16− 低下速度演算手段、 +7−−−1乗演算手段、 l8 弁制御手段。 代理人弁理士 有我軍一部 14 第3図
Fig. 1 is a schematic configuration diagram showing a conventional auxiliary air control device, Fig. 2 is a graph showing changes over time in the auxiliary air amount and engine speed during deceleration by the conventional device, and Fig. 3 is a graph showing the change over time of the auxiliary air amount and engine speed during deceleration by the conventional device. FIG. 4 is a schematic overall configuration diagram of the auxiliary air control device, FIG. 4 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 5 is a block diagram showing its control, and FIG. 6 is a diagram showing the configuration during deceleration according to this embodiment. FIG. 7 is a flowchart showing an example of the control program, FIG. 8 is a block diagram showing another embodiment of the present invention, and FIG. The figure is also a graph similar to FIG. 6. If - throttle valve, 12 bypass passage, 13 auxiliary air control valve, 14 deceleration detection means, 15 rotational speed detection means, 16 - reduction speed calculation means, +7 - first power calculation means, l8 valve control means. Agent Patent Attorney Agagun Part 14 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 絞り弁をバイパスするバイパス通路に介装された補助空
気制御弁と、機関の減速状態を検出する減速検出手段と
、機関の回転数を検出する回転数検出手段と、該回転数
の低下速度を演算する低下速度演算手段と、該回転数の
自乗を演算する自乗演算手段と、これらの低下速度演算
手段と、自乗演算手段との演算結果に基づき前記補助空
気制御弁の開度を制御する弁制御手段と、を備えたこと
を特徴とする内燃機関の補助空気制御装置。
an auxiliary air control valve interposed in a bypass passage that bypasses a throttle valve; a deceleration detection means for detecting a deceleration state of an engine; a rotation speed detection means for detecting a rotation speed of the engine; A reduction speed calculation means for calculating, a square calculation means for calculating the square of the rotational speed, and a valve for controlling the opening degree of the auxiliary air control valve based on the calculation results of these reduction speed calculation means and the square calculation means. An auxiliary air control device for an internal combustion engine, comprising a control means.
JP8249384A 1984-04-24 1984-04-24 Auxiliary air controller for internal-combustion engine Granted JPS60224949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8249384A JPS60224949A (en) 1984-04-24 1984-04-24 Auxiliary air controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8249384A JPS60224949A (en) 1984-04-24 1984-04-24 Auxiliary air controller for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60224949A true JPS60224949A (en) 1985-11-09
JPH0553933B2 JPH0553933B2 (en) 1993-08-11

Family

ID=13776015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8249384A Granted JPS60224949A (en) 1984-04-24 1984-04-24 Auxiliary air controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60224949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118431A1 (en) * 2012-02-10 2013-08-15 ヤマハ発動機株式会社 Vehicle and intake air amount control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118431A1 (en) * 2012-02-10 2013-08-15 ヤマハ発動機株式会社 Vehicle and intake air amount control device
US9435269B2 (en) 2012-02-10 2016-09-06 Yamaha Hatsudoki Kabushiki Kaisha Vehicle and intake amount control device

Also Published As

Publication number Publication date
JPH0553933B2 (en) 1993-08-11

Similar Documents

Publication Publication Date Title
US6922995B2 (en) Supercharging device for internal combustion engine
JP5189173B2 (en) Compressed air supply control method for internal combustion engine and transmission
EP1849980A2 (en) Engine controller
EP0530381A1 (en) Control device for internal combustion engine and continuously variable transmission
US20030195084A1 (en) Apparatus for controlling vehicle drive system including engine with turbocharger, and lock-up clutch
JP2843115B2 (en) Fluid coupling fastening force control system including engine output control
KR20040007574A (en) Method and device for controlling an electrically driven charger
CN106468210B (en) The control device of internal combustion engine with booster
EP0531552A1 (en) Control device for internal combustion engine and continuously variable speed change gear
JPH0427424B2 (en)
JP2000097068A (en) Control device for hybrid vehicle
JPS60224949A (en) Auxiliary air controller for internal-combustion engine
JP2005061243A (en) Supercharging device for internal combustion engine
JP3716945B2 (en) Intake air amount control device for internal combustion engine
JPH05263677A (en) Control device of engine
JP2020012458A (en) Control device
JP2001164969A (en) Engine idling control device
JP4134641B2 (en) Control device and control method for internal combustion engine
JP2002138872A (en) Driving force control device for vehicle mounting diesel engine
JP2742094B2 (en) Engine idle speed control device
JP3837852B2 (en) Inertia overbenefit engine
JP3368951B2 (en) Overspeed prevention device for gaseous fuel engine
JPS62970Y2 (en)
JP3127427B2 (en) Lubricating oil supply device for two-cycle engine
JP3790972B2 (en) Auxiliary air amount control method for internal combustion engine