JPS60224126A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPS60224126A
JPS60224126A JP7957084A JP7957084A JPS60224126A JP S60224126 A JPS60224126 A JP S60224126A JP 7957084 A JP7957084 A JP 7957084A JP 7957084 A JP7957084 A JP 7957084A JP S60224126 A JPS60224126 A JP S60224126A
Authority
JP
Japan
Prior art keywords
layer
magnetic
base layer
plating
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7957084A
Other languages
Japanese (ja)
Inventor
Fujinao Tanaka
田中 藤尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP7957084A priority Critical patent/JPS60224126A/en
Publication of JPS60224126A publication Critical patent/JPS60224126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with Ni-Co-P plating for the formation of a magnetic layer and to obtain the titled disk having excellent strength, etc. by plating Ni-P on a substrate for the magnetic disk comparatively thickly to form a base layer, and forming a magnetic layer by heating only the surface of the base layer. CONSTITUTION:An amorphous base layer 2 of Ni-P is formed on a substrate 1 for a magnetic disk as a layer not having magnetism at ordinary temp. Then a beam from a laser 12 is condensed on an ultrafine spot by using a condenser 13 and irradiated only on the surface part of the layer 2 through a mirror 14, the substrate 1 is rotated at high speed and moved in the radial direction to heat only a part of the surface of the base layer 2, and a magnetic layer 10 is formed. Or the surface is briefly heated by using a flash lamp having high intensity to form the magnetic layer. The surface is magnetized by heating in this way, the hardness of the Ni-P layer is increased, and the removal of generated protrusions which is requied when the magnetic layer is formed by the plating of Ni-Co-P can be dispensed with. Accordingly, the excellent disk is obtained by a small number of processes.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は固定磁気ディスク記憶装置(以下ディスク装置
という)に使用される磁気ディスク(以下ディスクとい
う)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method of manufacturing a magnetic disk (hereinafter referred to as a disk) used in a fixed magnetic disk storage device (hereinafter referred to as a disk device).

〈従来例〉 近年、ディスク装置は高密度化がはかられ、ディスクに
ついても、従来用いられている塗布媒体(アルミナ粉と
磁性材を高分子材のバインダに混合して、脇板の表面に
1μm程度の厚さに塗布して磁性層を形成したもの)か
ら磁性材の厚さを薄く形成することが可能な、めっき、
スパッタ等により磁性層を形成する方法に移行しつつあ
る。
<Conventional example> In recent years, disk devices have become more dense, and the coating medium used in the past (alumina powder and magnetic material mixed with a polymeric binder) has been applied to the surface of the side plate. Plating that can reduce the thickness of the magnetic material from 1 μm (approximately 1 μm thick to form a magnetic layer),
A shift is being made to a method of forming a magnetic layer by sputtering or the like.

第1図は従来例におけるめっき媒体の構成を示すもので
ある。第1図において、1はアルミ材からなる基板で、
表面の平均面粗さが約0.005μm程度、最大突起が
0.02μm程度に仕上げられている。2は耐接触強度
を持たせるための基層で、厚さ30〜40μm程度のN
1−Pが無電解めっきにより形成されている。この基層
2の表面をポリッシュし、表面粗さを小さくした後、無
電解めっきによりN 1−Co−Pを0.08μm程度
の厚さに形成する。この層が情報を記録する磁性層3と
なる。磁性層3は、この状態のままでは耐食性、耐摩耗
性が劣り、また、コンタクト・スタート・ストップ式に
よりヘッドを使用する場合は、ヘッドがディスクに吸着
を起こす恐れがあるので、この磁性層3の上に0.08
μm程度の保護層4、および0.08μm程度の潤滑層
5を形成する。
FIG. 1 shows the structure of a conventional plating medium. In Figure 1, 1 is a substrate made of aluminum material,
The average surface roughness of the surface is approximately 0.005 μm, and the maximum protrusion is approximately 0.02 μm. 2 is a base layer to provide contact resistance, and is made of N with a thickness of about 30 to 40 μm.
1-P is formed by electroless plating. After polishing the surface of this base layer 2 to reduce its surface roughness, N 1-Co-P is formed to a thickness of about 0.08 μm by electroless plating. This layer becomes the magnetic layer 3 for recording information. If left in this state, the magnetic layer 3 will have poor corrosion resistance and wear resistance, and when using a contact start/stop type head, there is a risk that the head will stick to the disk. 0.08 above
A protective layer 4 with a thickness of about μm and a lubricant layer 5 with a thickness of about 0.08 μm are formed.

この様なディスクでは磁性層3のNi−Go−Pめつき
の厚さ、組成、結晶構造等を均一にすることが重要であ
る。この磁性層3の厚さが均一でない場合、記録および
読み出し信号の変動が大きくなり、エラー発生の原因と
なる。磁性層3は非常に薄く、この磁性層3のN +−
Co−Pめつき液は基層2のN1−Pめつき液に比較し
て活性がり、層の厚さ、組成、結晶構造等が不均一とな
り、磁気特性にバラツキが生じ、記録、読みだしの信号
の大きさが変化する。甚だしい場合は、めっきが全く付
着しない部分が発生する。そのためディスク制作時には
基板の取り扱いには細心の注意を要するばかりでなく、
洗浄や前処理(活性化)を充分に行なわなくてはならな
いという欠点がある。
In such a disk, it is important to make the thickness, composition, crystal structure, etc. of the Ni--Go--P plating of the magnetic layer 3 uniform. If the thickness of the magnetic layer 3 is not uniform, fluctuations in recording and reading signals will increase, causing errors. The magnetic layer 3 is very thin, and the N + - of this magnetic layer 3 is very thin.
The Co-P plating solution is more active than the N1-P plating solution for the base layer 2, and the layer thickness, composition, crystal structure, etc. become non-uniform, causing variations in magnetic properties and making recording and reading difficult. The magnitude of the signal changes. In extreme cases, there may be areas where the plating does not adhere at all. Therefore, not only is it necessary to be extremely careful when handling the board when producing discs, but also
The drawback is that sufficient cleaning and pretreatment (activation) are required.

・〈発明の目的〉 本発明は上記従来例の欠点に鑑みてなされたもので、磁
性層を均一化することが容易で、かつ、N 1−Go−
Pによる磁性層のめつき工程を省略したディスクを提供
することを目的とする。
・〈Object of the Invention〉 The present invention has been made in view of the drawbacks of the above-mentioned conventional examples, and it is easy to make the magnetic layer uniform, and N 1-Go-
The object of the present invention is to provide a disk in which the step of plating a magnetic layer with P is omitted.

〈発明の構成〉 この目的を達成する本発明の構成は、磁気ディスク記憶
装置に使用される磁気ディスクにおいて、基板上に比較
的厚<Ni −Pめっきを施して基層を形成し、この基
層の表面のみを加熱して、前記基層の表面に磁性層を形
成したことを構成上の特徴とするものである。
<Configuration of the Invention> The configuration of the present invention that achieves this object is that, in a magnetic disk used in a magnetic disk storage device, a relatively thick <Ni-P plating is applied on a substrate to form a base layer; The structure is characterized in that a magnetic layer is formed on the surface of the base layer by heating only the surface.

〈実施例〉 以下、本発明の実施例について図面に基づいて説明する
。なお、従来技術と同一要素には同一符号を付して、重
複する説明は省略する。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. Note that the same elements as those in the prior art are given the same reference numerals, and redundant explanations will be omitted.

第2図は本発明の一実施例を示す構成図である。FIG. 2 is a configuration diagram showing an embodiment of the present invention.

第2図において、基板1に無電解めっきにより基層2を
形成し、この基層2の表面をポリッシュし、表面粗さを
小さくする■稈までは従来例と同じである。
In FIG. 2, the process is the same as in the conventional example up to step 2, in which a base layer 2 is formed on a substrate 1 by electroless plating, the surface of this base layer 2 is polished, and the surface roughness is reduced.

ところで、基板1に形成された基層2のNi −Pは、
常温では非晶質構造であり、磁性を有していない。しか
しながら、熱処理すると結晶化して強い磁性を有するよ
うになる。第3図はN1−P化学めっき液の加熱磁化特
性を示すもので、各種の無電解Ni −pめっき液を3
0μmの厚さにめっきし、加熱時間を2時間とした場合
の、加熱温度と飽和磁束密度の関係を示すものである。
By the way, the Ni-P of the base layer 2 formed on the substrate 1 is
At room temperature, it has an amorphous structure and has no magnetism. However, when heat treated, it crystallizes and becomes highly magnetic. Figure 3 shows the heating magnetization characteristics of N1-P chemical plating solution.
This figure shows the relationship between heating temperature and saturation magnetic flux density when plating is performed to a thickness of 0 μm and the heating time is 2 hours.

第3図によれば、非磁性シューマは280”C前後の温
度で加熱すると80ガウス程度の飽和磁束密度を有する
が、ブルーシューマは250’C前後の温度で1000
ガウス以上、シューマBOは3oo℃前後の温度で同じ
< 1000ガウス以上の飽和磁束密度となる。これら
の、飽和磁束密度が1o。
According to Figure 3, non-magnetic Schumer has a saturation magnetic flux density of about 80 Gauss when heated at a temperature of around 280'C, while Blue Schumer has a saturation magnetic flux density of about 1000 Gauss at a temperature of around 250'C.
Gauss or higher, Schumer BO has a saturation magnetic flux density of <1000 Gauss or higher at a temperature of around 30°C. The saturation magnetic flux density of these is 1o.

Oガウスを越えるブルーシューマまたはシューマBOを
、その飽和磁束密度が大きくなる前後の温度に加熱する
。このような熱処理を施したNi −Pの保磁力は約2
00エルスデツド(Oe )となり、ディスクとして充
分使用できるものとなる。
Blue Schumer or Schumer BO exceeding O Gauss is heated to a temperature around which its saturation magnetic flux density increases. The coercive force of Ni-P subjected to such heat treatment is approximately 2
00 Elsdead (Oe), and can be used satisfactorily as a disc.

本発明は上記のようなNi −Pの磁化現象を用いて、
従来例の基層2の表面にのみ熱を加え、基層2の表面を
0.1μm程度磁性体化し、磁性層10を形成したもの
である。なお、保磁力を大きくする必要がある場合は、
この磁性層1oの上にコバルト(Co )を被着させれ
ばよい。第2図に示す4および5は従来例と同じ保護層
および潤滑層である。
The present invention utilizes the magnetization phenomenon of Ni-P as described above,
Heat is applied only to the surface of the base layer 2 of the conventional example, and the surface of the base layer 2 is made into a magnetic material by about 0.1 μm, thereby forming the magnetic layer 10. In addition, if it is necessary to increase the coercive force,
Cobalt (Co 2 ) may be deposited on the magnetic layer 1o. 4 and 5 shown in FIG. 2 are the same protective layer and lubricating layer as in the conventional example.

基層2の表面にのみ熱を加える方法としては、例えば第
4図に示すように、レーザ12がらの光を集光レンズ1
3で集光し、極微のスポットとし、ミラー14を介して
基板に形成した基層2の表面に照射する。基板1は高速
で回転させると共に生動速度を適宜調節することにより
、基層2の表面の極く一部の歩を加熱し、磁性層1oを
形成することができる。
As a method of applying heat only to the surface of the base layer 2, for example, as shown in FIG.
3, the light is focused into a very fine spot, and the surface of the base layer 2 formed on the substrate is irradiated via the mirror 14. By rotating the substrate 1 at high speed and adjusting the dynamic speed appropriately, a very small portion of the surface of the base layer 2 can be heated to form the magnetic layer 1o.

基層2の表面を磁性体化する方法としては、強度の大き
いフラッシュランプを用い、短時間照射を行なって加熱
してもよい。
As a method of making the surface of the base layer 2 magnetic, heating may be performed by irradiating it for a short time using a high-intensity flash lamp.

なお、本実施例においては、基板としてアルミ材を用い
たが、アルミ材に限ることなく例えばガラス等の非磁性
材を用いてもよい。
In this embodiment, an aluminum material is used as the substrate, but the material is not limited to aluminum, and a non-magnetic material such as glass may be used.

〈発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれば、 ■、磁性層形成のためのNi −Co −Pめっきを施
す必要がないので、洗浄、前処理も不要となり、工程が
簡単になる。
<Effects of the Invention> As specifically explained above with the examples, according to the present invention, (1) There is no need to perform Ni-Co-P plating for forming the magnetic layer, so cleaning and pretreatment are also unnecessary. This becomes unnecessary and the process becomes simpler.

■、磁性層の形成は基層2の表面を加熱するだけである
から、全面を均一に磁化するこが容易である。
(2) Since the magnetic layer is formed by simply heating the surface of the base layer 2, it is easy to uniformly magnetize the entire surface.

■、無電解N1−Pめっきは、加熱すると磁性体化する
と共に硬度が400HVから10001−1v程度にな
るためディスクの機械的強度が増加し、ヘッドクラッシ
ュが起こりに(くなる。
(2) When electroless N1-P plating is heated, it becomes magnetic and its hardness increases from about 400HV to about 10001-1V, so the mechanical strength of the disk increases and head crashes become less likely to occur.

■、従来方法によって磁性層を形成する場合は、Ni 
−CO−Pをめっきする際、突起などが発生し、表面粗
さが劣化してヘッドが浮上しにくくなるので、バーニッ
シュ(サフアイヤ等の高硬度の材料で作ったヘッドを浮
上させ、突起を除去する)をおこな行なう必要があるが
、本発明の工程では熱処理をするだけなので、突起が発
生することがなく、バーニッシュ工程が不要となる。
(2) When forming the magnetic layer by the conventional method, Ni
When plating -CO-P, protrusions are generated and the surface roughness deteriorates, making it difficult for the head to fly. However, in the process of the present invention, only heat treatment is performed, so no protrusions are generated, and a burnishing process is not necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の磁気ディスクの構成を示す構成図、第
2図は、本発明の一実施例を示す構成図、第3図は、N
i −P化学めっき液の加熱磁化特性を示す説明図、第
4図は基層の表面を磁化する一方法を示す説明図である
。 1・・・基板、2・・・基層、10・・・磁性層。 加熱温崖(°C) 第4図
FIG. 1 is a block diagram showing the structure of a conventional magnetic disk, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a block diagram showing the structure of a conventional magnetic disk.
FIG. 4 is an explanatory diagram showing the heating magnetization characteristics of the i-P chemical plating solution, and FIG. 4 is an explanatory diagram showing one method of magnetizing the surface of the base layer. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Base layer, 10... Magnetic layer. Heating temperature cliff (°C) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 磁気ディスク記憶装置に使用される磁気ディスクにおい
て、基板上に比較的厚<Ni −Pめつきを施してM層
を形成し、この基層の表面のみを加熱して、前記基層の
表面に磁性層を形成したことを特徴とする磁気ディスク
In a magnetic disk used in a magnetic disk storage device, a relatively thick <Ni-P plating is applied on a substrate to form an M layer, and only the surface of this base layer is heated to form a magnetic layer on the surface of the base layer. A magnetic disk characterized by forming.
JP7957084A 1984-04-20 1984-04-20 Magnetic disk Pending JPS60224126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7957084A JPS60224126A (en) 1984-04-20 1984-04-20 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7957084A JPS60224126A (en) 1984-04-20 1984-04-20 Magnetic disk

Publications (1)

Publication Number Publication Date
JPS60224126A true JPS60224126A (en) 1985-11-08

Family

ID=13693655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7957084A Pending JPS60224126A (en) 1984-04-20 1984-04-20 Magnetic disk

Country Status (1)

Country Link
JP (1) JPS60224126A (en)

Similar Documents

Publication Publication Date Title
JPS63249933A (en) Magnetic disk medium
JP2001189014A (en) Method for manufacturing recording medium and recording medium
JPS60224126A (en) Magnetic disk
JPS59217224A (en) Magnetic memory medium
JPH02778B2 (en)
JPS5996539A (en) Magnetic recording disc
JPH06302029A (en) Magneto-optical recording medium and recording method therefor
JP2002373417A (en) Magnetic recording medium
JPS61168118A (en) Magnetic recording medium
JPS59171031A (en) Magnetic disk
JPS615437A (en) Manufacture of magnetic disk
JPS5813450Y2 (en) magnetic recording medium
JP2001283423A (en) Magnetic recording medium
JPS63228414A (en) Substrate for magnetic disk and production thereof
JPH0315254B2 (en)
JPH1092028A (en) Optical recording medium formed by using grooveless substrate and its manufacture
JPS5862823A (en) Vertical magnetic storage body
JP2008103031A (en) Magnetic recording medium
JPS61233426A (en) Production of magnetic disk
JPH03269850A (en) Magneto-optical recording medium and method for magneto-optical recording
JPH03296902A (en) Magnetic recordor and magnetic recording medium used therefor
JPS61273761A (en) Photomagnetic disk
JPS6120225A (en) Production of vertical magnetic storage medium
JPH06203371A (en) Magnetic recording medium
JPS59113541A (en) Recording system