JPS6022383A - Thermal process permanent current switch - Google Patents

Thermal process permanent current switch

Info

Publication number
JPS6022383A
JPS6022383A JP58130643A JP13064383A JPS6022383A JP S6022383 A JPS6022383 A JP S6022383A JP 58130643 A JP58130643 A JP 58130643A JP 13064383 A JP13064383 A JP 13064383A JP S6022383 A JPS6022383 A JP S6022383A
Authority
JP
Japan
Prior art keywords
current switch
persistent current
superconducting
wire
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58130643A
Other languages
Japanese (ja)
Inventor
Nobuhiro Yoshino
吉野 信博
Yuji Minami
南 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58130643A priority Critical patent/JPS6022383A/en
Publication of JPS6022383A publication Critical patent/JPS6022383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • H10N60/35Cryotrons
    • H10N60/355Power cryotrons

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent the transition to normal conduction from superconduction by a method wherein the lead-out parts of a superconductive wire are covered with metal members, which are superior in thermal diffusion, the parts are fixed and heat, which is generated by a friction between the lead wire and a lead wire presser foot, is prevented from concentrating in limited parts. CONSTITUTION:A superconductive wire 10, the component of a thermal process permanent current switch 3, which is used along with a superconductive magnet in the superconduction magnetic levitation type railway, etc., is constituted of a filament 10a and a parent material 10b, and the superconductive wire 10 is noninductively wound around a bobbin made of a synthetic resin and is molded with a heater with an epoxy resin, etc. Lead-out wires 10' are covered with metal members 30 made of a copper, etc., which is superior in thermal diffusion, and the wires 10' are fixed along the outer periphery of the permanent current switch 3 proper by the lead wire presser foot 20, whose section is formed into an arc shape, and are led out to the outside.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超電導磁気浮上式鉄道等に用いられる超電導
磁石とともに使用される熱式永久電流スイッチに係り、
特に、超低温に冷却された超電導線の超電導状態と常電
導状態とをヒータの熱により切換える熱式永久電流スイ
ッチに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a thermal persistent current switch used with superconducting magnets used in superconducting magnetic levitation railways, etc.
In particular, the present invention relates to a thermal persistent current switch that uses heat from a heater to switch between a superconducting state and a normal conducting state of a superconducting wire cooled to an ultra-low temperature.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、熱式永久電流スイッチは、例えば第1図に示すよ
うに超電導磁気浮上式鉄道における超電導磁石の励磁回
路に使用されている。
Conventionally, thermal persistent current switches have been used, for example, in excitation circuits for superconducting magnets in superconducting magnetic levitation railways, as shown in FIG.

第1図において、1は車両に塔載される断熱構造の低温
容器(クライオスタット)であり、内部に、例えば液体
ヘリウムを有し、図示しない圧縮様、冷凍機等を備えた
冷却機器に19容器内が超低温に保たれる。この低温容
器1内には超電導磁石の超電導コイル2と永久電流スイ
ッチ3とが収納される。超電導コイル2と永久電流スイ
ッチ3はパワーリード線4により並列に接続され、電源
スイッチ5.5ヲ介して励磁電源6から直流電力が供給
される。また永久電流スイッチ3にはスイツチ焼断防止
用の放電抵抗7が並列に接続される。
In Fig. 1, reference numeral 1 denotes a cryostat (cryostat) with an adiabatic structure mounted on a vehicle. The inside is kept at an extremely low temperature. A superconducting coil 2 of a superconducting magnet and a persistent current switch 3 are housed in this low temperature container 1. The superconducting coil 2 and persistent current switch 3 are connected in parallel by a power lead wire 4, and DC power is supplied from an excitation power source 6 via a power switch 5.5. Further, a discharge resistor 7 for preventing switch burnout is connected in parallel to the persistent current switch 3.

永久電流スイッチ3は、超電導コイル2に並列接続され
た超電導線10と、超電導線10の近傍に配置され該超
電導線10ヲ加熱するヒータ11とを具え、スイッチ1
2を介して加熱電源13からヒータ11に電流全供給し
、該ヒータ11の熱により超電導線10の超電導状態(
オン状態)と常電導状態(オフ状態)の切換えを行なう
ものである。これを模式的に表現すれば第1図中の二点
鎖線で示すようなスイッチAとなる。また永久電流スイ
ッチ3はスイッチ本体内に収納した超電導線10ヲ外部
に口出し線10′として引出し、この口出し線10′全
パワーリード線4に接続することにより、超電導線10
と超電導コイル2とを並列に接続する。
The persistent current switch 3 includes a superconducting wire 10 connected in parallel to the superconducting coil 2 and a heater 11 disposed near the superconducting wire 10 to heat the superconducting wire 10.
2, the heating power source 13 supplies the entire current to the heater 11, and the heat of the heater 11 changes the superconducting state of the superconducting wire 10 (
This is used to switch between a normal conduction state (on state) and a normal conduction state (off state). If this is expressed schematically, it will be a switch A as shown by the chain double-dashed line in FIG. In addition, the persistent current switch 3 allows the superconducting wire 10 housed in the switch body to be drawn out as a lead wire 10', and by connecting this lead wire 10' to all power lead wires 4, the superconducting wire 10
and superconducting coil 2 are connected in parallel.

そして永久電流スイッチ3を用いて超電導コイル1にエ
ネルギーを蓄えるには、まずスイッチ12をオン状態に
して加熱電源13全ヒータ11に印加し、超電導線10
’(j、常電導抵抗R18を有するオフ状態にしておき
、電源スイッチ5,5全所定時間のみ投入する。すると
所定時間、励磁電源6から超電導コイル1へ励磁電流が
供給され、しかる後スイッチ12ヲオフ状態にすると、
超電導線10がオン状態となって該超電導線10と超電
導コイル2とで閉ループが形成され、該超電導コイル2
には励磁電流が永続して供給される。
To store energy in the superconducting coil 1 using the persistent current switch 3, first turn on the switch 12 and apply it to all heaters 11 of the heating power source 13, and then
'(j, with the normal conducting resistance R18 in the OFF state, the power switches 5 and 5 are all turned on only for a predetermined period of time. Excitation current is then supplied from the excitation power source 6 to the superconducting coil 1 for a predetermined period of time, and then the switch 12 When turned off,
When the superconducting wire 10 is turned on, a closed loop is formed between the superconducting wire 10 and the superconducting coil 2, and the superconducting coil 2
is continuously supplied with an excitation current.

しかしながら、この種の永久電流スイッチ3にあっては
、スイッチオフ時においても超電導線10の常電導抵抗
R,で該永久電流スイッチ3がショートされているため
、次のような問題がある、。
However, this type of persistent current switch 3 has the following problem because the persistent current switch 3 is short-circuited by the normal conductive resistance R of the superconducting wire 10 even when the switch is off.

永久電流スイッチ3がオフの状態で超電導コイル2を励
消磁する時、コイル両端電圧L+により該永久電流スイ
ッチ3に分流が起こるため、永久電流スイッチ3のオフ
時の抵抗mが小さい場合には、■永久電流スイッチ3へ
の分流電流が大きくなす、これによりジュール発熱量Q
s (−(”1)4 )が大きくなって永久電流スイッ
チ3での郁駄なヘリウムの蒸発が多くなる。また励磁速
度I YO速くすることができない。
When the superconducting coil 2 is excited and demagnetized with the persistent current switch 3 in the OFF state, a shunt occurs in the persistent current switch 3 due to the voltage L+ across the coil, so if the resistance m when the persistent current switch 3 is OFF is small, ■The shunt current to the persistent current switch 3 becomes large, which results in Joule heat generation Q
s (-("1)4) increases, and the wasteful evaporation of helium in the persistent current switch 3 increases. Also, the excitation speed IYO cannot be increased.

■超電導コイル2を励磁する際、励磁電源6が所定電流
を出力しても、その一部が永久電流スイッチ3に分流し
ており、この分流電流が超電導コイル2に流れ込むのに
ががる時間が大きい。
■When exciting the superconducting coil 2, even if the excitation power supply 6 outputs a predetermined current, a part of it is shunted to the persistent current switch 3, and it takes a long time for this shunted current to flow into the superconducting coil 2. is large.

■前記CD 、■よジバワーリード線4は長時間通電可
能な太いものにせざるを得ないため、パワーリード線4
を介しての低温容器1内への熱侵入量が多くなる。
■The above CD, ■The power lead wire 4 has to be thick enough to be energized for a long time.
The amount of heat entering into the low-temperature container 1 through this increases.

■低温容器lは高度の断熱構造をとってお9、前記■、
■のように内部に熱発生または外部から熱侵入があると
、わずかの熱によって超電導コイル2及び永久電流スイ
ッチ3を冷却している液体ヘリウムが蒸発する。すると
蒸発したヘリウムを冷却、再液化して低温容器1に戻し
、超電導コイル2及び永久電流スイッチ3を超低温にし
て超電導状態に保つための冷却機器の負荷が大きくなる
■The low-temperature container l has a highly insulated structure.
When heat is generated inside or heat enters from the outside as in (2), the liquid helium cooling the superconducting coil 2 and persistent current switch 3 evaporates due to a small amount of heat. This increases the load on the cooling equipment that cools and re-liquefies the evaporated helium and returns it to the low-temperature container 1, which brings the superconducting coil 2 and persistent current switch 3 to an ultra-low temperature to maintain them in a superconducting state.

■永久電流状態で超電導コイル2を運転中、永久電流ス
イッチ3が常電導転移(クエンチ)した場合、超電導コ
イル2に蓄積された磁気エネルギをスイッチ焼断防止用
の放電抵抗7と超電導線10の抵抗へで分けあうが、永
久電流スイッチ3の分担分Q、が次式で示すように大き
くなり、焼断しやすい。
■If the persistent current switch 3 transitions to normal conductivity (quenches) while the superconducting coil 2 is operating in a persistent current state, the magnetic energy accumulated in the superconducting coil 2 is transferred to the discharge resistor 7 for preventing switch burnout and the superconducting wire 10. However, the persistent current switch 3's share Q becomes large as shown in the following equation, and is likely to burn out.

但し、R8;放電抵抗7の抵抗値 従って、この種の熱式永久電流スイッチ3は、オフ時の
抵抗Rsが高抵抗であればあるほど、励消時間が短く、
かつ冷却機器の負荷も軽減され、クエンチ時における永
久電流スイッチ3の焼41事故を防止することができる
However, R8: resistance value of the discharge resistor 7 Therefore, in this type of thermal persistent current switch 3, the higher the resistance Rs when off, the shorter the excitation time.
In addition, the load on the cooling equipment is reduced, and it is possible to prevent the persistent current switch 3 from burning out during quenching.

そこで、スイッチオフ時の抵抗R,I全大きくするため
、次のような提案がなされている。第2図は熱式永久電
流スイッチの外観図、第3図は第2図中のI−I線部分
断面図である。永久電流スイッチ3は、外側が耐寒性樹
脂等でほぼ円柱状にモールドされ、その内部には超電導
線10及びヒータ11等が収容され、超電導線10の端
末部分である口出し線10′が口出し線押え20で固定
されて外部に取り出される。そして超電導線10は、N
bT i 系合金からなる超電導線のフィラメント10
aと、CuNi系合金からなる常電導金属の母材10b
とで構成される。超電導線10bとして用いられている
金属CuNi系合金は、比抵抗が常電導状態の超電導金
属NbT i合金と同じ程度で、しかも@CuO比抵抗
の約1000倍であるから、永久電流スイッチ3のオフ
時抵抗n8’fc非常に大きくすることができる。
Therefore, the following proposal has been made to increase the total resistances R and I when the switch is off. FIG. 2 is an external view of the thermal persistent current switch, and FIG. 3 is a partial sectional view taken along the line II in FIG. 2. The persistent current switch 3 is molded with a cold-resistant resin or the like into a substantially cylindrical shape on the outside, and the superconducting wire 10, heater 11, etc. are housed inside, and the lead wire 10', which is the terminal part of the superconducting wire 10, is the lead wire. It is fixed with a presser foot 20 and taken out to the outside. The superconducting wire 10 is N
Superconducting wire filament 10 made of bT i alloy
a, and a normal conductive metal base material 10b made of a CuNi alloy.
It consists of The metal CuNi-based alloy used as the superconducting wire 10b has a specific resistance similar to that of the superconducting metal NbTi alloy in the normal conducting state, and is approximately 1000 times as large as the @CuO specific resistance, so that the persistent current switch 3 can be turned off. The resistance n8'fc can be made very large.

しかし、超電導線10の母材10bとして用いられてい
る金属CuNi合金は、銅Cuに比較して熱の拡散が悪
い。このため合金CuNi/NbT1の超電導線10で
構成した熱式水入電流スイッチ3にあっては、該永久電
流スイッチ3及び超電導コイル2を収納した低温容器1
に外部から衝撃、振動等が加わった場合、該永久電流ス
イッチ3の動きにより、永久電流スイッチ30口出し部
において口出し線10′と口出し線押え20との摩擦等
によシ発熱し、この発熱が局部に集中し、順次拡大して
超電導線10が超電導状態から常電導状態に転移し、永
久電流スイッチ3がオフ状卯になる仁とがあった。すな
わち永久電流スイッチとして非常に不安定なものであっ
た。このため、永久電流スイッチ3の固定を十分に行な
うことが重要であり、固定のために低温容器1を強固に
する必要があった。ところが低温容器1を耐衝撃性や耐
振動性に優れる強固なイiり造にすると、低温容器1が
大形化しかつ重量も大きくなって、軽量、小形化を図る
うえでの大きな問題となっていた。
However, the metal CuNi alloy used as the base material 10b of the superconducting wire 10 has poor heat diffusion compared to copper Cu. For this reason, in a thermal water-immersed current switch 3 constructed of a superconducting wire 10 of alloy CuNi/NbT1, a low-temperature container 1 containing the persistent current switch 3 and a superconducting coil 2 is used.
When external shocks, vibrations, etc. are applied to the persistent current switch 3, the movement of the persistent current switch 3 generates heat due to friction between the lead wire 10' and the lead wire holder 20 at the lead portion of the persistent current switch 30, and this heat generation There was a case where the superconducting wire 10 was concentrated locally and gradually expanded, causing the superconducting wire 10 to transition from a superconducting state to a normal conducting state, and the persistent current switch 3 to be turned off. In other words, it was extremely unstable as a persistent current switch. Therefore, it is important to sufficiently fix the persistent current switch 3, and it is necessary to make the low temperature container 1 strong for fixing. However, if the low-temperature container 1 is made of a strong material with excellent shock resistance and vibration resistance, the low-temperature container 1 will become larger and heavier, which poses a major problem when trying to make it lighter and smaller. was.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点を除去するためになされたもので
、永久電流スイッチの口出し部での口出し線と口出し線
押えとの摩擦によって発生する熱が局部に集中すること
を防ぎ、超電導線の超電導状態から常電導状態への転移
全防止した信頼性の高い熱式永久電流スイッチを提供す
るξと全目的とする。
The present invention has been made in order to eliminate the above-mentioned problems, and prevents the heat generated by friction between the lead wire and the lead wire holder at the lead part of the persistent current switch from concentrating locally. The overall purpose is to provide a highly reliable thermal persistent current switch that completely prevents transition from a superconducting state to a normal conducting state.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、超電導線の口出
し部’kcu等の熱拡散の優れた金属部材で被イ、この
部分を【M定するようにしている。
In order to achieve the above object, the present invention covers the leading part of the superconducting wire with a metal member having excellent thermal diffusion, such as the leading part 'kcu', and makes this part [M].

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面に基づいて本発明の一実施例全説明する
。なお、以下の図面において、前記第1図及び第2図中
の要素と同一のものには同一の符号がイ」されている。
Hereinafter, one embodiment of the present invention will be fully explained based on the accompanying drawings. In the following drawings, the same elements as those in FIGS. 1 and 2 are designated by the same reference numerals.

第3図はこの実施例に係る永久電流スイッチの外観図、
第4図は第3図中の11−■線部分断面図である。この
永久電流スイッチ3は、第1図で示すように、NbTi
系合金等のフィラメント10aとCuNi系合金等の母
材10bで構成される超電導線11と、ヒータ11とを
具え、該超電導線10は、例えば合成樹脂の巻枠に無誘
導に巻かれエポキシ樹脂等により含浸されている。そし
て該エポキシ樹脂等により超電導線10及びヒータ11
がモールドされ、外側がほぼ円柱状に形成されている。
FIG. 3 is an external view of the persistent current switch according to this embodiment,
FIG. 4 is a partial sectional view taken along the line 11--■ in FIG. 3. This persistent current switch 3 is made of NbTi as shown in FIG.
The superconducting wire 11 includes a filament 10a made of a CuNi-based alloy or the like and a base material 10b made of a CuNi-based alloy, and a heater 11. It is impregnated with etc. Then, the superconducting wire 10 and the heater 11 are made of the epoxy resin or the like.
is molded, and the outside is formed into a roughly cylindrical shape.

さらに口出し線10′は熱拡散の優れたCu等の金属部
材30で被われ、断面弧状の口出し線押え20で永久電
流スイッチ本体の外周に固定され外部に取り出される。
Further, the lead wire 10' is covered with a metal member 30 made of Cu or the like having excellent heat diffusion, is fixed to the outer periphery of the persistent current switch body by a lead wire presser 20 having an arcuate cross section, and is taken out to the outside.

ここで超電導線10と金属部材30とは半田付け、ある
いは圧接等によシ一体化されている。
Here, the superconducting wire 10 and the metal member 30 are integrated by soldering, pressure welding, or the like.

而してこの実施例に係る永久電流スイッチ30口出し部
において、外部から加わった衝撃、振動等により口出し
線10′と口出し押え加との間に摩擦が生じ、これによ
り熱が発生したとしても、口出し部の表面に発生した熱
はCu等の金属部側30の全体のみに拡り、内部の超電
導線10にはあ゛まり伝わらない。従って摩擦によって
発生した熱が超電導線10の一部に局部的に集中するこ
とによって起こる超電導状態から常電導状態への転移を
防ぐことができ永久電流スイッチ3の安定化を向上させ
ることができる。また、口出し線10′が金属部材30
で被われることによって口出し線10’の機械的強度が
増し、破口出し線10′が折れるということも防ぐこと
ができる。なお、永久電流スイッチ3に衝撃、振動等が
加わった場合、永久電流スイッチ本体内の超電導線10
は、合成樹脂等の巻枠に無誘導に巻かれ、エポキシ樹脂
等により含浸されているため、永久電流スイッチ本体内
部で超電導線10の摩擦がおこることはない。
Therefore, in the persistent current switch 30 according to this embodiment, even if friction is generated between the lead wire 10' and the lead presser due to shocks, vibrations, etc. applied from the outside, and heat is generated due to this, The heat generated on the surface of the lead part spreads only to the entire metal part side 30 such as Cu, and is not very much transmitted to the superconducting wire 10 inside. Therefore, it is possible to prevent the transition from the superconducting state to the normal conducting state, which is caused by the heat generated by friction being locally concentrated in a part of the superconducting wire 10, and the stabilization of the persistent current switch 3 can be improved. Further, the lead wire 10' is connected to the metal member 30.
The mechanical strength of the lead wire 10' is increased by covering the lead wire 10', and it is possible to prevent the break lead wire 10' from breaking. Note that if shock, vibration, etc. are applied to the persistent current switch 3, the superconducting wire 10 inside the persistent current switch body may
Since the superconducting wire 10 is non-inductively wound around a winding frame made of synthetic resin or the like and impregnated with epoxy resin or the like, friction of the superconducting wire 10 does not occur inside the persistent current switch main body.

上記実施例では、永久電流スィッチ3全超電専磁気浮上
式鉄道における超電導コイル2の励磁回路に用いた例を
示したが、該永久電流スイッチ3を他の回路に使用でき
ることはいうまでもない。
In the above embodiment, an example was shown in which the persistent current switch 3 was used in an excitation circuit for a superconducting coil 2 in an all-superelectric magnetic levitation railway, but it goes without saying that the persistent current switch 3 can be used in other circuits. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、超電導線の口出し部
を熱伝散係数の大きい金属部材で被い、この部分を固定
したので、外部からの@撃、振動等により口出し部に摩
擦熱が発生しても、この熱が金属部材を介して速やかに
外部に拡散され消失するため、′超電導状態から常電導
状態への転移を防止でき、永久スイッチとしての信頼性
を向上させることができる。
As explained above, in the present invention, the leading part of the superconducting wire is covered with a metal member with a large heat dissipation coefficient and this part is fixed, so that frictional heat is not generated at the leading part due to external impact, vibration, etc. Even if heat is generated, this heat is quickly diffused to the outside through the metal member and dissipated, which prevents the transition from the superconducting state to the normal conducting state and improves the reliability of the permanent switch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱式永久電流スイッチの構成を説明する
ための回路図、第2図は第1図中の熱式永久電流スイッ
チの外観図、第3図は第2図中の1−1線部分断面図、
第4図は本発明の一実施例に係る永久電流スイッチの外
観図、第5図は第4図中のII −II線部分断面図で
ある。 1・・・低温容器、2・・・超電導コイル、3・・・永
久電流スイッチ、6・・・励磁電源、10・・・超電導
線、10′・・・口出し線、10a・・・超電導線のフ
ィラメント、10h・・・超電導線の母材、11・・・
ヒータ、20・・・口出し線押え930・・・金属部材
。 出願人代理人 猪 股 消 Pal 圃 b2 閏 馬3 図 54 図 熱5 図
Figure 1 is a circuit diagram for explaining the configuration of a conventional thermal persistent current switch, Figure 2 is an external view of the thermal persistent current switch in Figure 1, and Figure 3 is 1-1 in Figure 2. 1 line partial sectional view,
FIG. 4 is an external view of a persistent current switch according to an embodiment of the present invention, and FIG. 5 is a partial sectional view taken along the line II--II in FIG. 4. DESCRIPTION OF SYMBOLS 1... Low temperature container, 2... Superconducting coil, 3... Persistent current switch, 6... Excitation power supply, 10... Superconducting wire, 10'... Lead wire, 10a... Superconducting wire Filament, 10h... Base material of superconducting wire, 11...
Heater, 20... Lead wire presser 930... Metal member. Applicant's representative Boar Crotch Pal Field b2 Jumping horse 3 Figure 54 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)超低温に冷却された超電導線の超電導状態と常電
導状態の切換えをヒータの“熱により行なう熱式永久電
流スイッチにおいて、 前記超電導線の口出し部を熱伝散係数の大きい金属部材
で被い、この部分を固定したことを特徴とする熱式永久
電流スイッチ。
(1) In a thermal persistent current switch that uses heat from a heater to switch a superconducting wire cooled to an ultra-low temperature between a superconducting state and a normal conducting state, the lead-out portion of the superconducting wire is covered with a metal member having a large heat dissipation coefficient. A thermal persistent current switch characterized by this part being fixed.
(2)超電導線を、NbT i系合金からなるフィラメ
ントとこれを被うCuNI系合金からなる母材とで構成
した特許請求の範囲第1項記載の熱式永久電流スイッチ
(2) The thermal persistent current switch according to claim 1, wherein the superconducting wire is composed of a filament made of a NbTi alloy and a base material made of a CuNI alloy covering the filament.
(3)超電導線の口出し部を銅部材で被うようにした特
許請求の範囲第1項記載の熱式永久電流スイッチ。
(3) The thermal persistent current switch according to claim 1, wherein the lead portion of the superconducting wire is covered with a copper member.
JP58130643A 1983-07-18 1983-07-18 Thermal process permanent current switch Pending JPS6022383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130643A JPS6022383A (en) 1983-07-18 1983-07-18 Thermal process permanent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130643A JPS6022383A (en) 1983-07-18 1983-07-18 Thermal process permanent current switch

Publications (1)

Publication Number Publication Date
JPS6022383A true JPS6022383A (en) 1985-02-04

Family

ID=15039151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130643A Pending JPS6022383A (en) 1983-07-18 1983-07-18 Thermal process permanent current switch

Country Status (1)

Country Link
JP (1) JPS6022383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757257A (en) * 1993-09-20 1998-05-26 Hitachi, Ltd. Permanent current switch and superconducting magnet system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057596A (en) * 1973-09-21 1975-05-20
JPS5181078U (en) * 1974-12-20 1976-06-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057596A (en) * 1973-09-21 1975-05-20
JPS5181078U (en) * 1974-12-20 1976-06-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757257A (en) * 1993-09-20 1998-05-26 Hitachi, Ltd. Permanent current switch and superconducting magnet system

Similar Documents

Publication Publication Date Title
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
JP2004273621A (en) Superconductive magnet device
JP2004179413A (en) Cooling type superconducting magnet device
JPS6022383A (en) Thermal process permanent current switch
JP7110035B2 (en) Superconducting magnet device
JP4477859B2 (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP3358958B2 (en) Thermal control type permanent current switch
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JPH10116725A (en) Superconducting magnet device
JP2889485B2 (en) Superconducting wire connection method and device, and superconducting coil device
JPH10247532A (en) Current lead for superconductive device
JPH0590022A (en) Superconducting magnet system
JPS59113605A (en) Superconductive magnet device
JP3322981B2 (en) Permanent current switch
JP3382794B2 (en) Permanent current switch
JPS62244110A (en) Superconducting coil device
JPH05160447A (en) Permanent current switch
JPS6292416A (en) Superconductive magnet device
JPH07142773A (en) Superconducting electromagnet
JP2765204B2 (en) How to train a permanent current switch
JPH03245508A (en) Superconducting magnet device
JPS6046084A (en) Thermal permanent current switch
JPH0563246A (en) Superconducting magnet for magnetic leviation railway
JPH07115016A (en) Superconducting device
JP2004336839A (en) Superconducting magnetic gradient levitation system