JPS6022380A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS6022380A
JPS6022380A JP58129541A JP12954183A JPS6022380A JP S6022380 A JPS6022380 A JP S6022380A JP 58129541 A JP58129541 A JP 58129541A JP 12954183 A JP12954183 A JP 12954183A JP S6022380 A JPS6022380 A JP S6022380A
Authority
JP
Japan
Prior art keywords
solar cell
substrate
layer
junction
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58129541A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
山本 「あき」勇
Zeio Kamimura
税男 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58129541A priority Critical patent/JPS6022380A/en
Publication of JPS6022380A publication Critical patent/JPS6022380A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To upgrade the conversion efficiency of a solar cell by a method wherein the solar cell having a P-N junction or an MIS structure is manufactured using a compound semiconductor substrate with the (111)A plane, which has been formed with pyramidal roughnesses on the surface thereof. CONSTITUTION:A P type InP single crystal with the (111)A plane is used as a substrate 6 and an etching treatment is performed on the substrate 6 with Br (1-2%) methanol solution for forming pyramidal roughnesses on the surface of the substrate 6. An S is performed a thermal diffusion from the rough surface as donor impurities for 3hr at 700 deg.C, and by turning the about 0.3mum deep surface layer into an N type InP layer 7, an InP solar cell having an N-P junction can be obtained. By this method, the improvement of the short-circuit current density, that is, an improvement to 33mA/cm<2> from 30mA/cm<2> obtained by the conventional method, is contrived, and as the result, the conversion efficiency is also greatly improved, rising to 14.5% from 13%, compared with the conventional method.

Description

【発明の詳細な説明】 (技術分野) 本発明は効率の高い太陽電池に関するものである。[Detailed description of the invention] (Technical field) The present invention relates to highly efficient solar cells.

(従来技術) 従来の太陽電池は、例えば、第1図に示すように構成さ
れていた。すなわち、(100)面を有するn −Ga
As基板l上に液相エピタキシャル成長により1μm程
度の厚さのp −GaAs層−を成長させ、その層−〇
上にp −Ga(1−幻A/XAs ll(f 3 (
x=0.7〜O0ざ)をSOO〜1000 A程度の厚
さに成長させ、更にその層3の上に電極弘および反射防
止膜jを形成して効率の向上を図ってきた。
(Prior Art) A conventional solar cell was configured as shown in FIG. 1, for example. That is, n -Ga having the (100) plane
A p-GaAs layer with a thickness of about 1 μm is grown on the As substrate l by liquid phase epitaxial growth, and p-Ga(1-phantom A/XAs ll(f 3 (
An attempt has been made to improve efficiency by growing a layer 3 (x=0.7 to O0) to a thickness of about SOO to 1000 A, and further forming an electrode layer and an antireflection film on the layer 3.

しかし、反射防止膜Sといえどもすべての太陽光の波長
に対して無反射にすることができる訳ではなく、実際に
は、太陽光の反射による損失を無視し得ない。従って、
いかに素子作製技術の向上が図られようとも、反射損失
はいかんともし難く、効率の改善にも限界があった。
However, even the anti-reflection film S cannot make all wavelengths of sunlight non-reflective, and in reality, losses due to reflection of sunlight cannot be ignored. Therefore,
No matter how much the device manufacturing technology was improved, reflection loss was difficult to manage, and there was a limit to the improvement of efficiency.

そこで、従来、この太陽光の太陽電池による反射損失を
減少するために、太陽電池の表面に多数の凹凸を艙底す
る方法がある(例えば、特願昭57−32!3号参照)
。しかし、これらの方法では、例えば所望の凹凸を形成
するのに、適当なレジストを用いてのマスキングとエツ
チング技術によるパターンニングを伴なう、いわゆる光
露光技術を用いてV溝やピラミッド形状の凹凸を形成す
るので、余分の工程と複雑な処理を必要とするのが問題
であった。また、この表面の凹凸形成法の7つとして、
機械的な研削法を用いて荒研磨することにより凹凸を形
成する方法もあるが、この場合、加工に伴なうダメージ
が残ってしまうことやそのダメージを取り除くためにエ
ツチング等の余分な工程を必要とするなどの問題点があ
った。
Therefore, in order to reduce the reflection loss of sunlight by the solar cells, there is a conventional method of creating many unevenness on the surface of the solar cells (see, for example, Japanese Patent Application No. 32-32-1981).
. However, in these methods, for example, to form the desired unevenness, a so-called light exposure technique is used, which involves masking using an appropriate resist and patterning using an etching technique. The problem is that it requires extra steps and complicated processing. In addition, as seven methods for forming unevenness on this surface,
There is also a method of forming irregularities by rough polishing using a mechanical grinding method, but in this case, damage caused by machining may remain and extra steps such as etching are required to remove the damage. There were problems such as the need for

(目 的) そこで、本発明の目的は、かがる限界を可及的に拡大す
るために、太陽光の太陽電池による反射損失を減少でき
るように適切に1かっ簡便な方法によシ構成した太陽電
池を提供することにある。
(Purpose) Therefore, an object of the present invention is to appropriately configure a structure in a simple and simple manner so as to reduce the reflection loss of sunlight by solar cells, in order to expand the limit as much as possible. Our goal is to provide solar cells with

(発明の構成) かかる目的を達成するために1本発明では、する。(Structure of the invention) One aspect of the present invention is to achieve such an object.

すなわち、化合物半導体の(///)面は、その極性に
よシ、例えば■−■族化合物半導体の場合、■族元素が
最表面に存在するA面と、V族元素が最表面に存在する
8面とが、常に表裏の関係で成り立っている。しかも、
通常の化学的エツチングを行うと、常に、(///)A
面はピラミッド状凹凸表面を呈する。これはn−■族化
合物半導体の場合も同様である。
In other words, the (///) plane of a compound semiconductor depends on its polarity; for example, in the case of a ■-■ group compound semiconductor, there is an A plane in which group ■ elements exist on the outermost surface, and an A plane in which group V elements exist in the outermost surface. The eight sides are always in a front-back relationship. Moreover,
Normal chemical etching always results in (///)A
The surface exhibits a pyramidal uneven surface. This also applies to n-■ group compound semiconductors.

そこで、本発明では、簡便なエツチング処理だけで、規
則的なピラミッド状凹凸を形成した( /// )A面
基板を用いることによって、光入射面に対して望ましい
凹凸を形成することができ、太陽光の反射損失を減少で
きる太陽電池を提供できる。
Therefore, in the present invention, by using a (///) A-side substrate on which regular pyramid-shaped unevenness is formed with only a simple etching process, desirable unevenness can be formed on the light incident surface. A solar cell that can reduce reflection loss of sunlight can be provided.

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は本発明の一実施例を示すものである。FIG. 2 shows an embodiment of the present invention.

ここで、(///)A面を有するp彫工nP、l結晶を
基板6として用い、この基板6をBr (、’〜2%)
メタノール液によってエツチング処理して、基板乙の表
面上にピラミッド状凹凸を形成する。この凹凸表面から
、ドナー不純物としてSを、7oo℃で3時間熱拡散し
て表面層約0゜3μmをn形InP )曽7とすること
により、np接合InP太陽電池を得た。
Here, a p-carved nP,l crystal with (///)A plane is used as the substrate 6, and this substrate 6 has Br (,'~2%)
Etching is performed using a methanol solution to form pyramid-shaped unevenness on the surface of the substrate A. An np junction InP solar cell was obtained by thermally diffusing S as a donor impurity from this uneven surface at 70° C. for 3 hours to make the surface layer approximately 0°3 μm thick as n-type InP.

池と本発明による(///)A基板を用いた太陽電池と
のキャリアの収集効率の波長依存性を比較したものであ
る。第3図から明らかなように、曲線Iで示す本発明の
場合には、曲線■で示す従来のものに比べて、波長II
ooo〜7000人での収集効率が大幅に改善されてい
ることがわかる。
3 is a comparison of the wavelength dependence of carrier collection efficiency between a solar cell using a solar cell and a solar cell using an A substrate according to the present invention (///). As is clear from FIG. 3, in the case of the present invention shown by curve I, the wavelength II
It can be seen that the collection efficiency for ooo ~ 7000 people has been significantly improved.

さらに、第4図は本発明の他の実施例を示すものである
。ここで、lは(tt/) A面を有するp形InP基
板、りは工nP酸化膜、ioは酸化膜9の上面に配置し
たAJの半透明電極である。酸化膜9は、pH= Iの
j%酒石酸水溶液とプロピレングリコールとの混合液を
電解液として陽極酸化し、さらに、1%■C!水溶液に
よるエツチング処理を施すことKより、所定の厚さの工
nP酸化膜7を形成する。
Furthermore, FIG. 4 shows another embodiment of the present invention. Here, 1 is a p-type InP substrate having a (tt/)A plane, 1 is an nP oxide film, and io is a translucent electrode of AJ disposed on the upper surface of the oxide film 9. The oxide film 9 is anodized using a mixed solution of j% tartaric acid aqueous solution and propylene glycol at pH=I as an electrolyte, and further, 1% ■C! By performing an etching process using an aqueous solution, a nP oxide film 7 of a predetermined thickness is formed.

このようにして作製した本発明によるInP −MIS
構造太@電池と、従来法によって平坦な(ioo )基
板を用いて同様な方法で作製したInP −MIS構造
太@電池との特性比軸を行ったところ、本発明による太
陽電池は、短絡電流密度で、従来の3θmA/儒2から
33 mA 7cm2への向上が因られ、結果として、
変換効率もまた、従来の73%から/l/、、j%へ大
きく改善されることが確認された。
InP-MIS according to the present invention produced in this way
When comparing the characteristics of the thick structure cell and the InP-MIS structure thick cell fabricated in a similar manner using a flat (ioo) substrate using the conventional method, it was found that the solar cell according to the present invention has a short-circuit current. The density has been improved from the conventional 3θmA/F2 to 33 mA 7cm2, and as a result,
It was also confirmed that the conversion efficiency was greatly improved from the conventional 73% to /l/,,j%.

なお、本発明は、上述した実施例にのみ限定されるもの
ではなく、基板材料としては、InPの他に、GaAs
 、 GaSb 、 Gd’re 、 OdS等種々の
半幅体材料を有効に用いることができる。
Note that the present invention is not limited to the above-mentioned embodiments, and the substrate material may include GaAs in addition to InP.
Various half-width body materials such as , GaSb, Gd're, and OdS can be effectively used.

その場合に、GaAsなどのように表面再結合速度の大
きい半導体基板材料を用いるときには、pn接合を形成
する層あるいはM工S構造の金属層の上に窓層としてG
aAlAs層などを配置して、表面再結合を抑制するの
が好適である。
In that case, when using a semiconductor substrate material with a high surface recombination rate such as GaAs, a window layer is formed on the layer forming the pn junction or the metal layer of the M-S structure.
It is preferable to suppress surface recombination by disposing an aAlAs layer or the like.

また、導電型については、n形半導体の(///)A面
を基板に用いる場合についても、本発明を同様に有効に
適用できることは言うまでもないことである。
Regarding the conductivity type, it goes without saying that the present invention can be similarly effectively applied to the case where the (///) A-plane of an n-type semiconductor is used as the substrate.

(効 果) 以上に説明したように、本発明によれば、簡便なエツチ
ング処理だけで、表面にピラミッド状凹凸を形成した(
///)A固化合物半導体基板を使用して、pn接合あ
るいはMIS構造太陽電池を作製することにより、太陽
光の反射損失を減少させることができ、以て、太陽電池
の変換効率を向上させることができる。
(Effects) As explained above, according to the present invention, pyramid-shaped unevenness can be formed on the surface with only a simple etching process (
///) A By using a solid compound semiconductor substrate to create a pn junction or MIS structure solar cell, it is possible to reduce the reflection loss of sunlight, thereby improving the conversion efficiency of the solar cell. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池の構成例を示す断面図、第2図
は本発明pn接合太陽電池の一実施例を示て示す図、第
4を図は本発明にIs構造太陽電池の一実施例を示す断
面図である。 / −= n −GaA3基板、 2・・・p −GaAs層、 3−p −Ga(、,2A7!o、B As層、グ・・
・電極、 S・・・反射防止膜、 4 、 tr ・(///) A面p−InP基板、7
・・・S拡散によるn −InP層、り・・・InP酸
化膜、 /θ・・・Al半透明電極。 特許出願人 日本電信′電話公社 り ζ 代理人 弁理士 谷 義 −ジ、、′I辺・Ilづ− 第1図 第2図 第3図 4θρθ 6θθo 8000 10000光の5皮長
 (刷 第4図
FIG. 1 is a sectional view showing an example of the configuration of a conventional solar cell, FIG. 2 is a cross-sectional view showing an embodiment of the pn junction solar cell of the present invention, and FIG. 4 is a cross-sectional view showing an example of the structure of a conventional solar cell. It is a sectional view showing an example. / -= n -GaA3 substrate, 2...p -GaAs layer, 3-p -Ga(,,2A7!o, B As layer, g...
・Electrode, S... antireflection film, 4, tr ・(///) A-side p-InP substrate, 7
...n-InP layer by S diffusion, Ri...InP oxide film, /θ...Al semitransparent electrode. Patent applicant Nippon Telegraph Telephone Public Corporation ζ Agent Patent attorney Yoshi Tani -ji,,'I side, Ilzu- Fig. 1 Fig. 2 Fig. 3 4θρθ 6θθo 8000 5 skin lengths of 10000 lights (Printing Fig. 4)

Claims (1)

【特許請求の範囲】 1)表面に多数の凹凸を形成した(///)A面の化合
物半導体基板を有し、該半導体基板上にpn接合を形成
する層を形成して、光入射面に凹凸を形成したことを特
徴とする太陽電池。 2、特許請求の範囲第1項記載の太陽電池において、前
記pn接合を形成する層の上に窓層を配置したことを特
徴とする太陽電池。 3)表面に多数の凹凸を形成した(///)A面の化合
物半導体基板を有し、該半導体基板上に、絶縁膜および
全感層をこの順序で配置して、光入射面に凹凸を形成し
たことを特徴とする太陽電池。 4)特a′fir#求の範囲第S項記載の太陽電池にお
いて、前記金属層の上に窓層を配置したことを特徴とす
る太陽電池。
[Claims] 1) A compound semiconductor substrate having an A-side (///) surface with a large number of unevenness formed thereon, a layer forming a pn junction formed on the semiconductor substrate, and a light incident surface A solar cell characterized by having unevenness formed on the surface. 2. The solar cell according to claim 1, characterized in that a window layer is disposed on the layer forming the pn junction. 3) It has a (///) A-side compound semiconductor substrate with many unevenness formed on the surface, and an insulating film and a total sensitive layer are arranged in this order on the semiconductor substrate, so that the light incident surface is uneven. A solar cell characterized by forming. 4) The solar cell according to item S, characterized in that a window layer is disposed on the metal layer.
JP58129541A 1983-07-18 1983-07-18 Solar cell Pending JPS6022380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129541A JPS6022380A (en) 1983-07-18 1983-07-18 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129541A JPS6022380A (en) 1983-07-18 1983-07-18 Solar cell

Publications (1)

Publication Number Publication Date
JPS6022380A true JPS6022380A (en) 1985-02-04

Family

ID=15012070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129541A Pending JPS6022380A (en) 1983-07-18 1983-07-18 Solar cell

Country Status (1)

Country Link
JP (1) JPS6022380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261970A (en) * 1992-04-08 1993-11-16 Sverdrup Technology, Inc. Optoelectronic and photovoltaic devices with low-reflectance surfaces
US9991407B1 (en) * 2010-06-22 2018-06-05 Banpil Photonics Inc. Process for creating high efficiency photovoltaic cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS5582471A (en) * 1978-12-13 1980-06-21 Ibm Light converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS5582471A (en) * 1978-12-13 1980-06-21 Ibm Light converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261970A (en) * 1992-04-08 1993-11-16 Sverdrup Technology, Inc. Optoelectronic and photovoltaic devices with low-reflectance surfaces
US9991407B1 (en) * 2010-06-22 2018-06-05 Banpil Photonics Inc. Process for creating high efficiency photovoltaic cells

Similar Documents

Publication Publication Date Title
CN101399296B (en) Thin inverted metamorphic multijunction solar cells with rigid support
EP3550617B1 (en) Heterojunction solar cell
US7785989B2 (en) Growth substrates for inverted metamorphic multijunction solar cells
TWI482300B (en) Inverted multijunction solar cells with group iv/iii-v hybrid alloys
EP3333905B1 (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
JPH06511357A (en) Multispectral configuration by cell stacking and its manufacturing method
JP2008160138A (en) Inverted metamorphic solar cell with bypass diode
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
TW200915588A (en) Barrier layers in inverted metamorphic multijunction solar cells
US11424381B2 (en) Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US10388814B2 (en) III-V solar cell structure with multi-layer back surface field
US20180331245A1 (en) Dual-junction thin film solar cell module, and preparation method thereof
US20170069782A1 (en) Four-Junction Solar Cell and Fabrication Method
US20130139877A1 (en) Inverted metamorphic multijunction solar cell with gradation in doping in the window layer
EP3614444B1 (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
JPS6022380A (en) Solar cell
KR20050087253A (en) Solar cell using layer transfer process and fabrication method thereof
JP2937166B2 (en) Avalanche photodiode
KR20050027751A (en) Photo-diode and method for fabricating the same
JP3368854B2 (en) Solar cell
WO2013004188A1 (en) Solar cell, system, and manufacturing method thereof
CN110148644B (en) Multi-junction solar cell with quantum well structure tunneling junction and manufacturing method
US10553731B2 (en) Focused energy photovoltaic cell
JPH11121774A (en) Gallium arsenide solar cell
EP2996162B1 (en) Inverted metamorphic multijunction solar cell with multiple metamorphic layers