JPS60223669A - Pressing force control device of resistance welding machine - Google Patents
Pressing force control device of resistance welding machineInfo
- Publication number
- JPS60223669A JPS60223669A JP59079816A JP7981684A JPS60223669A JP S60223669 A JPS60223669 A JP S60223669A JP 59079816 A JP59079816 A JP 59079816A JP 7981684 A JP7981684 A JP 7981684A JP S60223669 A JPS60223669 A JP S60223669A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- compressed air
- supply
- room
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/30—Features relating to electrodes
- B23K11/31—Electrode holders and actuating devices therefor
- B23K11/314—Spot welding guns, e.g. mounted on robots
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Resistance Welding (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
この発明は、抵抗溶接機、たとえばスポット溶接機にお
いて、溶接ガンのワーク加圧力を所要に応じて適宜に調
節して常に最適なる溶接条件をもたらす加圧力制御装置
に関するものである。Detailed Description of the Invention (Technical Field) The present invention provides a resistance welding machine, for example, a spot welding machine, by appropriately adjusting the pressure force of a welding gun on a workpiece as required to always achieve optimal welding conditions. This relates to a control device.
(従来技術)
従来既知のこの種の加圧力制御装置としては、たとえば
第1図に示すものがある。(Prior Art) As a conventionally known pressurizing force control device of this type, there is one shown in FIG. 1, for example.
これは、スポット溶接機の溶接ガン1に加圧シリンダ2
を連結し、この加圧シリンダ2に電磁方向切換弁3およ
び圧縮空気供給源4を順次に接続するとともに、加圧シ
リンダ2と方向切換弁3との間で、加圧シリンダ2の溶
接ガン加圧側に連通ずる圧縮空気給排通路5に、相互に
並列をなす直接作動減圧弁6およびチェック弁7からな
る圧力制御手段8を接続してなる。This is a pressure cylinder 2 attached to the welding gun 1 of the spot welding machine.
The electromagnetic directional control valve 3 and the compressed air supply source 4 are connected in sequence to the pressurizing cylinder 2, and the welding gun is applied to the pressurizing cylinder 2 between the pressurizing cylinder 2 and the directional switching valve 3. A pressure control means 8 consisting of a directly operated pressure reducing valve 6 and a check valve 7 which are arranged in parallel is connected to a compressed air supply/discharge passage 5 communicating with the pressure side.
なお図中9は消音器を示す。Note that 9 in the figure indicates a silencer.
このような加圧力制御装置によれば、溶接ガン1の加圧
力の設定は、電磁方向切換弁3および直接作動減圧弁6
を経て加圧シリンダ2の溶接ガン加圧側へ、圧縮空気供
給源4からの空気を供給するに先だって、直接作動減圧
弁6を手動調整することにて行うことができるも、ここ
における圧力制御手段8は、設定圧力を、手動操作によ
って直接的に調整する半固定式であるため、たとえば、
ロボットによる溶接作業におけるように、板厚、材質な
どが変化するワークの多数点に順次にかつ迅速に溶接を
施す場合には、圧力制御手段8の設定圧力を、それが常
にワークの溶接部位に応じた最適圧力になるように頻繁
に調整することが実質上不可能であり、この結果として
、最適溶接条件によるすぐれた溶接結果を得ることがで
きない問題があった。According to such a pressurizing force control device, the pressurizing force of the welding gun 1 is set by the electromagnetic directional control valve 3 and the directly actuated pressure reducing valve 6.
This can be done by manually adjusting the directly actuated pressure reducing valve 6 before supplying air from the compressed air supply source 4 to the welding gun pressurizing side of the pressurizing cylinder 2 through the pressure control means here. 8 is a semi-fixed type in which the set pressure is directly adjusted by manual operation, so for example,
When welding is performed sequentially and rapidly at multiple points on a workpiece whose thickness, material, etc. change, as in the case of welding work using a robot, the set pressure of the pressure control means 8 must be adjusted so that it is always applied to the welding area of the workpiece. It is virtually impossible to frequently adjust the pressure to the appropriate optimum pressure, and as a result, there is a problem in that excellent welding results cannot be obtained under optimum welding conditions.
そこで、従来技術のかかる問題を解決するものとして、
特開昭58−84686号公報(特願昭56−1826
35号)に示されるような加圧力調整装置が提案されて
いる。Therefore, as a solution to this problem with the conventional technology,
Japanese Unexamined Patent Publication No. 58-84686 (Patent Application No. 1826-1982)
A pressurizing force adjusting device as shown in No. 35) has been proposed.
この装置は、第2図に示すように溶接ガン1に関連させ
て設けた加圧シリンダ2を、3ポジシヨンの電磁方向切
換弁3aを介して圧縮空気供給源4に接続し、また、加
圧シリンダ2と方向切換弁3aとの間で、加圧シリンダ
2の溶接ガン加圧側に連通ずる圧縮空気給排通路5に、
設定圧力を遠隔操作できる圧力センサ10を接続してな
り、加圧シリンダ2の伸長側空気室2aの内圧が、遠隔
的に設定された所要圧力に達したときに、圧力センサ1
0からの信号で、電磁方向切換弁3aを図示位置へ作動
させて圧縮空気の供給を停止する一方、溶接ガン1によ
るワーク11の所要圧力での押圧を維持するものである
。As shown in FIG. 2, this device connects a pressurizing cylinder 2 provided in association with a welding gun 1 to a compressed air supply source 4 via a three-position electromagnetic directional control valve 3a, and A compressed air supply/discharge passage 5 that communicates with the welding gun pressurizing side of the pressurizing cylinder 2 between the cylinder 2 and the directional control valve 3a,
A pressure sensor 10 that can remotely control the set pressure is connected, and when the internal pressure of the extension side air chamber 2a of the pressurizing cylinder 2 reaches the required pressure set remotely, the pressure sensor 1
0, the electromagnetic directional switching valve 3a is operated to the illustrated position to stop the supply of compressed air, while maintaining the welding gun 1 pressing the workpiece 11 at the required pressure.
ところが、このような開示技術は、圧力センサ10が加
圧シリンダ2の圧力を検知し、所定の圧力になった所で
信号を送って電磁方向切換弁3aを作動させ、最終的に
クローズ状態にするというものであるため、長時間の応
答遅れがあることに起因して、−の溶接作業を完了する
ためのサイクルタイムが長くなって作業能率が低くなる
という問題や、圧力センサ10が作動してから圧縮空気
の供給が停止されるまでの時間遅れに起因して溶接ガン
1の加圧力が設定圧力よりも高くなるという問題があっ
た。However, in the disclosed technology, the pressure sensor 10 detects the pressure in the pressurizing cylinder 2, and when the pressure reaches a predetermined level, it sends a signal to operate the electromagnetic directional control valve 3a, and finally closes the valve. Therefore, due to the long response delay, there is a problem that the cycle time to complete the - welding work becomes longer and work efficiency decreases, and the pressure sensor 10 does not operate. There was a problem in that the pressurizing force of the welding gun 1 became higher than the set pressure due to the time delay from when the supply of compressed air was stopped until the supply of compressed air was stopped.
ここでこの装置のサイクルタイムを第3図に基づいて詳
細に説明すると、横軸に時間t1縦軸に空気圧力pを表
わすこのグラフにおいて、電磁方向切換弁応答遅れ時間
(1
加圧シリンダ作動時間t2
シリンダ内圧力の立上り時間t3
設定圧力保持時間t4.t6
溶接電流通電時間t5
加圧シリンダ戻り時間t7
圧力降下保持時間t8
溶接ガン移動時間で9
電磁方向切換弁閉止時間t□。Here, the cycle time of this device will be explained in detail based on FIG. 3. In this graph, in which the horizontal axis represents time t and the vertical axis represents air pressure p, the electromagnetic directional valve response delay time (1 Pressurized cylinder operating time t2 Cylinder pressure rise time t3 Set pressure holding time t4.t6 Welding current energization time t5 Pressure cylinder return time t7 Pressure drop holding time t8 Welding gun moving time 9 Electromagnetic directional valve closing time t□.
サイクルタイムT
となり、このサイクルタイムTのうち溶接作業に必須の
時間14〜t9を除いた他の時間t1〜t3およびtl
oは、装置の応答遅れによって相当長くなっている。The cycle time is T, and the other times t1 to t3 and tl excluding the time 14 to t9 essential for welding work are the cycle time T.
o is considerably long due to the response delay of the device.
(発明の目的)
この発明は、従来技術のかかる問題点に鑑み、設定圧力
の遠隔操作を可能にする他、サイクルタイムの減少をも
たらし、また溶接ガンの加圧力を設定圧力に正確に適合
させ得る抵抗溶接機の加圧力制御装置を提供するもので
ある。(Object of the Invention) In view of the problems of the prior art, the present invention enables remote control of the set pressure, reduces cycle time, and accurately matches the pressure of the welding gun to the set pressure. The present invention provides a pressurizing force control device for a resistance welding machine.
(発明の構成)
この発明の抵抗溶接機の加圧力制御装置は、とくに、加
圧シリンダと方向切換弁との間、もしくは方向切換弁と
圧縮空気供給源との間に、電気信号によって設定圧力を
変更され、圧縮空気の供給の停止をもたらす圧力制御手
段を接続してなる。(Structure of the Invention) The pressurizing force control device for a resistance welding machine of the present invention particularly provides a setting pressure between a pressurizing cylinder and a directional control valve, or between a directional control valve and a compressed air supply source by an electric signal. is modified by connecting a pressure control means which results in the cessation of the supply of compressed air.
この加圧力制御装置によれば、たとえば加圧力の種類に
応じたシーケンス回路を組み、溶接点毎に設定圧力を自
動的に選択して圧力制御手段に入力することにより設定
圧力の遠隔操作が迅速かつ確実に行われるので、常に最
適条件での溶接を行うことができる。またこの装置では
、加圧シリンダのシリンダ内圧が設定圧力に達したとき
に圧力センサから信号を受けて電磁方向切換弁が作動す
るのを待つまでもなく、圧力制御手段がそれ自身の作動
によって圧縮空気の供給を停止でき、その停止の返答性
が著しく高いので、圧縮空気の加圧シリンダ内への速い
流速での供給が可能となってサイクルタイムの短縮がも
たらされるとともに、溶接ガンの加圧力の設定圧力以上
の上昇が有効に防止されることになる。According to this pressurizing force control device, for example, by constructing a sequence circuit according to the type of pressurizing force and automatically selecting a set pressure for each welding point and inputting it to the pressure control means, remote control of the set pressure can be quickly performed. Moreover, since welding is performed reliably, welding can always be performed under optimal conditions. In addition, with this device, when the internal pressure of the pressurized cylinder reaches the set pressure, there is no need to wait for the electromagnetic directional control valve to operate in response to a signal from the pressure sensor. Since the air supply can be stopped and the responsiveness of the stop is extremely high, it is possible to supply compressed air at a high flow rate into the pressurized cylinder, shortening the cycle time, and reducing the pressurizing force of the welding gun. This effectively prevents the pressure from rising above the set pressure.
(実施例) 以下にこの発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.
第4図はこの発明の一実施例を示す回路図であり、図中
用1,2図に示した部分と同等の部分はそれと同一の番
号で示す。またここでは、空気通路を実線で、圧力伝播
通路を破線でそれぞれ示す。FIG. 4 is a circuit diagram showing an embodiment of the present invention, in which parts equivalent to those shown in FIGS. 1 and 2 are designated by the same numbers. Further, here, the air passages are shown by solid lines, and the pressure propagation passages are shown by broken lines.
この例では、加圧シリンダ2の伸長側空気室2aを2ポ
ジシヨンの電磁方向切換弁3に連通させる圧縮空気給排
通路5に、圧力制御手段21を設ける。In this example, a pressure control means 21 is provided in a compressed air supply/discharge passage 5 that communicates the extension side air chamber 2a of the pressurizing cylinder 2 with the two-position electromagnetic directional switching valve 3.
ここにおけるこの圧力制御手段21は、圧縮空き給排通
路5に、相互に並列に接続したパイロット操作減圧弁2
2およびチェック弁23と、電磁方向切換弁3の二次側
から分岐する圧力伝播通路24に並列に接続したたとえ
ば3個の圧力設定弁25,26.27と、これらのそれ
ぞれの圧力設定弁25,26.27に接続した電磁弁2
8,29.30と、−次側を各電磁弁28,29.30
に、また二次側をパイロット操作減圧弁22に接続した
シャトル弁31とからなり、シャトル弁31の二次側圧
力をパイロット操作減圧弁22のパイロット圧として用
いるものである。This pressure control means 21 here includes pilot operated pressure reducing valves 2 connected in parallel to each other in the compression empty supply/discharge passage 5.
2 and check valve 23, for example, three pressure setting valves 25, 26, 27 connected in parallel to the pressure propagation passage 24 branching from the secondary side of the electromagnetic directional control valve 3, and each of these pressure setting valves 25. , 26. Solenoid valve 2 connected to 27
8, 29.30, and each solenoid valve 28, 29.30 on the negative side
It also comprises a shuttle valve 31 whose secondary side is connected to the pilot-operated pressure reducing valve 22, and the pressure on the secondary side of the shuttle valve 31 is used as the pilot pressure of the pilot-operated pressure reducing valve 22.
この圧力制御手段21では、3個の圧力設定弁25.2
6.27をそれぞれ、各種の設定圧力に予め手動調整し
ておき、所要応じた選択に基づく電気信号によっていず
れか−の電磁弁を作動させることにより、選択された設
定圧力を、シャトル弁31を経てパイロット操作減圧弁
22へ導くことができる。In this pressure control means 21, three pressure setting valves 25.2
6.27 are manually adjusted in advance to various set pressures, and by operating one of the solenoid valves by an electric signal based on the selection as required, the selected set pressure is set to the shuttle valve 31. It can then be led to the pilot-operated pressure reducing valve 22.
なおここにおいて、圧力設定弁25,26.27はそれ
らの二次側に各々の設定圧力よりも高い圧力が作用した
場合にはそれぞれの圧力伝播通路を遮断すべく作動し、
またパイロット操作減圧弁22は、その二次側に、パイ
ロット圧より高い圧力が作用した場合には、圧縮空気の
供給を停止すべく作用する。Here, the pressure setting valves 25, 26, 27 operate to cut off the respective pressure propagation passages when a pressure higher than the respective set pressure acts on their secondary sides,
Further, the pilot-operated pressure reducing valve 22 acts to stop the supply of compressed air when a pressure higher than the pilot pressure acts on its secondary side.
このように構成してなる装置の作動に基づいてワークの
抵抗溶接、ここではスポット溶接を施す場合には、図示
しない制御回路からの電気信号によって、電磁方向切換
弁3を、図示のポジションとは逆のポジションへ作動さ
せ、併せて、−の電磁弁、たとえば電磁弁28を選択的
に作動させる。When performing resistance welding, in this case spot welding, on a workpiece based on the operation of the apparatus configured as described above, the electromagnetic directional control valve 3 is moved to a position different from that shown in the figure by an electric signal from a control circuit (not shown). At the same time, a negative solenoid valve, such as the solenoid valve 28, is selectively operated.
このことにより、パイロット操作減圧弁22には圧力設
定弁25で設定された圧力がパイロット圧として供給さ
れ、また、圧縮空気供給源4からの圧縮空気が、電磁方
向切換弁3およびパイロット操作減圧弁22を経て加圧
シリンダ2の伸長側空気室2aへ供給される。As a result, the pressure set by the pressure setting valve 25 is supplied to the pilot operated pressure reducing valve 22 as a pilot pressure, and the compressed air from the compressed air supply source 4 is supplied to the electromagnetic directional control valve 3 and the pilot operated pressure reducing valve. 22 and is supplied to the extension side air chamber 2a of the pressurizing cylinder 2.
ここで、伸長側空気室2a内への空気の供給は、加圧シ
リンダ2が溶接ガン1を作動させ、溶接ガン1の電極チ
ップ1aが図示しないワークを挟持した後、伸長側空気
室2aの内圧が設定圧力に達するまでもたらされ、この
ことによって、電極チップ1aによるワークへの最適加
圧力がもたらされる。Here, air is supplied into the extension side air chamber 2a after the pressurizing cylinder 2 operates the welding gun 1 and the electrode tip 1a of the welding gun 1 clamps a workpiece (not shown). The internal pressure is brought up until it reaches the set pressure, which results in the optimal pressing force on the workpiece by the electrode tip 1a.
一方、伸長側空気室2aの内圧が設定圧力に達した場合
には、パイロット操作減圧弁22のスプールがパイロッ
ト圧に抗して作動されて圧縮空気の供給を直接的に遮断
するので、圧縮空気の迅速なる供給停止がもたらされ、
伸長側空気室2a内は所定の設定圧力に維持される。On the other hand, when the internal pressure of the extension side air chamber 2a reaches the set pressure, the spool of the pilot-operated pressure reducing valve 22 is operated against the pilot pressure and directly cuts off the supply of compressed air. This resulted in a rapid supply disruption of
The inside of the extension side air chamber 2a is maintained at a predetermined set pressure.
そして伸長側空気室2a内圧のかかる維持状態にてワー
クに所定のスポット溶接を施した後、電磁方向切換弁3
を図示のポジションへ作動させることにより、加圧シリ
ンダ2の伸長側空気室28からの空気の排出およびその
反対側空気室への圧縮空気の供給を行って溶接ガン1の
電極チップ1aの開放作動をもたらす。After performing predetermined spot welding on the work while maintaining the internal pressure of the extension side air chamber 2a, the electromagnetic directional control valve 3
By operating to the illustrated position, air is discharged from the extension side air chamber 28 of the pressurizing cylinder 2 and compressed air is supplied to the opposite side air chamber, thereby opening the electrode tip 1a of the welding gun 1. bring about.
次いで、溶接ガン1は、たとえばロボットアームによっ
て次の溶接点位置へ移動され、そこで上述したと同様の
次の溶接作業を待機する。The welding gun 1 is then moved, for example by a robot arm, to the next welding point position, where it waits for the next welding operation similar to that described above.
なお、次の溶接作業におけるワークの最適加圧力が、前
回のそれとは相違する場合には、作業の開始に当って、
他の電磁弁を選択作動させることにより、パイロット操
作減圧弁22のパイロット圧を簡単に、かつ遠隔的に変
更することができる。In addition, if the optimal pressing force for the workpiece in the next welding operation is different from that in the previous welding operation, at the start of the operation,
By selectively operating other electromagnetic valves, the pilot pressure of the pilot-operated pressure reducing valve 22 can be easily and remotely changed.
従ってこの装置によれば、圧力設定弁の数に応じた設定
圧力を、迅速にしかも遠隔的に選択することができる他
、伸長側空気室2aの内圧を設定圧力に正確に一致させ
て常に最適なる加圧条件での溶接を行うことができ、さ
らには、サイクルタイムを短縮して作業能率の向上をも
たらすことができる。Therefore, according to this device, the set pressure according to the number of pressure setting valves can be quickly and remotely selected, and the internal pressure of the extension side air chamber 2a can be accurately matched to the set pressure, so that it is always optimal. Welding can be performed under pressurized conditions, and furthermore, cycle time can be shortened and work efficiency can be improved.
第5図はこの例の装置によるサイクルタイムを示すグラ
フであり、横軸に時間t1縦軸に空気圧力pを表わす。FIG. 5 is a graph showing the cycle time of the apparatus of this example, in which the horizontal axis represents time t and the vertical axis represents air pressure p.
又、第3図に示した部分と同等の部分はそれと同一符号
で示しである。以下に第5図と第3図の時間tを詳細に
比較して本発明の実施例と従来技術のサイクルタイムの
長さを評価してみる。Further, parts equivalent to those shown in FIG. 3 are designated by the same reference numerals. The length of the cycle time of the embodiment of the present invention and the prior art will be evaluated by comparing the time t of FIG. 5 and FIG. 3 in detail below.
(1)まず、電磁方向切換弁応答遅れ時間t1について
は、従来技術では電磁弁が3ポジシ自ンであるのに対し
本発明の実施例では2ポンジヨンである為、本発明の実
施例の方が従来技術よりも短くなる。(1) First, regarding the response delay time t1 of the electromagnetic directional control valve, in the conventional technology, the solenoid valve has three positions, but in the embodiment of the present invention, it has two positions. is shorter than that of the conventional technology.
(2)j+〜t9についてはサイクルタイムTのうち溶
接作業に必須の時間で、本発明の実施例と従来技術は等
しくなる。(2) j+ to t9 is the time essential for welding work in the cycle time T, and the embodiment of the present invention and the prior art are equal.
(3)加圧シリンダ作動時間t2及びシリンダ内圧の立
上り時間t3については、従来技術では圧力センサ10
が加圧シリンダ2の圧力を検知し、所定の圧力になった
所で信号を送って電磁方向切換弁3aを作動させ、最終
的にクローズさせるものである為に長時間の応答遅れが
起こるのに対し、本発明の実施例では圧力センサ10で
加圧シリンダ2の圧力を制御する方式ではなく、予め遠
隔指示によって設定された加圧力で加圧を行なう為、従
来技術のような応答遅れがなく、時間が短くなる。(3) Regarding the pressurizing cylinder operating time t2 and the rise time t3 of the cylinder internal pressure, in the conventional technology, the pressure sensor 10
detects the pressure in the pressurized cylinder 2, and when the pressure reaches a predetermined level, it sends a signal to operate the electromagnetic directional control valve 3a and finally close it, which causes a long response delay. On the other hand, in the embodiment of the present invention, the pressure of the pressurizing cylinder 2 is not controlled by the pressure sensor 10, but pressurizing is performed using a pressurizing force set in advance by a remote instruction, so there is no response delay like in the conventional technology. It takes less time.
(4)第3図に示した従来技術の電磁方向切換弁閉止時
間t1oは本発明の実施例ではその構成上不要となる。(4) The closing time t1o of the electromagnetic directional control valve of the prior art shown in FIG. 3 is unnecessary due to the structure of the embodiment of the present invention.
以上の説明より本発明の実施例と従来技術は14〜19
ついては等しいが、tl、tz、t3゜t工。について
はそれぞれ本発明の実施例の方が従来技術よりも短い為
、本発明の実施例は総合的なサイクルタイムTが従来技
術よりも大幅に短縮されている。From the above explanation, the embodiments of the present invention and the prior art are 14 to 19.
They are the same, but tl, tz, t3゜t. Since each of these is shorter in the embodiment of the present invention than in the prior art, the overall cycle time T of the embodiment of the present invention is significantly shorter than in the prior art.
第6図はこの発明の他の実施例を示す回路図であり、こ
の例では、電磁方向切換弁3の二次側から分岐する圧力
伝播通路24に、圧力可変比例制御電磁弁32を直列に
接続し、またその二次側をパイロット操作減圧弁22に
接続しており、これらとチェック弁23とで圧力制御手
段21を構成する。FIG. 6 is a circuit diagram showing another embodiment of the present invention. In this example, a variable pressure proportional control solenoid valve 32 is connected in series to a pressure propagation passage 24 branching from the secondary side of the solenoid directional control valve 3. The secondary side thereof is connected to a pilot-operated pressure reducing valve 22, and these and a check valve 23 constitute a pressure control means 21.
この装置では、圧力可変比例制御電磁弁32へ供給され
る電流の大きさを変化させることにより、設定圧力いい
かえればパイロット圧を無段階に変化させることができ
るので、たとえば制御回路によって溶接部位に応じた大
きさの電流を圧力可変比例制御電磁弁32へ供給するこ
とにより、常に適正なる設定圧力の選択が行われる。な
おここで、圧縮空気の供給停止は、前述した例と同様に
して迅速かつ確実に行われる。In this device, by changing the magnitude of the current supplied to the pressure variable proportional control solenoid valve 32, the set pressure, in other words, the pilot pressure, can be changed steplessly. By supplying a current of the same magnitude to the pressure variable proportional control solenoid valve 32, an appropriate set pressure can always be selected. Note that here, the supply of compressed air is quickly and reliably stopped in the same manner as in the example described above.
第7図はこの発明のさらに他の実施例を示す回路図であ
り、この例の装置は、第6図で述べた圧力可変比例制御
電磁弁32とほぼ同様に機能でき、それよりも大きい容
量を有する比例制御電磁弁33を、パイロット操作減圧
弁22の代わりに圧ゝ縮空気給排通路5に接続したもの
である。従って、この例では比例制御電磁弁33とチェ
ック弁23とで圧力制御手段21が構成される。FIG. 7 is a circuit diagram showing still another embodiment of the present invention, and the device of this example can function almost similarly to the pressure variable proportional control solenoid valve 32 described in FIG. 6, and has a larger capacity. A proportional control solenoid valve 33 having the same function as the pilot-operated pressure reducing valve 22 is connected to the compressed air supply/discharge passage 5 instead of the pilot-operated pressure reducing valve 22. Therefore, in this example, the pressure control means 21 is composed of the proportional control solenoid valve 33 and the check valve 23.
この例によれば、比例制御電磁弁33へ供給される電流
を制御することにより、加圧シリンダ2の伸長側空気室
2a内へ供給される空気圧力の直接的な設定が行われ、
また、伸長側空気室2aの内圧が設定圧力に達したとき
には、比例制御電磁弁33のスプールの作動によって、
圧縮空気の迅速かつ確実なる供給停止が行われる。According to this example, by controlling the current supplied to the proportional control solenoid valve 33, the air pressure supplied to the extension side air chamber 2a of the pressurizing cylinder 2 is directly set,
Further, when the internal pressure of the extension side air chamber 2a reaches the set pressure, the spool of the proportional control solenoid valve 33 is operated.
The supply of compressed air can be shut off quickly and reliably.
第8図(a)、(b)はそれぞれこの発明のさらなる実
施例を示す回路図であり、第8図(a )に示すものは
、第4図に示す圧力制御手段21を、また第8図(b)
に示すものは第6図に示す圧力制御手段21を、電磁方
向切換弁3と圧縮空気供給源4との間にそれぞれ接続し
、そしてチェック弁23を省いたものである。FIGS. 8(a) and 8(b) are circuit diagrams showing further embodiments of the present invention, and FIG. 8(a) shows the pressure control means 21 shown in FIG. Figure (b)
The pressure control means 21 shown in FIG. 6 is connected between the electromagnetic directional control valve 3 and the compressed air supply source 4, and the check valve 23 is omitted.
以上に述べた各変形例はいずれも、第4図について述べ
た実施例とほぼ同様に作用してそれと同様の効果をもた
らすことができる。またなかでもとくに第8図に示す変
形例では、溶接ガン1の閉止方向いいかえればワークの
加圧方向への作動のみならず、その開放方向への作動に
際しても、圧力制御手段21を作動させることができる
ので、たとえば溶接ガン1と障害物との不測の干渉に起
因する溶接ガン1の損傷を有効に防止することができる
。Each of the above-described modifications operates in substantially the same manner as the embodiment described with reference to FIG. 4, and can produce the same effects. In particular, in the modified example shown in FIG. 8, the pressure control means 21 is operated not only when the welding gun 1 is operated in the closing direction, in other words, in the pressurizing direction of the workpiece, but also when the welding gun 1 is operated in the opening direction. Therefore, it is possible to effectively prevent damage to the welding gun 1 due to unexpected interference between the welding gun 1 and an obstacle, for example.
第9図は以上に述べた加圧制御装置の適用例を示す斜視
図であり、この例では、溶接ロボット34のアーム35
に、電磁方向切換弁3および圧力制御手段21を取り付
けるとともに、ロボットハンド部分に加圧シリンダ2お
よび溶接ガン1を取り付け、また加圧シリンダ2から図
示しない圧縮空気供給1lIii 4までを空圧ホース
36で接続する一方、溶接ガン1と、ロボット34の上
方に吊下げ支持した溶接トランス37とを溶接ケーブル
38で接続する。FIG. 9 is a perspective view showing an application example of the pressure control device described above, and in this example, the arm 35 of the welding robot 34 is
An electromagnetic directional control valve 3 and a pressure control means 21 are attached to the robot hand, and a pressure cylinder 2 and a welding gun 1 are attached to the robot hand, and a pneumatic hose 36 connects the pressure cylinder 2 to the compressed air supply 1lIii 4 (not shown). At the same time, the welding gun 1 and a welding transformer 37 suspended and supported above the robot 34 are connected by a welding cable 38.
なお図示はしないが、電磁方向切換弁3および圧i i
ll 611手段21にはそれぞれ、これも図示しない
制御盤からの電気信号を入力するための信号ケーブルが
接続されることはもちろんである。Although not shown, the electromagnetic directional control valve 3 and the pressure i i
Of course, each of the 611 means 21 is connected to a signal cable for inputting an electric signal from a control panel, which is also not shown.
この適用例によれば、前述したようなこの加圧力制御装
置に個有の作用効果がもたらされる他、とくに、電磁方
向切換弁、3および圧力制御手段21をロボットアーム
35上に配置することにより、それらから加圧シリンダ
2までの配管距離が短縮されるので、電磁方向切換弁3
が作動してから、溶接ガン1によくワーク加圧力が所定
値に達するまでの時間を短縮することができ、溶接作業
能率のより一層の向上がもたらされることになる。According to this application example, in addition to bringing about the unique functions and effects of this pressurizing force control device as described above, in particular, by arranging the electromagnetic directional control valve 3 and the pressure control means 21 on the robot arm 35. , since the piping distance from them to the pressurizing cylinder 2 is shortened, the electromagnetic directional valve 3
It is possible to shorten the time from when the welding gun 1 is activated until the workpiece pressurizing force reaches a predetermined value, resulting in a further improvement in welding work efficiency.
ちなみに、第10図に示すものは第1図に示した加圧力
制御装置をロボットに適用した従来例で、電磁方向切換
弁3および圧力制御手段8を、ロボット34の上方に吊
下した溶接トランス37に固定するものである。そこで
、この電磁方向切換弁3および圧力制御手段8の位置に
本発明による電磁方向切換弁3および圧力制御手段21
を配設することもできるのであるが、この場合には電磁
方向切換弁3から加圧シリンダ2までの空気ホース36
の配管距離が相当長くなり、応答性が悪くなる。Incidentally, the one shown in FIG. 10 is a conventional example in which the pressurizing force control device shown in FIG. 37. Therefore, the electromagnetic directional control valve 3 and the pressure control means 21 according to the present invention are located at the positions of the electromagnetic directional control valve 3 and the pressure control means 8.
However, in this case, the air hose 36 from the electromagnetic directional control valve 3 to the pressurizing cylinder 2
The piping distance becomes considerably long and the response becomes poor.
以上この発明を図示例に基づいて説明したが、第7図に
示した圧力制御手段を第8図に示すように配置すること
もできる。また、この発明の加圧力制御装置は、スポッ
ト溶接機以外の抵抗溶接機にも適用することができ、ま
たロボット以外の溶接作業機にも適用することができる
。さらに、それをスポット溶接機に適用する場合には、
図示以外の溶接ガンの型式、形状などを所要に応じて適
宜に選択することができる。Although the present invention has been described above based on the illustrated example, the pressure control means shown in FIG. 7 can also be arranged as shown in FIG. 8. Further, the pressurizing force control device of the present invention can be applied to resistance welding machines other than spot welding machines, and can also be applied to welding machines other than robots. Furthermore, when applying it to a spot welding machine,
The type, shape, etc. of the welding gun other than those shown in the drawings can be appropriately selected as required.
(発明の効果)
従ってこの発明によれば、とくに加圧シリンダと方向切
換弁との間、もしくは方向切換弁と圧縮空気供給源との
間に、電気信号によって設定圧力を変更され、また圧縮
空気の直接的な供給停止をもたらす圧力制御手段を接続
することにより、遠隔操作にて設定圧力を変更できると
ともに、溶接ガンによるワーク加圧力を設定したとおり
の加圧力とすることができ、さらに、圧力制御手段それ
自身による圧縮空気の供給の停止作動により、その供給
停止の応答性が高まるので、加圧シリンダ内への圧縮空
気の供給流速を速めてサイクルタイムの短縮をもたらす
ことができる。(Effects of the Invention) Therefore, according to the present invention, the set pressure can be changed by an electric signal between the pressurized cylinder and the directional control valve, or between the directional control valve and the compressed air supply source, and the compressed air By connecting a pressure control means that directly stops the supply of The stop operation of the supply of compressed air by the control means itself increases the responsiveness of the supply stop, so that the flow rate of the supply of compressed air into the pressurizing cylinder can be increased and the cycle time can be shortened.
また、圧力制御手段を、電磁方向切換弁と加圧空気供給
源との間に接続した場合には、開放作動時における溶接
ガンの損傷を有効に防止することができ、さらに、電磁
方向切換弁および圧力制御手段を、ロボットアームのよ
うな、溶接ガン近傍部分に取り付けた場合には、とくに
、圧縮空気供給時の応答性を高めて作業能率のより一層
の向上をもたらすことができる。In addition, when the pressure control means is connected between the electromagnetic directional valve and the pressurized air supply source, it is possible to effectively prevent damage to the welding gun during opening operation, and furthermore, the electromagnetic directional valve When the pressure control means is attached to a part near the welding gun, such as a robot arm, it is possible to particularly improve responsiveness when compressed air is supplied, thereby further improving work efficiency.
第1,2図はそれぞれ従来例を示す回路図、第3図は第
2図に示す装置のサイクルタイムを示すグラフ、
第4図はこの発明の一実施例を示す回路図、第5図は第
4図に示す装置のサイクルタイムを示すグラフ、
第6〜8図はそれぞれこの発明の他の実施例を示す回路
図、
第9図はこの発明の適用−を示す斜視図、第10図は第
1図に示す装置の適用例を示す斜視図である。
1・・・溶接ガン 1a・・・電極チップ2・・・加圧
シリンダ 2a・・・伸長側空気室3・・・電磁方向切
換弁 4・・・圧縮空気供給源5・・・圧縮空気給排通
路
21・・・圧力制御手段 22・・・パイロット操作減
圧弁23・・・チェック弁 24・・・圧力伝播通路2
5.26.27・・・圧力設定弁
28.29.30・・・電磁弁 31・・・シャトル弁
32・・・圧力可変比例制御電磁弁
33・・・比例制御電磁弁
第1図
第3図
第4図
第5図
第6図
ム
第7図
0
第8図1 and 2 are circuit diagrams showing conventional examples, FIG. 3 is a graph showing the cycle time of the device shown in FIG. 2, FIG. 4 is a circuit diagram showing an embodiment of the present invention, and FIG. FIG. 4 is a graph showing the cycle time of the device shown in FIG. FIG. 2 is a perspective view showing an example of application of the device shown in FIG. 1; 1... Welding gun 1a... Electrode tip 2... Pressure cylinder 2a... Extension side air chamber 3... Electromagnetic directional control valve 4... Compressed air supply source 5... Compressed air supply Discharge passage 21...Pressure control means 22...Pilot operated pressure reducing valve 23...Check valve 24...Pressure propagation passage 2
5.26.27... Pressure setting valve 28.29.30... Solenoid valve 31... Shuttle valve 32... Pressure variable proportional control solenoid valve 33... Proportional control solenoid valve Figure 1, Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 0 Figure 8
Claims (1)
の加圧シリンダ(2)への圧縮空気の給排を行う電磁方
向切換弁(3)と、圧縮空気供給源(4)とを順次に接
続してなる抵抗溶接機の加圧装置において、 加圧シリンダ(2)と電磁方向切換弁(3)との間もし
くは電磁方向切換弁(3)と圧縮空気供給源(4)との
間に、電気信号によって設定圧力を変更され、圧縮空気
の供給の停止をもたらす圧力制御手段(21)を接続し
てなることを特徴とする抵抗溶接機の加圧力制御装置。[Claims] 1. A pressurizing cylinder (2) that controls the operation of the resistance welding machine, an electromagnetic directional control valve (3) that supplies and discharges compressed air to and from the pressurizing cylinder (2), and a compressed air In a pressurizing device for a resistance welding machine in which a supply source (4) is sequentially connected, there is a supply voltage between a pressurizing cylinder (2) and an electromagnetic directional control valve (3), or between an electromagnetic directional control valve (3) and compressed air. Pressure force control for a resistance welding machine, characterized in that a pressure control means (21) is connected between a supply source (4) and a pressure control means (21) whose set pressure is changed by an electric signal and which causes the supply of compressed air to be stopped. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59079816A JPS60223669A (en) | 1984-04-20 | 1984-04-20 | Pressing force control device of resistance welding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59079816A JPS60223669A (en) | 1984-04-20 | 1984-04-20 | Pressing force control device of resistance welding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60223669A true JPS60223669A (en) | 1985-11-08 |
JPH0520188B2 JPH0520188B2 (en) | 1993-03-18 |
Family
ID=13700722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59079816A Granted JPS60223669A (en) | 1984-04-20 | 1984-04-20 | Pressing force control device of resistance welding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60223669A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62254986A (en) * | 1986-04-30 | 1987-11-06 | Ohara Kinzoku Kogyo Kk | Pressurizing pressure control device for resistance welding machine |
JPS62282785A (en) * | 1986-05-30 | 1987-12-08 | Miyachi Electric Co | Resistance welding machine |
JPS6329683U (en) * | 1986-08-07 | 1988-02-26 | ||
JPS6454982U (en) * | 1987-09-30 | 1989-04-05 | ||
JPH01107975A (en) * | 1987-10-20 | 1989-04-25 | Honda Motor Co Ltd | Method and device for controlling welding |
JPH07204859A (en) * | 1995-02-13 | 1995-08-08 | Matsushita Electric Ind Co Ltd | Control device for resistance welding machine |
US5484986A (en) * | 1994-05-27 | 1996-01-16 | Savair Inc. | Weld force limiter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5256015U (en) * | 1975-10-20 | 1977-04-22 | ||
JPS5711683U (en) * | 1980-06-23 | 1982-01-21 | ||
JPS57165393U (en) * | 1981-04-14 | 1982-10-18 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711683B2 (en) * | 1974-03-20 | 1982-03-05 |
-
1984
- 1984-04-20 JP JP59079816A patent/JPS60223669A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5256015U (en) * | 1975-10-20 | 1977-04-22 | ||
JPS5711683U (en) * | 1980-06-23 | 1982-01-21 | ||
JPS57165393U (en) * | 1981-04-14 | 1982-10-18 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62254986A (en) * | 1986-04-30 | 1987-11-06 | Ohara Kinzoku Kogyo Kk | Pressurizing pressure control device for resistance welding machine |
JPS62282785A (en) * | 1986-05-30 | 1987-12-08 | Miyachi Electric Co | Resistance welding machine |
JPS6329683U (en) * | 1986-08-07 | 1988-02-26 | ||
JPS6454982U (en) * | 1987-09-30 | 1989-04-05 | ||
JPH01107975A (en) * | 1987-10-20 | 1989-04-25 | Honda Motor Co Ltd | Method and device for controlling welding |
US5484986A (en) * | 1994-05-27 | 1996-01-16 | Savair Inc. | Weld force limiter |
JPH07204859A (en) * | 1995-02-13 | 1995-08-08 | Matsushita Electric Ind Co Ltd | Control device for resistance welding machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0520188B2 (en) | 1993-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5059088A (en) | Suction lifter for a material handling device | |
US6003428A (en) | Electro-pneumatic pressure control system for welding and like apparatus | |
JP2004286122A (en) | High-speed driving method for pressure cylinder and its system | |
JP2003130008A (en) | High speed driving method and its apparatus for pressure cylinder | |
US4733042A (en) | Welding control apparatus including a pressure regulating valve operated in accord with predetermined schedule of variations of a welding force control variable | |
EP1590086A1 (en) | Servo spot welding control system and method of welding workpieces | |
JPS60223669A (en) | Pressing force control device of resistance welding machine | |
US4579042A (en) | Selective air pressure control system for welding and like apparatus | |
KR100237426B1 (en) | Pressure controller and pressure control method for resistance welder | |
JP3336562B2 (en) | Hydraulic circuit for gripping device of cargo handling machine | |
US7956308B2 (en) | Weld gun control system | |
AU745484B2 (en) | Pneumatic weld head with automatically adjusted pressure | |
JP3180535B2 (en) | Spot welding equipment | |
JPH0713909Y2 (en) | Air cylinder controller for spot welding head | |
JPH0340667B2 (en) | ||
JP2653244B2 (en) | Stud welding equipment | |
JPH0320054Y2 (en) | ||
JPH01107978A (en) | Automatic welder | |
JP2851183B2 (en) | Transfer device | |
JPH01215472A (en) | Controlling method for automatic welding machine | |
JPH065024Y2 (en) | Controller for 2-stage stroke cylinder for spot welding | |
JPH0242393Y2 (en) | ||
JP2001198680A (en) | Method and device for pressure controlling electrode for resistance welding machine | |
JPS6324770B2 (en) | ||
KR0138724Y1 (en) | Pneumatic circuit of welding gun multi-stage reciprocating device |